Optimizing Realistic Rendering
with Many-Light Methods

Real-Time Many-Light Rendering

These are the annotated slides of the “real-time” part of the Many-Lights Rendering
course at SIGGRAPH “12.

This part covers techniques for making many lights methods suitable for (high-quality)
real-time rendering.

You can find some of the papers (list of references on the last slide) and accompanying
videos on our webpage: http://cg.ibds.kit.edu

Real-time Many-light Rendering

Outline
» main difference to offline-methods is visibility computation
» rasterization instead of raycasting
» VPL generation
» lighting and shadowing from VPLs
» high-quality rendering
» bias compensation in screen-space
» approximate compensation in participating media rendering

As we will see, it is basically all about visibility computation.

Whereas offline methods often simply use ray casting to determine visibility — between
arbitrary points in the scene or between VPLs and surfaces - real-time rendering still
(and almost exclusively) means using rasterization hardware, which is best suited to
render scenes from pinhole cameras and similar projections.

We will have a look at the consequences of this for VPL generation, for lighting and
shadowing from VPLs.

The second part will be on high-quality rendering with bias compensation and
participating media rendering.

Real-time Many-light Rendering é{ 1[
Visibility Computation for VPL Generation

» real-time rendering & mostly diffuse scenes < relatively few VPLs (~10°)

» if acceleration structure available use ray casting

» VPL generation with rasterization
» render scene from light

» observation: visible surfaces = first intersection of light path

For VPL generation, we should keep one thing in mind: as we’re targetting real-time
performance, the number of VPLs that we can handle is limited, typically to a few
thousand VPLs. This in turn means that the scenes we can handle are mostly diffuse or
very moderately glossy.

One thing is obvious for the VPL generation: if you happen to have an acceleration
structure for your scene, then use ray casting for the random walks.

If you don‘t, maybe because your scene is dynamic, then we can still generate VPLs using
rasterization only.

It’s based on a simple observation: imagine that you render the scene from the primary
light source (here a spot light and its depth buffer is shown).

...then the visible surfaces are those that are connected by a single light path segment to
the light source.

Real-time Many-light Rendering

VPL Generation with Rasterization

» render scene from light into reflective shadow map [DSO5]:
all information available for creating VPLs and continuing paths

» single bounce indirect illumination by directly sampling the RSM
» importance sampling can easily be added [DS06]
» proceed recursively by rendering another RSM

reflective shadow map

position

normal

In order to create a VPLs we need more information about those surfaces, e.g. the
position (which can be computed from depth), the surface normal and the material, but
all this can be created altogether in a single render pass.

The reflective shadow map paper [DSO5] uses this information to compute single-
bounce indirect illumination by directly sampling these textures.

In our case, we would choose a random subset of pixels, and use the available
information to create VPLs at the respective locations.

It is also possible to importance sample the RSM [DS06] in order to generate more VPLs
on glossy surfaces for examples. This can easiest be done by warping an initially uniform
sampling pattern according to an importance function.

And lastly, we need to continue a subset of the light paths, which is done by rendering
another RSM, again picking a subset of pixels, and so forth.

Of course it is expensive to render the scene multiple times, but a few slides further we
will address exactly this problem (with micro-rendering).

Rendering with VPLs {ﬁf{ U
Lighting and Shadowing
» many lights can be handled with deferred shading

» interleaved sampling (problem: detailed normals/geometry) [Seg06]

» hierarchical shading [NW10]

» accumulate and filter incident light [SW09]

» clustered deferred and forward shading [OBA12]

| 'y
vl i | 4 i ¥ Came

"}

» bottleneck: shadow computation

For now let‘s assume that we generated the VPLs and want to use them.

When rendering with many light sources, we usually use deferred shading to decouple
shading cost from geometric complexity of the scene and restrict shading to visible
surfaces only.

A lot of ideas have been developed for improving the performance with deferred
shading, e.g. interleaved sampling, hierarchical shading in image space, filtering incident
light to handle detailed geometry and glossy surfaces, and clustering of VPLs for image
tiles.

All these works are great as they push the number of VPLs that we can handle further,
but the real bottleneck is visibility or shadow computation for the VPLs.

