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Abstract

We present a new fast algorithm for rendering the depth-
of-field effect for point-based surfaces. The algorithm
is able to handle partial occlusion correctly, it does not
suffer from intensity leakage and it is also capable of
depth-of-field rendering in presence of transparent sur-
faces. The algorithm is new in that it exploits the level-of-
detail paradigm to select the surface detail according to the
amount of depth-blur applied. This makes the speed of the
algorithm practically independent of the amount of depth-
blur. The proposed algorithm is an extension of the Ellipti-
cal Weighted Average (EWA) surface splatting. We present
a mathematical analysis that extends the screen space EWA
surface splatting to handle the depth-of-field rendering, we
modify the definition of surface texture to take the level-of-
detail into account, allowing us to use the level-of-detail for
depth-of-field rendering, and we demonstrate the algorithm
on example renderings of point-based objects.

Keywords point-based rendering, EWA surface splat-
ting, depth-of-field, lens effect, level-of-detail, LOD

1. Introduction

The ability to render the depth-of-field (DOF) effect is an
important feature of any image synthesis algorithm. DOF
makes the image appear more natural since the optical sys-
tems both in cameras and in the human eye have lens of
final aperture and do not produce perfectly focused images.
DOF is also an important depth cue that helps humans to
perceive the spatial configuration of a scene [17].

The effect of DOF is that out-of-focus points in 3D space
form circular patterns (circle of confusion, CoC) in the
image plane. The problems contributing to the complex-
ity of DOF rendering are thepartial occlusion(visibility
of objects changes for different points on the lens of final
aperture) and theintensity leakage(e.g.blurred background
leaks into the focused object in the foreground). Algorithms

that solve those problems exist but they are currently slow,
especially for large amounts of depth-blur.

We present a new fast algorithm which renders DOF for
point-based surfaces. Since our algorithm does not decou-
ple visibility calculations from DOF rendering, it handles
the partial occlusion correctly and it does not suffer from in-
tensity leakage. The algorithm can also render DOF in pres-
ence of transparent surfaces (Figure 1). The speed of the al-
gorithm is practically independent of the amount of depth-
blur, since it profits from the level-of-detail (LOD) to select
coarser representation for highly blurred surfaces. The pre-
sented algorithm builds on top of the Elliptical Weighted
Average (EWA) surface splatting framework proposed by
Zwicker et al. [22, 23] and as such it aims at rendering
point-based surfaces that are establishing as an important
auxiliary primitive in rendering systems.

The contributions of this paper are: a mathematical ana-
lysis extending the screen space EWA surface splatting to
include the DOF rendering ability, an analysis allowing to
use the LOD as a means for DOF rendering, an implemen-
tation of the algorithm, and a discussion of practical issues
arising from the implementation.

The rest of the paper is organized as follows: Section 2
draws the main ideas of the DOF rendering algorithm, Sec-
tion 3 presents related work, Section 4 describes the camera
model used for DOF rendering and reviews the screen-space
EWA surface splatting algorithm. From Section 5 on, our
algorithm is discussed: Section 5 contains the mathematical
analysis of our DOF rendering algorithm, Section 6 presents
its implementation, Section 7 gives the results, Section 8
discusses the simplifying assumptions we have made in the
algorithm and their consequences, and Section 9 concludes
the work.

2. Outline of the Algorithm

The basic idea is to blur the individual splatsbeforethey
make up the image instead of blurring the image itself. We
think of DOF rendering as filtering (or blurring) the image



Figure 1. Example of DOF rendering with semitransparent surface. Left: no DOF. Middle: DOF is on
and the transparent mask is in focus. Right: the male body is in focus, the mask is out of focus.

with a spatially variant low-pass filter. In the case of surface
splatting, the image is formed by summing the contribu-
tions from the splats (called resampling kernels in the con-
text of EWA surface splatting). DOF can thus be obtained
by first low-pass filtering the individual resampling kernels
and then summing the filtered kernels together. Since the
supports of the resampling kernels are small, the filtering
can be approximated by a convolution, which can be very
easily accomplished with circular Gaussians. These state-
ments are discussed in Section 5.1.

The introduced scheme for DOF rendering means that
each resampling kernel is enlarged proportionally to the
amount of depth-blur appertaining to its camera-space
depth. Rasterization of such enlarged kernels generates a
high number of fragments thus slowing down the rendering.

