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Goal

 Real-time rendering with complex lighting, shadows, and 
possibly GI

 Infeasible – too much computation for too small a time 
budget

 Approaches
 Lift some requirements, do specific-purpose tricks

 Environment mapping, irradiance environment maps
 SH-based lighting

 Split the effort
 Offline pre-computation + real-time image synthesis
 “Pre-computed radiance transfer”



Assumptions

 Distant illumination 
 No shadowing, interreflection

 Mirror surfaces easy 
(just a texture look-up)

 What if the surface is rougher…

 Or completely diffuse?



SH-based Irradiance Env. Maps

Incident Radiance
(Illumination Environment Map)

Irradiance Environment Map

R N



 Phong model for rough surfaces
 Illumination function of reflection direction R

 Lambertian diffuse surface
 Illumination function of surface normal N

 Reflection Maps [Miller and Hoffman, 1984]
 Irradiance (indexed by N) and Phong (indexed by R)

Reflection Maps

Chrome SphereMatte Sphere



Reflection Maps

 Can’t do dynamic lighting
 Slow blurring in pre-process



Analytic Irradiance Formula

Lambertian surface acts like 
low-pass filter

lm l lmE A L=
lA

π

2 / 3π

/ 4π

0

( )
2 1

2
2

( 1) !2
( 2)( 1) 2 !

l

l l l

lA l even
l l

π
−  −

=  
+ −   

l
0 1 2

Ramamoorthi and Hanrahan 01
Basri and Jacobs 01



9 Parameter Approximation
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For any illumination, average 
error < 3% [Basri Jacobs 01]



SH-based Irradiance Env. Maps

Images courtesy Ravi Ramamoorthi & Pat Hanrahan



SH-based Arbitrary BRDF Shading 1

 [Kautz et al. 2003]
 Arbitrary, dynamic env. map
 Arbitrary BRDF
 No shadows

 SH representation
 Environment map (one set of coefficients)
 Scene BRDFs (one coefficient vector for each discretized 

view direction) 



 Rendering: for each vertex / pixel, do

SH-based Arbitrary BRDF Shading 3

Environment map BRDF

= coeff. dot product
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SH-based Arbitrary BRDF Shading 4

 BRDF is in local frame
 Environment map in global frame
 Need coordinate frame alignment -> SH rotation

 SH closed under rotation
 rotation matrix
 Fastest known procedure is

the zxzxz-decomposition
[Kautz et al. 2003]



SH-based Arbitrary BRDF Shading 5



Pre-computed Radiance Transfer



Pre-computed Radiance Transfer

 Goal
 Real-time rendering with complex lighting, shadows, and GI
 Infeasible – too much computation for too small a time 

budget

 Approach
 Precompute (offline) some information (images) of interest
 Must assume something about scene is constant to do so
 Thereafter real-time rendering.  Often hardware accelerated



Assumptions

 Precomputation 
 Static geometry 
 Static viewpoint 

(some techniques)

 Real-Time Rendering (relighting)
 Exploit linearity of light transport
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Relighting as a Matrix-Vector Multiply
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Input Lighting
(Cubemap Vector)

Output Image
(Pixel Vector)

Precomputed 
Transport

Matrix

Relighting as a Matrix-Vector Multiply



Matrix Columns (Images)
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Problem Definition

Matrix is Enormous 
 512 x 512 pixel images
 6 x 64 x 64 cubemap environments

Full matrix-vector multiplication is intractable
 On the order of 1010 operations per frame

How to relight quickly?



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



SH-based PRT

 Better light integration and 
transport
 dynamic, env. lights 
 self-shadowing 
 interreflections

 For diffuse and 
glossy surfaces

 At real-time rates

 Sloan et al. 02

point light Env. light

Env. lighting,
no shadows

Env. lighting,
shadows



Basis 16

Basis 17

Basis 18

illuminate result

...

...

SH-based PRT: Idea



PRT Terminology
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Relation to a Matrix-Vector Multiply

SH coefficients 
of EM (source 

radiance)

a) SH 
coefficients of 
transferred 
radiance

b) Irradiance
(per vertex)



Idea of SH-based PRT

 The L vector is projected onto low-frequency 
components (say 25).  Size greatly reduced.

 Hence, only 25 matrix columns

 But each pixel/vertex still treated separately
 One RGB value per pixel/vertex: 

 Diffuse shading / arbitrary BRDF shading w/ fixed view direction
 SH coefficients of transferred radiance (25 RGB values per 

pixel/vertex for order 4 SH)
 Arbitrary BRDF shading w/ variable view direction

 Good technique (becoming common in games) but 
useful only for broad low-frequency lighting 



Diffuse Transfer Results

No Shadows/Inter                Shadows                Shadows+Inter



SH-based PRT with Arbitrary BRDFs

 Combine with Kautz et al. 03

 Transfer matrix turns SH env. map into SH 
transferred radiance

 Kautz et al. 03 is 
applied to transferred 
radiance



Arbitrary BRDF Results

Other BRDFs Spatially VaryingAnisotropic BRDFs



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



Ij Sj

CjT
p x n p x n

n x n

= x x

diagonal matrix
(singular values)

Ij

CjT

p x n

b x b b x n

x x
Ej

p x b
Sj

• Applying Rank b:

• SVD:

Ej
p x p

Ij

Lj

p x n

b x n

x
Ej

p x b

• Absorbing Sj values into CiT:

PCA or SVD factorization

≈

≈



Idea of Compression

 Represent matrix (rather than light vector) compactly

 Can be (and is) combined with SH light vector

 Useful in broad contexts. 
 BRDF factorization for real-time rendering (reduce 4D BRDF to 

2D texture maps)  McCool et al. 01 etc
 Surface Light field factorization for real-time rendering (4D to 2D 

maps) Chen et al. 02, Nishino et al. 01
 BTF (Bidirectional Texture Function) compression

 Not too useful for general precomput. relighting
 Transport matrix not low-dimensional!!