Rendering with VPLs

Shadow Computation
» ..is the real bottleneck with instant radiosity / many lights methods

» exploit temporal coherency [LSKLAO7]

» sampled visibility
» voxelization, e.g. [SS10]
» faster shadow maps

¥ iy 44 e 8 ot R el i iy 0y B4
Guwgdeiapatahgs? folafold keanedew
PHRBIRRRPRRNR PR L REHSS BHS R
PRNRSYHNI PN 2 SR B JRNRO el QUGN IS
-
PP ik
u-«-u-oount-n---mk-nﬂu-o-ﬂwu’a
MA@ o @ oy

9qiou¢--o.uonquao-»~a-o

P oMK OH kP SHRE

cnunconqoqunu’*a;uﬁoﬁ
.‘nin'wﬂﬂh-

*Oﬁ.ﬂwﬂﬂﬂﬂﬂoﬁﬁﬂﬂgz‘

This problem has been addressed from very different directions.

Laine et al., simply speaking create VPLs and reuse them, as long as they remain directly
lit — and thus reduce the number of shadow maps that have to be generated each frame.
Unfortunately, maintaining a list of active VPLs is only feasible for single bounce
illumination.

Another way which is becoming more and more popular is to use voxelization and ray
marching to compute visibility, but what this presentation covers is how to compute
shadow maps fast.

Shadow Mapping for VPLs
Problem Setting

» need many shadow maps of low/moderate resolution

» rendering the scene many times (transformation, ...) is costly
» what we need is level-of-detail rendering
» point representations are well-suited for fast, approximate renderings

» two approaches: simple LOD with no connectivity and
water-tight rendering with point hierarchy

simple i hierarchy
point cloud . % of points

g =

... because we need one shadow map for every VPL.

As we have many VPLs, the resolution of each individual shadow map does not have to
be high, as the soft indirect illumination by VPLs does not show sharp features.

However, the situation is quite unfortunate, as the major cost in rendering tiny shadow
maps is independent of the resolution: geometry processing, transformation, rasterizer
setup and so on.

So what we ultimately would like to have is means to efficiently render a low detail
version of the scene.

Of course there exist triangle mesh reduction algorithms which could be used to
generate such versions, but they are not so well suited for rendering many tiny images
(rather few high-quality ones).

However, point-based rendering is very well-suited for fast and approximate rendering
with level-of-detail.

In particular we can use very simple point cloud rendering for computing approximate
shadow maps, or techniques which use point hierarchies for efficiently creating many
high-quality renderings or shadow maps of a scene.

Shadow Mapping for VPLs N4l

Imperfect Shadow Maps
» create random sets of point samples (triangle ID + barycentric coords)
» 4k to 16k points per “shadow map” (global parameter)

The first one is the “imperfect shadow maps” method.

The idea is very simple: first of all we create a set of points randomly distributed on the
surfaces of your scene.

In order to reuse these points in dynamic scenes, we do no store there absolute
position, but instead the triangle on which they reside together with the two barycentric
coordinates.

Once the triangle moves, we can compute the absolute position of the point sample
from the vertex positions.

Then we use a few thousand of these points and render the shadow map (typically with
a paraboloid projection for hemispherical shadow maps).

And you get this beautiful result on the right.

The problem is that the number of point samples was obviously not enough to
reasonably reconstruct the surfaces in the projection.

And in fact, this is a problem with simple point-based rendering: the number of point
samples has to be quite large...

Shadow Mapping for VPLs
Imperfect Shadow Maps

» 4k to 16k points per “shadow map” (global parameter)

» heuristic to reconstruct the surfaces from point samples

without pull-push with pull-push triangle rasterization

Here we see the same shadow map again and also the visible surfaces projected back
into 3D.

The right image shows the shadow map rendered with the original geometry.

The question when developing ISMs was whether these coarse point renderings make
sense at all...

Fortunately there are quite simple heuristics to reconstruct the surfaces even from this
incomplete information.

It basically works like this: first you create an image pyramid of the depth image where
only valid pixels are used to compute average pixels in coarser levels.
And in a second phase, holes are filled by interpolation of pixels from the coarser levels.