We observe that the low-pass filtering (or blurring) is im-
plicitly present in the coarser levels of LOD hierarchies for
point-based objects and can be exploited for DOF render-
ing. The outline of the DOF rendering algorithm with LOD
is as follows: while traversing the LOD hierarchy, we stop
the traversal at the point whose level corresponds to the blur
that is “just smaller” than the required depth-blur for that
point’s depth. In this way we get the screen-space blur that
is approximately equal to the required depth-blur.

Since the LOD hierarchy is discrete, we cannot get ar-
bitrary blur only by choosing the suitable hierarchy level.
Therefore we perform an additional low-pass filtering in
screen-space which corrects the LOD blur to produce the
desired result. DOF rendering with LOD is described in
detail in Section 5.3.

3. Related Work

Depth-of-Field Rendering Thorough discussion of the
DOF rendering algorithms can be found in [9]. We divide
the algorithms for DOF rendering into two groups:post-
filtering algorithms andmulti-passalgorithms.

Post-filtering algorithms work as follows: first the im-
age is computed using a pinhole camera model. The result-
ing image along with the depth values for each pixel are
then sent tofocus processorwhich turns every pixel into a
CoC, whose radius is computed from the pixel depth value.
The intensity of the pixel is spread onto its neighbors that
fall within that pixel’s CoC. Potmesil and Chakravarty [13]
were the first to present a DOF rendering algorithm. They
have given the formulas to compute the radius of the CoC
and described the intensity distribution within the CoC by
Lommel functions. Chen [2] propose to simplify the in-
tensity distribution to uniform. Rokita [16, 17] and Dud-
kiewicz [4] use multiple passes of hardware convolution fil-
ters to create the DOF effects. The post-filtering algorithms
listed so far suffer from intensity leakage and they do not
take the partial occlusion into account. They also produce
undervalued pixel intensities near the boundaries of two dif-
ferently focused objects. Those effects are described by
Matthews [9], who also proposes his approach to partially
solve them. Another approach that solves the partial occlu-
sion is Shinya’s ray-distribution buffer [20] which has un-
fortunately very high computational and memory overhead.
Scofield [19] sorts objects to be rendered according to their
depth, renders them independently to separate images, fil-
ters the images and combines them into a single final image.
Fearing [5] use frame-to-frame coherence to avoid the DOF
computation for some pixels. Mulder and van Liere [10]
combine two hardware based algorithms to render DOF in
virtual reality applications. The accurate and slower algo-
rithm is used in areas near the gaze direction, whereas less
accurate but fast algorithm is used in periphery.

Multi-pass algorithms do not decouple visibility from
DOF rendering, therefore they can handle the partial occlu-
sion correctly, however at a higher computational cost. The
method described in [11] renders DOF by taking multiple
pinhole camera renderings of the same scene, with view-
points evenly distributed on the lens surface, while preserv-



ing a common plane in focus. In distributed ray tracing [3],
multiple primary rays are cast for each pixel that originate
from different locations of the lens.

Our algorithm is similar to post-filtering algorithms, but
unlike them, it does not involve a separate focus processor.
Instead, the individual points are blurredbeforethey form
the final image.

Point-Based Rendering Different approaches exist to
render points as a continuous surface. One of them, which
is particularly important for us, issplatting. A single point
is rendered as multiple pixels and the colors of the pix-
els are weighted averages of contributions from different
points. This approach was used by Levoy and Whitted in
[8]. Zwickeret al.[22] extended it to handle the anisotropic
texture filtering and call their method the surface splatting.
The surface splatting is the basis for the work we present
here. The same authors then extended the surface splatting
to volume rendering [21] and presented both algorithms in
an unified framework in [23]. Renet al. [15] implemented
the surface splatting in hardware. The surface splatting al-
gorithm is thoroughly discussed by Räs̈anen [14], who also
proposes a point rendering pipeline that handles DOF ren-
dering. His algorithm is based on stochastic sampling of
the resampling kernel. This method requires high number
of samples to produce noise-free images and thus it is some-
what slow.