Local or Clustered PCA

 Exploit local coherence (in say 16x16 pixel blocks)
 Idea: light transport is locally low-dimensional.
 Even though globally complex
 See Mahajan et al. 07 for theoretical analysis

 Clustered PCA [Sloan et al. 2003]
 Combines two widely used compression techniques: Vector 

Quantization or VQ and Principal Component Analysis



Compression Example

Surface is curve, signal is normal

Following couple of slides courtesy P.-P. Sloan



Compression Example

Signal Space



VQ

Cluster normals



VQ

Replace samples with cluster mean

pp p C≈ =M M M



PCA

Replace samples with mean + linear combination
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Compute a linear subspace in each cluster



CPCA

• Clusters with low dimensional affine models
• How should clustering be done?

– k-means clustering
• Static PCA

– VQ, followed by one-time per-cluster PCA
– optimizes for piecewise-constant reconstruction

• Iterative PCA
– PCA in the inner loop, slower to compute
– optimizes for piecewise-affine reconstruction



Static vs. Iterative



Equal Rendering Cost

VQ PCA CPCA



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



Sparse Matrix-Vector Multiplication
Choose data representations with mostly zeroes

Vector: Use non-linear wavelet approximation
on lighting 

Matrix:  Wavelet-encode transport rows
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Haar Wavelet Basis



Non-linear Wavelet Approximation

Wavelets provide dual space / frequency locality
 Large wavelets capture low frequency area lighting
 Small wavelets capture high frequency compact features

Non-linear Approximation
 Use a dynamic set of approximating functions (depends 

on each frame’s lighting)
 By contrast, linear approx. uses fixed set of basis 

functions (like 25 lowest frequency spherical harmonics)
 We choose 10’s - 100’s from a basis of 24,576 wavelets

(64x64x6)



Non-linear Wavelet Light Approximation

Wavelet Transform
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Error in Lighting: St Peter’s Basilica

Approximation Terms

R
el

at
iv

e 
L2

Er
ro

r (
%

)

Sph. Harmonics
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Ng, Ramamoorthi, Hanrahan 03



Output Image Comparison
Top: Linear Spherical Harmonic Approximation
Bottom: Non-linear Wavelet Approximation

25 200 2,000 20,000



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



SH + Clustered PCA

 Described earlier (combine Sloan 03 with Kautz 03)

 Use low-frequency source light and transferred light 
variation (Order 5 spherical harmonic = 25 for both; total = 
25*25=625)

 625 element vector for each vertex
 Apply CPCA directly (Sloan et al. 2003)
 Does not easily scale to high-frequency lighting

 Really cubic complexity (number of vertices, illumination directions 
or harmonics, and view directions or harmonics)

 Practical real-time method on GPU



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



Problem Characterization

6D Precomputation Space

 Distant Lighting (2D)

 View (2D)

 Rigid Geometry (2D)

With ~ 100 samples per dimension
~ 1012 samples total!! : Intractable computation, rendering



Factorization Approach
6D Transport

~ 1012 samples

~ 108 samples ~ 108 samples

4D Visibility 4D BRDF

*

=



Triple Product Integral Relighting



Relit Images (3-5 sec/frame)



Triple Product Integrals



Basis Requirements

1. Need few non-zero “tripling” coefficients

2. Need sparse basis coefficients



Basis Choice Number Non-Zero      

General (e.g. PCA) O(N 3)
Sph. Harmonics O(N 5 / 2)
Haar Wavelets O(N log N)

1. Number Non-Zero Tripling Coeffs

ijkC



2.  Sparsity in Light Approx. 
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Summary of Wavelet Results

 Derive direct O(N log N) triple product algorithm

 Dynamic programming can eliminate log N term

 Final complexity linear in number of retained 
basis coefficients



Outline

 Compression methods
 Spherical harmonics-based PRT [Sloan et al. 02]
 (Local) factorization and PCA
 Non-linear wavelet approximation

 Changing view as well as lighting
 Clustered PCA
 Triple Product Integrals

 Handling Local Lighting
 Direct-to-Indirect Transfer



Direct-to-Indirect Transfer

 Lighting non-linear w.r.t. light source parameters 
(position, orientation etc.)

 Indirect is a linear function of direct illumination
 Direct can be computed in real-time on GPU
 Transfer of direct to indirect is pre-computed

 Hašan et al. 06
 Fixed view – cinematic relighting with GI
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DTIT: Matrix-Vector Multiply

Direct 
illumination on a 

set of samples 
distributed on 
scene surfaces

Compression: Matrix rows in Wavelet basis



DTIT: Demo



Summary

 Really a big data compression and signal-
processing problem

 Apply many standard methods
 PCA, wavelet, spherical harmonic, factor compression

 And invent new ones
 VQPCA, wavelet triple products

 Guided by and gives insights into properties of 
illumination, reflectance, visibility
 How many terms enough?  How much sparsity?
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