Shadow Mapping for VPLs

Imperfect Shadow Maps
» comparison of shadow maps for a single point light

X

u iy Yy

triangle rasterization without pull-push with pull-push

[1 B [

Here you can see an imperfect shadow map used for a single point light.

If you compare these three images then the depth map reconstructed using this pull-
push heuristic does not seem to be that bad.

Of course the result is not absolutely accurate, but as we will use them for a large
number of VPLs these errors will basically average out.

10

Shadow Mapping for VPLs

Imperfect Shadow Maps
» pull-push in image-space: parallel for thousands of shadow maps

rw**+ 4-4 P

»+ e S e S
M A T T
- + +ﬁ“+ +L-'l~‘|-.

without pull-push with pull-push

And another good thing is that we can perform this pull-push step on all depth maps in
parallel when they are stored in one large texture —it’s just an operation on a 2D image
which is independent of the geometric complexity of the scene.

11

Shadow Mapping for VPLs
Imperfect Shadow Maps

.. can render thousands of shadow maps in 100ms
.. work because errors average out

.. require playing with parameters

“perfect” shadow maps imperfect shadow maps

With this method we can easily create several thousands of ISMs in a few hundred
milliseconds.

And the results for many-lights rendering are almost indistinguishable from real shadow
maps, simply because these errors all average out.

However, in addition to playing with the shadow map parameters (e.g. for bias), we have
even more to tweak for the pull-push heuristic.

12

Shadow Mapping for VPLs f\\&[[1]
High-Quality Point-based Rendering
» create random points on surfaces and create hierarchy

» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

=
(o | [] [[]

image size >1 pixel

traverse children

One way to avoid this is to use high-quality point-based rendering.

In principle you start by distributing points on the surfaces again where each points
represents a part of the surfaces.

Then you build a hierarchy on top of them, e.g. by recursively merging nearby point
samples to larger ones.

To render an image you basically want to get away using a few point samples as
possible. And you do this by traversing the hierarchy staring from the root node to find
the cut, where the projected size of a point sample is just below a certain threshold, e.g.
the size of one pixel.

So here we would decide that the cut has to be refined...

13

Shadow Mapping for VPLs

High-Quality Point-based Rendering
» create random points on surfaces and create hierarchy

» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size >1 pixel

traverse children

...refined again...

14

Shadow Mapping for VPLs \U
High-Quality Point-based Rendering
» create random points on surfaces and create hierarchy

» idea of Qsplat: traverse hierarchy until projected size of point primitive is
small enough

image size <1 pixel

render point primitive

and here we finally found the point sample we would like to render as a single pixel, of
course combined with depth buffering.

15

Shadow Mapping for VPLs S\Q} U

Micro-Rendering

» renders accurate environment maps / depth buffers from point hierarchy
» actually developed for final gathering, using CUDA/OpenCL
» can be used to create (R)SMs (in 2009: ~16k in 100 ms, each 242 pixels)

Point samples used

Micro-framebuffer

The micro-rendering paper uses exactly this idea to render small environment maps
(with depth buffers) from point hierarchies using CUDA.

As it was initially meant for final gathering, it supports warped projections for
importance sampling and things which are not important for VPLs.

But we can use it to render a large number of low-resolution shadow maps and
reflective shadow maps (to create VPLs) very efficiently and with high accuracy.

16

Real-time Many-light Rendering
Outline
» main difference to offline-methods is visibility computation
» rasterization instead of raycasting
» \/PL generation
» lighting and shadowing from VPLs
» high-quality rendering
» bias compensation in screen-space

» approximate compensation in participating media rendering

With the ideas that | mentioned so far we have a pretty good set of techniques for VPL
generation, shading and shadow computation.

In the following we focus more on the aspects of high-quality rendering.

17

Singularities and Bias Compensation

» so far: VPL generation, shading and shadowing
» we assume to use VPLs to approximate indirect illumination L only

I = e =
L:ch:+TLe —l—T]i

T LA™ (o AL Vo 4
girect e TS ain

indirect

And as this is related to indirect illumination only, we will — from now on — assume that
we use VPLs to approximate indirect illumination only

This makes perfect sense if you keep in mind that direct illumination in real-time
applications is typically computed using some special methods for area lights and soft

shadows.