4. Preliminaries

4.1. Camera Model for DOF Rendering

The description of the camera model we use for DOF
rendering, that will follow in this section, is adopted from
[6, 13, 17]. We use the thin lens model for DOF rendering.
The parameters that specify the optical system are the fol-
lowing: thefocal lengthF , theaperture numbern, and the
focal plane distanceP . F andn specify thelens diameter
A = F/n. Any point which is further from or closer to the
lens thanP appears out of focus and is displayed as a CoC.
The CoC radiusC for a point at distanceU from the lens is

C =
1
2
|Vu − Vp|

F

nVu
, (1)

where

Vu =
FU

U − F
, U > F ; Vp =

FP

P − F
, P > F. (2)

Vp is the distance from the lens to the image plane. It can be
given instead of the focal lengthF , in this caseF = PVp

P+Vp
.

The CoC radiusC has to be scaled to express the CoC ra-
dius in pixels. The way it is done depends on whether the
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Figure 2. Texture function on the surface of a
point-based object (after Zwicker et al. [22]).

simulated optical system is acameraor a human eye(e.g.
as in virtual reality [17]).

For camera simulation we assume that projec-
tion and viewport transformations has been set with
OpenGL call glFrustum(L,R,B,T,N,FAR) and
glViewport(0,0,W,H) . We also assume an undis-
torted image:(R − L)/(T − B) = W/H. Then the radius
of CoC in pixels is

Cr = C
W

R− L
N

Vp
= C

H

T −B
N

Vp
. (3)

For eye simulation the lens diameterA is the pupil di-
ameter which varies from 1 to 8 mm. The average pupil
diameterA = 4 mm can be used.Vp is the distance from
the eye’s lens to the retina which is fixed and its standard
value is24 mm. P is the distance from the observer’s eye
to the object the eye is focusing on. To get this distance an
eye tracking device has to be used to measure the observer’s
direction of sight.P is then the distance to the nearest vis-
ible surface in this direction. Equation (1) gives the radius
of CoC on the retina. The CoC radius on the display screen
in pixels is

Cr = C
ds
Vp
R, (4)

whereds is the distance from the eye to the display screen
andR is the screen resolution in pixels per unit length.

4.2. Screen Space EWA Surface Splatting

This section briefly reviews the screen space EWA sur-
face splatting algorithm as described by Zwickeret al. [22].

The definition of the texture function on the surface of
a point-based object is illustrated in Figure 2. The point-
based object is represented as a set of irregularly spaced
points{Pk}, each associated with a basis functionrk and
coefficientswrk, wgk, wbk for color channels. Without loss
of generality, we proceed with the discussion using a single
channelwk. Although the domain for the basis functions



rk is the surface of the object, no global parametrization of
the object surface is required. Local surface parametrization
is sufficient to define the texture function since the support
of functionsrk is local. Given a pointQ on the surface
with local coordinatesu, the value of the continuous texture
function is expressed as

fc(u) =
∑
k∈N

wkrk(u− uk), (5)

whereuk are the local coordinates of the pointPk. The
valuefc(u) gives the color of the pointQ.

To render a point-based objectwhose texture is defined
by Equation (5), the texture functionfc has to be mapped to
the screen-space. Heckbert’s resampling framework [7] is
used for this purpose. It involves the following conceptual
steps: first, the continuous texture functionfc in object-
space is reconstructed from sample points using Equation
(5), second,fc is warped to screen-space using the affine ap-
proximation of the object-to-screen mappingm, third, the
warpedfc is convolved in screen-space with the prefilterh,
yielding the band-limited output functiongc(x), lastlygc is
sampled to produce alias-free pixel colors. Concatenating
the first three steps, the output functiongc is

gc(x) =
∑
k∈N

wkρk(x), (6)

where
ρk(x) = (r′k ⊗ h)(x−muk(uk)), (7)

r′k is the warped basis functionrk, h is the prefilter,muk

is the affine approximation of the object-to-screen mapping
around pointuk. Functionρk is the warped filtered basis
function rk and is called theresampling kernel. Equation
(6) states that the band-limited texture function in screen
space can be rendered by first warping and band-limiting
the basis functionsrk individually and then summing them
in screen space.

EWA framework uses elliptical Gaussians as the basis
functionsrk and the prefilterh. With Gaussians it is pos-
sible to express the resampling kernel in a closed form as a
single elliptical Gaussian. An elliptical Gaussian in 2D with
the variance matrixV is GV(x) = 1

2π
√
|V|
e−

1
2 xTV−1x,

where|V| is the determinant ofV. Matrix V−1 is so called
conic matrix andxTV−1x = c are the isocontours of the
GaussianGV, that are ellipses iffV is positive definite [7].

