
Depth-of-Field Rendering for

Point-Based Object

J. Křivánek
krivanek@fel.cvut.cz

Department of Computer Science and Engineering
Czech Technical University in Prague

Karlovo náměstí 13, 121 35 Praha 2, Czech Republic

IRISA - INRIA Rennes
Campus de Beaulieu

35042 Rennes Cedex, France

The ability to render the depth-of-field effect is an important feature of any image synthesis
algorithm. Depth-of-field increases the naturalness of the image, since both optical systems in
cameras and in human eye have lens of final aperture and do not produce perfectly focused
images. Depth-of-field is also an important depth cue that helps humans to perceive the
spatial configuration of a scene and is also important in stereoscopic image generation.
Depth-of-field is inherent to camera models with lens of finite aperture, however in computer
graphics the most commonly used camera model is the pinhole camera, where the lens is
supposed to be infinitely small. The pinhole camera model produces images that are in sharp
focus in any distance from the viewer. This can be a desired feature (e.g. for technical
visualizations), but often a more realistic 3D image including depth-of-field is required.
The effect of depth-of-field is, that out-of-focus points in 3D space form circular patterns
(circle of confusion) in the image plane. The most common, post-filtering algorithms for
depth-of-field rendering [2], generate the depth-of-field in a post-processing step: first a
pinhole-camera image is generated and then a post processing step turns the out-of-focus
pixels into the circles of confusion. This algorithm suffers from the intensity leakage (e.g.
blurred background leaks into focused object in foreground) and does not handle the partial
occlusion (visibility of objects changes for different positions on the lens of final aperture).
Several algorithms that solve those problems exist, but they are currently slow, especially for
large amounts of depth-blur.
We present a new, fast depth-of-field rendering algorithm for point-based objects. The point-
based graphics has recently gained a lot of research focus. In point-based modeling the 3D
objects are represented by a cloud of points in 3D space with no connectivity information
among them. The reasons for using a point-based representation are manifold. For example
the point-based representation is a natural output of the 3D scanning devices that are
becoming to a widespread use not only in the research, but also in practical applications. Also
the rendering is faster for points than for triangles if the modeled shape is highly detailed.
There are more approaches to render the points as continuous surface. Our algorithm builds
on top of surface splatting [3,4]. In this method, every point of the point-based representation
of a 3D objects is displayed as a “splat” or “footprint” on the screen. The splats overlap in
screen space and the weighted averages of splats’ contributions to different pixels are used for
high quality texture antialiasing. Another features of surface splatting that we can directly
profit from are order-independent transparency and edge antialiasing.

Our algorithm generates depth-of-field by a filtering, as the post-filtering algorithms do.
However, we filter the individual splats before producing the final image. This actually
decouples the visibility determination from the depth-of-field rendering and allows us to
handle the partial occlusion and to avoid the intensity leakage. The algorithm also allows for
depth-of field rendering in presence of transparent surfaces.
To speed-up the depth-of-field rendering, we use the concept of level-of-detail. We profit
from the fact, that the level-of-detail hierarchies prefilter the surface representation for
coarser levels. When a large amount of filtering is required to produce the depth-of-field, we
use the coarser level-of-detail hierarchy level, thus saving the computational resources. With
this technique the speed of the algorithm is practically independent of the amount of depth-
blur. This is a big advantage over the existing algorithms, where the rendering speed drops
down with the square of the aperture diameter used for simulating the depth-of-field effect.
In our work [1], we present a mathematical analysis extending the surface splatting to include
the depth-of-field rendering ability. We also present an analysis allowing to use the level-of-
detail as the means for depth-of-field rendering, including the criterions for level-of-detail
selection. We give the implementation of the algorithm, and a discussion of practical issues
arising from the implementation as the normalization of the splats’ contributions, surface
reconstruction from the depth-blurred splats and shading. The timings obtained from the
implementation confirm the independence of the rendering time on the amount of depth-blur.
The drawbacks of the algorithm are high sensitivity to the regularity of sample positions on
the surface of point-based object and occasional artifacts due to the incorrect surface
reconstruction.
As a future work we want to implement the depth-of-field rendering algorithm for volume
rendering, which should be a straightforward extension of the algorithm we developed for
point-based surfaces. We also want to develop a specialized point-processing tool, which
could be used for normalization of point-based objects.

References:
[1] KŘIVÁNEK, J. - ŽÁRA, J. - BOUATOUCH, K.: Fast Depth of Field Rendering with

Surface Splatting. Submitted to Computer Graphics Intermational, 2003.
[2] POTMESIL, M - CHAKRAVARTY, I.: A Lens and Aperture Camera Model for

Synthetic Image Generation. SIGGRAPH '81 Proceedings, 1981.
[3] ZWICKER, M. - PFISTER, H. - VAN BAAR, J. - GROSS, M.: Surface Splatting

SIGGRAPH 2001 Proceedings, 2001.
[4] ZWICKER, M. - PFISTER, H. - VAN BAAR, J. - GROSS, M.: EWA Splatting. IEEE

Transactions on Visualization and Computer Graphics, 8(3):223-238 2002.

This research has been supported by MŠMT grant No. MSM 2159/2002.