We also don’t care how these VPLs have been created, we only know that their joint
contribution makes up the indirect light in the scene.

In terms of the operator notation we have 3 summands: emission, direct illumination
and indirect illumination, and no recursion anymore.

T L-hat is the transport from the collection of VPLs that represent indirect illumination.

18

Singularities and Bias Compensation

» so far: VPL generation, shading and shadowing
» we assume to use VPLs to approximate indirect illumination L only

L=L+TL
L:Lf:—i—TL(_; +fo

- ec\0N Aaxi00 L von
direct E'Qfea I urninet

\\'\d'“'ect

; g
image plane §

Let’s have a quick look at the problems which might occur when computing the indirect
light...

In this case everything is fine, we just accumulate the contributions from all VPLs.

19

Singularities and Bias Compensation

» so far: VPL generation, shading and shadowing
» we assume to use VPLs to approximate indirect illumination L only

L=L+TL
L:Lf:—i—TL(_; +fo

1eciON L axiof | on
direct ""Qfea Murmind \\\um‘“a“

indirect

. wy
image plane §

... but for this surface location that’s not the case... because a nearby VPLs will create
bright splotch.

20

Singularities and Bias Compensation

L — L(_'i e Tch — TL
transport operator: N

(TL)(xey) = > frlxeyezs)Glyom)V (yoz) Liyez:)

fi=1.

geometry term: cost (Hy) cost (Gzi)

CEem) = Ty —mlp

The reason for this can be observed when looking at the transport for VPL lighting.

T-L-hat is nothing but a sum over all VPLs, taking account for the mutual visibility and
the geometry term between the VPL and the surface point.

And the geometry term can become arbitrarily large, as we divide by the squared
distance.

21

Singularities and Bias Compensation

reference (slow) rendering fast rendering with few VPLs clamping VPLs’ contribution

clamping the contribution of nearby VPLs
by bounding the geometry term

The naive solution is to clamp the VPLs’ contributions by clamping the geometry term ...

and seemingly the artifacts disappear.

22

Singularities and Bias Compensation

reference (slow) rendering DIFFERENCE clamping VPLs’ contribution

clamping removes short distance light transport.
How do we restore the missing energy?

But unfortunately, not only artifacts go away: we also remove a lot of energy from the
light transport, i.e. we introduce a systematic error.

This loss of energy basically affects short distance light transport visible in concave
regions (e.g. the corners of the room) where the geometry term becomes large.

23

-3

—

Lo+ TLe.+ T

full Lt L. + TL. + TL

bounded indirect LT: L, + TL. + T L

residual indirect LT: L

b: user-defined bound

Let’s now have a closer look what’s actually going on here.

The first line shows the rendering equation with full light transport computed from VPLs,
which suffers from artifacts.

We can now define a transport operator T_b (for bounded transport) which clamps the
VPL contribution when the geometry term becomes too large.

You can see that we clamp the geometry term to a user-defined bound b.

And we can also define a transport operator T_r (for residual transport) that describes
the energy that we clamped away.

And in the top-right image, you can see that this is exactly the part of the lighting that
contains the artifacts.

However, we don’t want to remove the residual energy, but instead compute it without
artifacts.

24

indirect illumination represented as VPLs L
‘repl ed by accurate ind"illur&i;ation R L)

Le + TL. + T, L ki L. + TL. + T8

... and for this we need to do a smart reformulation...
We defined L-hat as the collection of VPLs that represent the indirect illumination.

The trick is to replace the approximation L-hat in the residual part by the accurate
indirect illumination which is (L-Le) (i.e. all light except for direct emission).

If we add this accurate residual part to the bounded VPL contribution we obtain an
artifact free and correct image.

25

Bias Compensation

Bias Compensation [KK04]

» T,.(L — L,) computed with MC integration

» can degenerate to path tracing: too expensive for real-time rendering

Reformulated Bias Compensation
» re-use the existing (clamped) solution
» iteratively apply the residual transport

(L i Le)

L = L. H{ I aNI el =])
recursive expansion C

1=0

compute once
apply iteratively

design choice: compute and apply in screen-space

Bias compensation as described by Kollig and Keller basically computes the residual part
using Monte Carlo integration, which means that it can degenerate to path tracing in the
worst case, and thus it is too computationally expensive for real-time applications.