The variance matrices for basis functionrk and the pre-
filter h are denotedVr

k and Vh respectively. Usually
Vh = I (the identity matrix). With Gaussians, Equation
(7) becomes

ρk(x) =
1
|J−1
k |
GJkVr

kJTk +I(x−m(uk)), (8)

whereJk is the Jacobian of the object-to-screen mapping
m evaluated atuk. In this formulationρk(x) is a Gaussian
and is called thescreen space EWA resampling kernel. In-
formally, this formula gives the shape and “alpha mask” of
a splat for pointPk.

The surface splatting algorithm takes the points{Pk}
in any order, for each pointPk it computes the resampling
kernelρk, rasterizes it and accumulates the fragments in the
accumulation buffer.

The Gaussian resampling kernelρk has an infinite sup-
port in theory. In practice, the support is truncated and the
resampling kernel is evaluated only for limited range of ex-
ponentβ(x) = xT (JkVr

kJ
T
k +I)−1x , for whichβ(x) < c,

wherec is acutoff radius.

5. DOF Rendering in the EWA Surface Splat-
ting Framework

In this section, we extend the screen space EWA surface
splatting to include the DOF rendering ability. First, we
describe how DOF can be obtained by blurring individual
resampling kernels, then we extend the DOF rendering to
exploit the LOD.

5.1. Depth-of-Field rendering as a resampling ker-
nel convolution

Neglecting the occlusion we can express the depth-
blurred continuous screen space signalgdof

c as

gdof
c (x) =

∫
R2
I(coc(z(ζ)),x− ζ) gc(ζ) dζ,

wheregc is the unblurred continuous screen space signal,
z(x) is the depth atx, coc(d) is the CoC radius for depthd
andI(r,x) is the intensity distribution function for CoC of
radiusr at pointx. I is circularly symmetric and is centered
at origin. It is applied togc as a spatially variant filter.

Expanding the Equation forgc using (6) we get

gdof
c (x) =

∫
R2

(
I(coc(z(ζ)),x− ζ)

∑
k∈N

wkρk(ζ)
)
dζ =

=
∑
k∈N

wkρ
dof
k (ζ),

where

ρdof
k (x) =

∫
R2
I(coc(z(ζ)),x− ζ)ρk(ζ)dζ. (9)

This means that we can get the depth-blurred screen space
function gdof

c by first depth-blurring the individual resam-
pling kernelsρk and then summing up the blurred kernels.
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We assume that the depthz(x) does not change within
the support ofρk and can be replaced by a constantzk
which is the z-coordinate of the pointPk in the camera-
space. Therefore the functionI(coc(z(ζ)),x − ζ) can be
replaced by the spatially invariant functionIcoc(zk)(x − ζ)
and Equation (9) becomes the convolution

ρdof
k (x) = (Icoc(zk) ⊗ ρk)(x). (10)

For compatibility with the EWA framework, we choose
circular Gaussians as the intensity distribution functionI.
If we denote the variance matrix forIcoc(zk) by VI

k, then
Icoczk

= GVI
k
. We now plug (8) into (10) and we getρdof

k

in the form

ρdof
k (x) =

1
|J−1
k |
GJkVr

kJTk +I+VI
k
(x−m(uk)). (11)

This formulation means that we can get the depth-
blurred resampling kernel easily: for each splatted pointPk

we compute the variance matrixVI
k and we add it to the

variance matrix of the unblurred resampling kernelρk. We
show how to computeVI

k in the next section. By blurring
the resampling kernels individually, we get the correct DOF
for whole image.

5.2 Variance matrix of the Intensity Distribution
Function

Having the depth valuezk, we compute the CoC radius
Cr using Equation (3) or (4). Now we want to find such
variance matrixVI

k that brings the GaussianGVI
k

as close
as possible to the uniform intensity distribution within the
CoC of radiusCr (Figure 3a). We denote the uniform in-
tensity distribution function byIuni

Cr
. Iuni

Cr
(x) = 1/πC2

r if
‖x‖ < Cr and zero otherwise. By the distance between
functions we mean the distance induced by theL2 norm.
We know thatGVI

k
is circular and thusVI

k = aI, whereI
is the identity matrix anda is a scalar. Hence our problem
reduces to finding a suitablea for any givenCr. We are
minimizing the following functional:

F (a) = ‖Iuni
Cr − GVI

k
‖L2 = ‖Iuni

Cr −
1

2πa
e−

1
2

xT x
a ‖L2 .