Fortunately, our reformulation trick allows us to do something smart:

If you look at our rendering equation with the two transport operators, then we can
observe that (L-Le) is exactly these 3 terms in the topmost green box.

We can do a recursive expansion and we end up with this interesting result in the
second equation.

Interesting because all summands in this version contain the same factor: direct light T
Le plus bounded VPL lighting.

This means we can obtain all summands by applying the residual transport operator
iteratively and that we can compute direct + bounded indirect light once, and recover
the full light transport rom that.

However, we have to make a design choise: we need a basis to store the direct +
bounded indirect light.

For real-time rendering we chose the image pixels as basis, i.e. we do the entire
computation in screen-space.

26

Screen-Space Bias Compensation

Algorithm Overview
» precomputation
1. distribute VPLs (as before)
2. create an imperfect shadow map for every VPL

» rendering

create deferred shading buffers

apply deferred direct and VPL lighting T L. + |
N-times in screen-space:

compute resi transport and add it to the image
o0

> T (TLe + T)L)

This is the algorithm overview...
precomputation works as usual: VPL and shadow map generation.

The image is then rendered with deferred shading with direct and bounded VPL lighting
first, and only based on this information, we compute the residual transport.

27

Screen-Space Bias Compensation
Residual Transport Integration (1 iteration)
» FOR EACH pixel:
» iterate over neighboring pixels
b IF G(xey) > b
» add contribution (with information in G-buffer)
cosT (0x) cos™ (By)

) T R

» clamping occurs in a close neighborhood only:
close in world space = close in screen-space

» we can conservatively estimate a bounding radius
and restrict the integration to it

side view

To compute one of these iterations, for every pixel in the image we compute the
residual transport from all other surfaces.

Fortunately, the clamped away energy can only come from nearby pixels and we can
estimate a bounding radius in screen space.

Then we go over all of these pixels, and see if the geometry term with those is larger
than our bound, if it this is the case,

the we compute the transport using the information which is stored in the deferred
shading buffers and the clamped image.

Screen-Space Bias Compensation
Hierarchical Integration

» still too many samples (even with the bounding radius)
» multi-resolution top-down integration (in spirit of [NWQ09])

» hierarchical approach requires

» mip-map chain of the G-Buffer and bounded illumination
» discontinuity buffer

deferred shading buffers clamped solution discontinuity buffer

However, this integration would still be too slow and thus we used a hierarchical

approach inspired by multi-resolution splatting idea of Nichols and Wyman, which works
on a resolution pyramid of the G-buffer, the illumination and a discontinuity buffer.

29

SSBC: Hierarchical Integration

number of samples (per pixel)

screen space always
means: no information
on hidden surfaces

You can see that the hierarchical integration computes the residual transport with an
acceptable number of samples (i.e. queried pixels).

And as we would expect: more samples in corners and less, where there is nothing to
compensate.

However, this design choice shares one problem with all screen space approaches: the
image does not contain information about hidden surfaces, and thus the compensation
from those is simply missing in the image.

30

Screen Space Bias Compensation

light transport

rendered with: -
1024x768 at: SSBC
(ATI Radeon HD 5870) 10.3 FPS

Here you can see some results and two things are important here:

1) the first iteration adds a lot of energy, the 2nd significantly less. And more iterations
are typically not really necesssary. This is because in every compensation step, we
convolve with the BRDF

2) The screen space bias compensation is not very expensive compared to the clamped
VPL rendering itself.

31

Comparison to Ground Truth

compensation only

bias compensation [KKk04]

CPU ~ 10.9 hours
(8-core, 4GB RAM)

screen-space
bias compensation
(3 steps)

GPU ~ 550 ms
(ATI Radeon HD 5870)

Well compared to ground-truth bias compensation it is of course orders of magnitude
faster (and this is of course no fair comparison),

These images again shows a case where some surfaces appear too dark, simply because
there is missing energy/compensation from hidden surfaces that are not sampled.

Participating Media with Many-Lights
Light Transport in Participating Media

» direct light from surface VPLs and
» single-scattering from media VPLs (emit according to phase function)

» VPLs also generated at scattering events in media
(see [ENSD12] for a step-by-step tutorial)

One nice thing about many lights rendering is that it directly transfers to participating
media as well.

For surface transport, we created VPLs on surfaces and computed direct illumination
thereof.

To account for scattering we create random walks which also generate VPLs where
interactions in the media happen.

33

Rendering Strategies for Participating Media

Light Transport in Participating Media
» direct light from surface VPLs and

» single-scattering from media VPLs (emit according to phase function)

» VPLs also generated at scattering events in media
(see [ENSD12] for a step-by-step tutorial)

These VPLs emit light according to incident direction of the path (indicated by the small
red arrow) and the phase function of the media.

We then have to compute the contribution due to single-scattering from these VPLs to a
camera ray.

For this we typically ray march along the ray (to compute the transmittance along it) and
connect to some or all VPLs at every step.

| strongly recommend to read [ENSD12] which explains the entire process and contains
much more detail than this presentation.

34

Participating Media with Many-Lights
Visibility and Transmittance
» homogeneous media:
» standard shadow map per VPL (compute transmittance)

> heterogeneous media:
» shadow map plus ray marching or
» deep shadow maps [LV0OO] or

» adaptive volumetric SM [SVLL10]

il

transmittance

One important difference now is that in addition to binary visibility in vaccum we now
have to account for outscattering and absorption along the connection of a VPLto a
point on the camera ray.

For homogeneous media it is sufficient to create a standard shadow map which takes
care of the binary part, and compute the transmittance along the paths analytically.

This, however, is not possible for heterogeneous media and has a strong impact on the
render time:

We either have to ray march along every connecting path segment, or compute deep
shadow maps, which essentially sample and store the transmittance function for all
pixels in a shadow map. There is a recent hardware-friendly version (the adaptive
volumetric SM) which can easily be used for our purpose.

35

Rendering Strategies for Participating Media

Light Transport in Participating Media
» direct light from surface VPLs and

» single-scattering from media VPLs (emit according to phase function)

» increased cost for visibility/transmittance computation

» observations to speed up bias compensation
» how many compensation steps
» heterogeneity vs. homogeneity
» assumptions on visibility
» approximate bias compensation
without ray casting!

As we will see, clamping and artifacts are even worse in the case of participating media.
Fortunately, we can derive an approximate bias compensation technique which does not
require ray casting and is thus feasible on a GPU.

36

Participating Media with Many-Lights ,ﬁrl i

Bias Compensation

no clamping clamping (approximate) bias compensation

o ®

Here you see some smoke, and the bright splotches come from VPL lighting without
clamping, whenever a VPL is too close to the camera ray.

The clamped image looks ok-ish, but we removed a lot of energy in this case.

On the right side you can see the result with our bias compensation for media, which
can be even be done in interactive speed.

37

Participating Media with Many-Lights

Bias Compensation

Here’s a plot along a scan line in this image illustrating the radiance values of the pixels
in a clamped, non-clamped, and correct solution.

You can see how bright these splotches actually are.

38

Participating Media with Many-Lights
Bias Compensation
» classic bias compensation [RSK08] if prohibitively expensive

» similar to surface case: magnitudes of compensation steps drop quickly

clamped 1t comp. X 4 2" comp. X 16

computed with path tracing (Raab et al.'s method)

As before, we could compensate the bias introduced by clamping using Monte Carlo
integration, but this is incredibly expensive for participating media — remember it
degenerates to path tracing, and path tracing in participating media is a very bad idea.

So we started looking at the bias compensation to figure out if there is potential good
approximations and to find out how Raab et al‘s method has to be modified to be
feasible in interactive speed (but the observations are also beneficial for offline
rendering, see [ENSD12]).

The first aspect we were looking at is the recovered energy which drops fast with every
iteration.

We found that it drops so quickly that 2 iterations were always enough (as long as we do

not have highly anisotropic phase functions, but then many lights methods would not be
a good idea anyway)

39

Participating Media with Many-Lights
Path Vertex Generation
» goal: create new path vertices inside bounding region

» heterogeneous media: Woodcock tracing (rejection sampling) might
create vertices that have to be omitted

» assume locally homogeneous media
(= similar scattering properties in some proximity)

» simple to create vertices

only in bounding region v

» result still correct when
transmittance T computed
with ray marching

» see [ENSD12] for details!