We derived the solutiona = 1
2 ln 4C

2
r , thus the variance ma-

trix VI
k is

VI
k =

(
1

2 ln 4C
2
r 0

0 1
2 ln 4C

2
r

)
.

One could ask why we are trying to find the best Gaussian
approximation of the uniform intensity distribution, which
is in turn just an approximation of what the intensity distri-
bution really is (the Lommel distribution [13]). The reason
is that the mathematical intractability of the Lommel inten-
sity distribution function did not allow us to expressa in a
closed form.

5.3. DOF Rendering with Level-of-Detail

The DOF rendering algorithm as presented so far would
be very slow (see timings in Section 7) because of the high
number of fragments generated by the rasterization of the
blurred resampling kernels. The LOD hierarchies such as
those used in [12, 18] typically low-pass filter the texture for
coarser levels. We observe that this low-pass filtering can be
considered as blurring — if we choose a coarser hierarchy
level, we get a blurred image. However, by just choosing a
suitable level, we cannot steer the amount of blur precisely
enough. We solve this by an additional low-pass filtering in
screen-space. Another problem is that the low-pass filtering
in the LOD hierarchy is done in the local coordinates on
the object surface, whereas we need to perform the low-
pass filtering in screen-space. Fortunately, there is a simple
relation between the two spaces, given by the local affine
approximation of the object-to-screen mapping.

To express those intuitions more rigorously, we slightly
change the definition of the texture function for a point-
based object (5) to take into account the LOD hierarchy with
texture prefiltering.

Extended Surface Texture Definition Having the mul-
tiresolution representation of a point-based surface, we as-
sume for this discussion that there are distinct levels identi-
fied by integers0 toM , where level0 are leaves. The con-
tinuous texture functionf lc at hierarchy levell is represented
by a set of basis functionsrlk. This representation is created
by low-pass filtering and subsampling the representation for
the texture functionfc from level0. The basis functionrlk
is assumed to be created by convolvingrk (basis function
for level0) with a low-pass filterqlk: rlk(u) = (rk⊗ qlk)(u).
The continuous texture functionf lc is then

f lc(u) =
∑
k∈N

wkr
l
k(u− uk) =

∑
k∈N

wk(rk ⊗ qlk)(u− uk).
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Figure 4. DOF rendering with different LODs.

Application to Depth-Blurring After having defined the
texture function on coarser LOD, we focus on transform-
ing the filtersqlk to the screen-space and using the coarser
representation of the texture function for depth-blurring.

We assume that all the basis functions from all hierar-
chy levels are Gaussians and that the low-pass filtersqlk are
Gaussians as well:rlk = G

Vrl

k

andqlk = G
Vql

k

. Recall that

Vr
k is the variance matrix associated with the basis function

rk from level0. We then haveVrl

k = Vr
k + Vql

k (because
rlk = rk ⊗ qlk) and the resampling kernelρlk for the basis
functionrlk is

ρlk(x) =
1
|J−1
k |
G

Jk(Vr
k+Vql

k )JTk +I
(x−m(uk)). (12)

The variance matrix of this Gaussian isVl
k =

Jk(Vr
k + Vql

k )JTk + I = JkVr
kJ

T
k + I + JkV

ql

k JTk .
Therefore we can consider the resampling kernelρlk to be
the resampling kernelρk convolved in screen spacewith
the GaussianG

JkVql

k JTk
. In other words, by selecting the

hierarchy levell to render the surface around pointPk, we
get the blurring in screen space by the GaussianG

JkVql

k JTk
.

If we now look at Equation (11), we see that to get the
blurred resampling kernelρdof

k from ρk, ρk has to be con-
volved with the GaussianGVI

k
. Thus, to getρdof

k from ρlk,

we have to convolveρlk with the GaussianGVdiff
k

, where the

variance matrixVdiff
k is given byVI

k = JkV
ql

k JTk + Vdiff
k .

Convolution with GaussianGVdiff
k

can be regarded as an
additional blurring needed to produce the required screen-
space blur after we have selected the hierarchy levell.

Figure 5. Example of LOD selection for DOF
rendering.