Another difficulty appears when doing bias compensation in heterogeneous media:
This figure is meant to explain Raab et als bias compensation:

In this example one VPL is too close to our shading point and what bias compensation
does is it omitts the VPL, and we have to sample a new direction to create a new path
vertex and a scattering event along this direction (direction is easy, simply sample the
phase function).

To figure out where this scattering event happens in an unbiased way, one typically uses
Wookcock tracking (which is essentially a rejection sampling technique — and thus a bad
idea by definition).

The problem is that it can generate locations which are outside the bounding region and
thus have to be omitted and then we would sample again.

Once we created a new path vertices in the bounding region, we connect it to the VPLs
and sum up the contributions. And of course, a recursive omission of VPLs can happen.

For a GPU-friendly algorithm we don‘t want to omit vertices, and to do so, we assume a
locally homogeneous media in the bounding region for sampling the distance (i.e. we
take the average extinction coefficients there) because allows us to sample scattering
events in that region without the need of rejection sampling. Note that the result is still
correct if we compute the true transmittance along the segments.

40

Participating Media with Many-Lights
Path Vertex Generation
» assume media to be locally homogeneous

» simple to create vertices only in bounding region v

» also compute transmittance using averaged scattering coefficients
» not correct but very close

bias compensation
(2 compensation steps)

— ray marching

locally homogeneous

We also tried to compute the transmittance analytically from the locally homogenous
medium (and thus avoid ray marching).

Still the differences to the exact solution are quite small.

41

Participating Media with Many-Lights
Do we have to compute visibility to newly created vertices?
» new vertices are close to
» what happens if we do not test mutual visibility?
» we tried to produce artifacts
> must be very close to a thin opaque object

» medium must be thin (otherwise sampling through object unlikely)

» quadratic decrease of compensation term

And there’s another very interesting aspect in bias compensation for participating
media:

strictly speaking, when creating a new path vertex (blue) for a location that requires
compensation (red) we have to account not only for transmittance, but also for visibility.

We tried what happens if we always assume mutual visibility (i.e. do not check for it).

Interesting is that we had to try hard to produce visible artifacts. The reasons are as
follows:

- first of the location that requires compensation has to be close to a surface (closer
than the bounding radius) otherwise occlusion can‘t happen

- second: the medium must not be too thick, otherwise sampling larger distances is
unlikely

- and lastly there’s also a quadratic decrease of the compensation term with the
distance

Finally we succeeded: we create a scene consisting of two rooms full of smoke and
separated by a wall.

We turned of the light in one room and after scaling the brightness by a factor of 512 we
discovered the splotch on the bottom right!

We learned that artifacts from omitting visibility in participating media bias
compensation are basically invisible.

42

Many-Lights for Participating Media
Approximate Bias Compensation
» VPL generation using ray casting
» two compensation steps only
|ocally-homogeneous assumption
» for creating new vertices without rejection
» for computing transmittance to new vertices

» only transmittance 7 but no visibility to new vertices

» more details in the paper [ENSD12]

This method is not fundamentally different from Raab et al‘s method, but it uses some
approximations with make it much fast and suited for GPUs.

In our implementation we used ray casting for VPL generation, although you could come
up with some “deep reflective shadow maps” to do that on the GPU as well.

43

Approximate Bias Compensation

This slide shows an offline rendering taken from [ENSD12] with 118k VPLs.

Please also have a look at the video which can be found on our webpage:
http://cg.ibds.kit.edu

Important to note is that a significant portion of the render time in the interactive/GPU
version for participating media is spent on ray marching along camera rays, which is also
required for single scattering from the primary light source, i.e. this is cost you have to
pay even without many-lights rendering...

44

Conclusions
Famous Last Words...
» many-lights methods work quite well in real-time
» bias compensation is feasible for surfaces and media
» glossiness for surfaces < anisotropic phase functions for media
» for mostly diffuse scenes, for scenes with moderate anisotropic media

[He}de]e][o moderate anisotropic strong anisotropic

| hope to have you convinced that many lights methods are suitable for real-time
rendering, also with bias compensation for high quality rendering.