SinceVdiff
k is a variance matrix of an elliptical Gaussian,

it must be positive definite [7]. Such a matrix exists if Gaus-
sianG

JkVql

k JTk
is “smaller” than GaussianGVI

k
(i.e. iff the

elliptical area{x | xT (JkV
ql

k JTk )−1x ≤ 1} is a subset of
the elliptical area{x | xT (VI

k)−1x ≤ 1}).
The idea of using the LOD to speed-up depth-blurring

is to select such a hierarchy levell that (positive definite)
Vdiff
k exists but GaussianGVdiff

k
is “as small as possible”,

i.e. G
JkVql

k JTk
is “just a bit smaller” thanGVI

k
. This means

that the amount of blur that needs to be added byGVdiff
k

is
very small and therefore the blurring does not significantly
slow down the rendering. This concept is illustrated in Fig-
ure 4.

6. Implementation

In this section we describe the implementation of the
DOF rendering algorithm in the screen space EWA surface
splatter. Our goal was to include the ability to render DOF
as smoothly as possible.

6.1. DOF rendering without LOD

For every pointPk being splatted we compute the vari-
ance matrixVI

k (Section 5.2) and add it to the variance ma-
trix of ρk (Equation 8) to get the blurred resampling kernel
ρdof
k (Equation 11). It is then rasterized as in normal surface

splatting.

6.2. DOF rendering with LOD

LOD Selection We adopted the QSplat multiresolution
hierarchy [18] and add one new criterion to stop the LOD
hierarchy traversal. The traversal is stopped if the projected
size of the node gets smaller than the CoC radius for that
node. This is a sufficient condition for the existence of pos-
itive definiteVdiff

k , sinceG
Vrl

k

andGVI
k

are both circular

Gaussians. Figure 5 shows an example of LOD selection
for DOF rendering. The left image visualizes the points



used to render the image on the right. The size of the points
corresponds to the LOD.

Per-Splat Computation For each pointPl
k being splat-

ted we need to determine the low-pass filterqlk (it is given
by the hierarchy levell) and we then need to compute the
matrix Vdiff

k for additional screen-space blurring. We use
the following computations:

Vdiff
k := circumellipse(JkV

ql

k JTk , VI
k)

W := JkVr
kJ

T
k + I + Vdiff

k

W is the resulting matrix of the resampling kernel. The
functioncircumellipse(A,B) returns the variance matrix
for an ellipse that circumscribes ellipses defined by conic
matricesA−1 and B−1. In our casecircumellipse re-
turns the variance matrix of the Gaussian which is “big-
ger” than both GaussiansG

JkVql

k JTk
andGVI

k
. Its imple-

mentation is given in Appendix A. According to how the
LOD selection algorithm was designed, the most common
case is thatGVI

k
is “bigger” thanG

JkVql

k JTk
. In this case,

circumellipse(JkV
ql

k JTk , VI
k) simply returnsVI

k. How-
ever, sometimes the relation between the “sizes” ofGVI

k
and

G
JkVql

k JTk
can be inverse,e.g. if the LOD hierarchy traver-

sal is finished by some other criterion than the one used for
depth-blurring.

6.3. Normalization

Since the resampling kernels are truncated to a finite sup-
port and the surface is sampled irregularly, the resampling
kernels do not sum to 1 and the intensity of the rendered tex-
ture varies in screen-space which is an unpleasant artifact.
Zwickeret al. [22] perform an additional per-pixel normali-
zation in screen-space after the points had been splatted to
rectify this problem.

In DOF rendering we cannot do this post-normalization
because we use the accumulated weights as the estimate for
partial coverage. In case of DOF rendering, this estimate
has to be much more precise than in the case of edge anti-
aliasing. Motivated by Renet al. [15] we perform a per-
point normalization in the preprocessing step. We use the
same algorithm to compute the per-splat weights (capturing
the weights from rendered images) since this technique is
easy to implement and works reasonably well. However, a
specialized tool for this purpose would be useful.

Unlike Renet al. we do not bind the normalization to
a particular choice of the cutoff radiusc. To compute the
normalization, we use a very large support of the recon-
struction filters (c = 3.5 − 4) such that the influence of
truncation becomes negligible. This allows us to use the

normalized model for any value ofc without having to re-
normalize it. To take a smallerc into account we divide
the weights during rendering by the compensation factor
1 − e−c (Figure 3b) which makes every single truncated
Gaussian always integrate to1 and therefore keeps the sum
of resampling kernels close to1. For a visually pleasing
DOF effect the value ofc must be slightly higher than for
surface splatting without DOF: we usec = 2− 3.

6.4. Surface Reconstruction

To resolve visibility a means for deciding whether two
fragments come from a single surface (and should be
merged) or from different surfaces (and should be kept sep-
arated) must be introduced in the EWA surface splatting al-
gorithm. Zwickeret al. [22] use the depth threshold — if
the depths of two fragments differ by less than the threshold,
they are supposed to lie on the same surface. This technique
gets into troubles if some kind of filtering is applied that en-
larges the resampling kernel support in screen space (e.g.
prefiltering, depth of field filtering). The resampling kernel
depth values then get extrapolated and reasonable surface
reconstruction is not possible.

We use the surface reconstruction algorithm based onz-
rangesas described by R̈as̈anen [14]. A minimum and max-
imum depth is computed for each basis functionrk in cam-
era space and is assigned to each fragment emerging from
rasterizing the resampling kernelρk. When a new frag-
ment is inserted into the A-buffer [1], its z-range is checked
for intersection with the z-ranges of the fragments already
present in the A-buffer. If the z-ranges overlap, the frag-
ments are merged and their z-range is the union of respec-
tive z-ranges of new and existing fragments.

Since we blur the splats individually and the surface
reconstruction is appliedafter blurring, we avoid inten-
sity leakage and we can handle partial occlusion. The A-
buffer moreover allows for transparent surfaces. However,
for surfaces that are close to each other or for intersecting
surfaces, artifacts cannot be avoided, because of incorrect
merge/separate decisions.

6.5. Shading

Shading can be done per-splat, before the points are
splatted, or per-pixel, after all the points have been splat-
ted [14]. We use per-splat shading. This is needed if view-
dependent shading, such as specular highlights, is used. If
we used normal interpolation and per-pixel shading, the
highlights wouldn’t appear blurred.



Data Aperture LOD #FRAG #PTS time
Plane 0 - 5 685 262 144 0.76 s

0.5 YES 8 521 178 696 0.97 s
2 YES 7 246 54 385 0.75 s

0.5 NO 17 630 262 144 1.79 s
2 NO 196 752 262 144 20.2 s

Lion 0 - 2 266 81 458 0.43 s
0.01 YES 4 036 53 629 0.56 s
0.04 YES 5 318 17 271 0.56 s
0.01 NO 7 771 81 458 0.91 s
0.04 NO 90 219 81 458 8.93 s

Table 1. Rendering performance

7. Results

We have implemented the DOF rendering algorithm in
a software EWA surface splatter. We use A-buffer [1] for
transparency and edge antialiasing. Figure 1 illustrates the
DOF rendering with semitransparent surface. Figure 6 com-
pares the results of our rendering algorithm (left column)
with those of the multisampling algorithm [11] (right col-
umn) that is taken as a reference. The number of images
averaged to produce the reference images was 200. From
top to bottom, the aperture (i.e. the amount of blur) is in-
creased. For flat objects such as the plane the difference
is hardly perceptible. However, for complex objects like the
lion our algorithm produces some artifacts. They are mainly
due to the incorrect merge/separate decisions in the surface
reconstruction process (Section 6.4). Another reason is that
the shape(unlike the texture) is not low-pass filtered for
coarser levels of the LOD hierarchy and the surface sam-
ple positions are highly irregular but the algorithm is quite
sensitive to the regularity of surface sample positions.

Rendering performance is summarized in Table 1. It was
measured for512 × 512 frames, cutoff radiusc was set to
2.5. The system configuration was a 1.4 GHz Pentium 4
with 512 MB RAM, GCC 3.1 compiler with optimization
set to Pentium 4 architecture. The table shows the number
of generated fragments (#FRAG - in thousands), the num-
ber of points used for rendering (#PTS) and the rendering
time (time) for objects in Figure 6 with varying apertures.
The table also compares the DOF rendering speed with and
without LOD. The rendering time is directly proportional
to the number of fragments generated by rasterizing the re-
sampling kernels, since the rendering pipeline is fill-limited.
This is due to the fact that we use an A-buffer with linked
lists of fragments that degrade cache performance signif-
icantly. The rendering times in the table also show that
thanks to LOD the rendering speed is practically indepen-
dent of the amount of depth-blur. The time for computing
the reference images was 147 sec. (plane, 200 images) and
83 sec. (lion, 200 images).

8 Discussion

Let us now summarize the simplifying assumptions we
have made in the algorithm and their consequences.