Their use is rather limited by the materials in a scene, where glossy surfaces require
more VPLs to capture the light transport accurately.

As glossy BRDFs for surface, highly anisotropic phase functions cause problems when
rendering participating media, as you can guess from the images on this slide.

45

Conclusions

» ... about participating media and multiple scattering (MS)

» MS does not really add new visual details (single scattering does)
» but MS contributes a lot to the total energy (clamping is no option)

single scattering multiple scattering

» and finally: it’s all about visibility computation
» rasterization to resolve from-point visibility (VPL generation and use)
» rasterization for screen space integration

What we also found — which is not surprising actually — that multiple scattering does not
really add new crispy visual details, and this is why is can be well rendered using a
moderate number of VPLs.

Note, VPLs for participating media make sense for thin media. Thick media would create
many interactions and thus many VPLs and is not sufficient in this case.

The detail in thin media comes from computing transmittance along the camera ray and
single scattering into the direction of the camera.

However, multiple scattering can contribute a lot to the overall energy, i.e. it should not
be left out, and clamping should be avoided.

And to conclude with what this presentation started -- it’s all about visibility
computation:

We‘ve seen that rasterization can be efficiently used to resolve or approximate the
visibility between a moderate number of points (the VPL locations) and the surfaces in
our scene,

And it is also possible to replace ray casting in bias compensation by screen space
integration or to use well-working approximations/well-justified assumptions for bias
compensation in participating media.

46

Optimizing Realistic Rendering
with Many-Light Methods

Real-Time Many-Light Rendering

SAKI[

47

References

[LV0O] Lokovic and Veach, Deep Shadow Maps, SIGGRAPH 2000

[KKO4] Kollig and Keller, lllumination in the Presence of Weak Singularities, 2004

[DS05] Dachshacher and Stamminger, Reflective Shadow Maps, 13D 2005

[Seg06] Segovia et al., Non-interleaved Deferred Shading of Interleaved Sample Patterns, GH 2006
[DS06] Dachsbacher and Stamminger, Splatting of Indirect lllumination, 13D 2006

[LSKLAQ7?] Laine et al., Incremental Instant Radiosity for Real-Time Indirect lllumination, EGSR 2007

[RSKO8] Raab et al., Unbiased global illumination with participating media, Monte Carlo and Quasi-Monte
Carlo Methods, 2008

[RGKSDKO09] Ritschel et al., Imperfect Shadow Maps for Efficient Computation of Indirect lllumination,
SIGGRAPH Asia 2008

[SW09] Segovia and Wald, Screen Space Spherical Harmonics Filters for Instant Global Illumination,
TechReport Intel, 2009

[ED10] Engelhardt and Dachsbacher, Epipolar Sampling for Shadows and Crepuscular Rays in Participating
Media with Single Scattering, 13D 2010

[REGSKD10] Ritschel et al., Micro-Rendering for Scalable, Parallel Final Gathering, SIGGRAPH Asia 2009
[SS10] Schwarz, Seidel, Fast Parallel Surface and Solid Voxelization on GPUs, SIGGRAPH Asia 2010

[NW10] Nichols and Wyman, Interactive Indirect lllumination Using Adaptive Multiresolution Splatting,
|IEEE Transactions on Visualization and Computer Graphics 16(5), 2010

[SVLL10] Salvi et al., Adaptive Volumetric Shadow Maps, EGSR 2010

[NED11] Novak et al., Screen-Space Bias Compensation for Interactive High-Quality Global lllumination
with Virtual Point Lights, 13D 2011

[NNDJ12a] Novak et al., Virtual Ray Lights for Rendering Scenes with Participating Media, SIGGRAPH 2012
[NNDJ12b] Novak et al., Progressive Virtual Beam Lights, EGSR 2012

[ENSD12] Engelhardt et al., Approximate Bias Compensation for Rendering Scenes with Heterogeneous
Participating Media, Pacific Graphics 2012

[OBA12] Olsson et al., Clustered Deferred and Forward Shading, High Performance Graphics 2012

48