• Depth of splats is constant.We use a constant depth
to compute a single CoC radius for the whole splat.
This is a mild assumption and does not cause any kind
of artifacts.

• Intensity distribution within CoC is a Gaussian.
This is a commonly made assumption in DOF ren-
dering algorithms that aim at real-time [16, 4, 17, 10].
We derived an optimum Gaussian variance matrix that
makes the Gaussian approximation as close as possible
to the uniform intensity distribution. For an inexperi-
enced viewer the effect is hardly noticeable. However,
for an artist having experience with photography this
might be disturbing. Since high-end image generation
is not our aim, this is not a problem.

• Splat contributions sum up to unity.We use this as-
sumption to estimate partial coverage. As the correctly
estimated partial coverage is crucial for our algorithm
we perform a per-point pre-normalization and we nor-
malize truncated Gaussians. As a result, the splats sum
up to 1 ± 0.1 which is acceptable for our purposes.
However, the pre-normalization works well only for
models that are sampled without irregularities.

• A-buffer correctly solves visibility and reconstructs
surfaces. This is the most restricting assumption
which often fails and can lead to severe artifacts. The
reason lies in overly big z-ranges that we are forced
to assign to the blurred splats. They in effect lead to
incorrect blending between separate surfaces. This ar-
tifact is most pronounced on the intersection of two
surfaces.

9. Conclusions and Future Work

We have presented an efficient algorithm for DOF ren-
dering for point-based objects which is a modification of the
EWA surface splatting and requires minimal implementa-
tion efforts once the EWA splatter is ready. It renders DOF
correctly in presence of semitransparent surfaces, handles
the partial occlusion and does not suffer from intensity leak-
age. It is to our knowledge the first algorithm that uses LOD
for DOF rendering and whose speed is independent of the
amount of depth-blur.

The drawbacks of the algorithm are mainly high sensi-
tivity to the regularity of sample positions on the surface of
point-based object and occasional artifacts due to the incor-
rect surface reconstruction in the A-buffer.



In the future we would like to implement the DOF ren-
dering algorithm for EWA volume rendering where it can be
used to focus observer’s attention to important features. We
would also like to develop a specialized tool for normaliza-
tion of point-based objects.
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Appendix A: Calculation of a Circumscribed
Ellipse

Given two variance matrices

M =
(

A B/2
B/2 C

)
and VI

k =
(
RIk 0
0 RIk

)
,

the task is to find the variance matrixVdiff
k , whose

conic matrix (Vdiff
k )−1 defines the smallest ellipse that

encloses both ellipsesEM−1 and E(VI
k)−1 , whereEH =

{x | xTHx = 1}.
Generally, ifH is a conic matrix that defines an ellipse

(i.e. H is positive definite) thenH−1 is also a conic matrix
defining an ellipse. The size ofEH−1 is inversely propor-
tional to the size ofEH and their minor and major axes are
swapped. This allows us to reformulate our problem as de-
termining the largest ellipse enclosed by ellipsesEM and
EVI

k
. BecauseEVI

k
is actually a circle we first rotateEM so

that its minor and major axes are aligned with coordinate
axes, we then solve the problem for the rotated ellipse and



finally rotate the result back. The coefficients of the rotated
EM are [7]:

A′, C ′ =
A+ C ±

√
(A− C)2 +B2

2
, B′ = 0, (13)

and the angle of rotationθ is given by tan 2θ = B
A−C . To

rotate the ellipse back we use the following equations:

cos2 θ = 1
2

(
A−C√

(A−C)2+B2
+ 1
)

sin 2θ = B√
(A−C)2+B2

A′′ = (A′ − C ′) cos2 θ + C ′

B′′ = (A′ − C ′) sin 2θ
C ′′ = (C ′ −A′) cos2 θ +A′.

(14)

The algorithm to find the elementsA′′, B′′ andC ′′ of
Vdiff
k is as follows:

if A < C then
swap(A,C); swapped := true;

else
swapped := false;

end if
A′, C ′ := rotate with Equation (13)
A′ := max{A′, RIk}
C ′ := max{C ′, RIk}
A′′, B′′, C ′′ := rotate back with Equations (14)
if swapped then

swap(A′′, C ′′)
end if

Figure 6. Comparison of our algorithm (left)
with reference images created with multisam-
pling algorithm (right). Centered images are
without DOF.


