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Monte Carlo integration

= General tool for estimating definite integrals

Integral:
| :j f (x)dx

Monte Carlo estimate I:
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Generating samples from a
distribution




Generating samples from a 1D
discrete random variable

= Given a probability mass function p(i), and the
corresponding cdf P(1)

A CDF
L
= Procedure !
.. Generate u from Uniform(o,1) . T E
>. Choose x; for which [ E—— oo
i

P(I 1) < U < P(I) ):(1 ):(2 ):(3 ):(4 >

(we define P(0) = 0)
= The search is usually implemented by interval bisection
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Generating samples from a 2D
discrete random variable

= Given a probability mass function p; ,(i, j)
= Option 1:

o Interpret the 2D PMF as a 1D vector of probabilities
o Generate samples as in the 1D case
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Generating samples from a 2D

discrete random variable
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Generating samples from a 2D
discrete random variable

= Option 2 (better)

. “Column” iy is sampled from the marginal distribution,
given by a 1D marginal pmf

P, ()= Py i ]

. “Row” j 1s sampled from the conditional distribution
corresponding to the “column” i

pI,J (isel1 J)
pl (isel)

leI (J | | :isel) —
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Generating samples from a 1D
continuous random variable

= Option 1: Transformation method

= Option 2: Rejection sampling
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Transformation method

s Consider the random variable U from the uniform
distribution Uniform(o,1). Then the random variable X

X =P*U)
has the distribution given by the edf P.

1

= To generate samples
according to a given pdf p,
we need to:
o calculate the cdf P(x) from the pdf p(x)

a calculate the inverse cdf P1(u)

X |
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Rejection sampling in 1D

= Algorithm MAX
o Choose random u, from Uniform R(a, b)
o Choose random u, from Uniform R(0, MAX)
o Accept the sample only if p(u,) > u,
o Repeat until a sample is accepted

= The accepted samples have the 0

p(x)

distribution given by the pdf p(x)

= Efficiency = % of accepted samples

o Area under the pdf graph / area of the bounding rectangle
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Transformation method vs. Rejection
sampling

= Transformation method Pros

= Almost always more efficient than rejection sampling (unless the
transformation formula x = P-'(u) turns our extremely complex)
= Has a constant time complexity and the random number count is
known upfront
= Transformation method Cons

= May not be feasible (we may not be able to find the suitable form
for x = P*(u)), but rejection sampling is always applicable as long
as we can evaluate the pdf (i.e. rejection sampling is more
general)

= Smart rejection sampling can be very efficient (e.g. the
Ziggurat method, see Wikipedia)
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Sampling from a 2D continuous
random variable

= Conceptually similar to the 2D discrete case
= Procedure

0 Given the joint density px y(x, y) = px(X) pyx(y | )
.. Choose x,, from the marginal pdf

Py (X) :j Px v (X1 y) dy

-.  Choose y,,, from the conditional pdf

pX,Y (XseI’ y)
pX (Xsel)

pY|X (yl X = sel) —
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Transformation formulas for common
cases in light transport

= P. Dutré: Global Illumination Compendium,
http://people.cs.kuleuven.be/~philip.dutre/GI/

Giobal lllumination Compendium
The Concise Guide to Global lllumination Algorithms
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Albrecht Duerer, Underweyvsung der Messung mit dem Zirkel und Richtscheyt (Nurenberg, 1525), Book 3, figure 67.
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Importance sampling from the
physically-plausible Phong BRDF

= Ray hits a surface with a Phong BRDF. How do we
generate the ray for continuing the light path?

= Procedure

1. Choose the BRDF component (diffuse reflection, specular
reflection, refraction)

».  Sample the chosen component

5. Evaluate the total PDF and BRDF

CG III (NPGRO10) - J. Kfivanek 2015 14



Physically-plausible Phong BRDF

7 (0w = w,) = Po DT 2 o, max{0,cosé }"
T 27

= Where
CoSO. =w, - w,
o, =2(o -N)n—-o

= Energy conservation:

pd +ps Sl
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Selection of the BRDF component

pd = max(rhoD.r, rhoD.g, rhoD.b);

ps = max(rhoS.r, rhoS.g, rhoS.b);

pd /= (pd + ps); // prob of choosing the diffuse component
ps /= (pd + ps); // prob of choosing the specular comp.

if (rand(0,1) <= pd)
genDir = sampleDiffuse();
else

genDlir = sampleSpecular (incDir) ;

pdf = evalPdf (incDir, genDir, pd, ps);
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Sampling of the diffuse reflection

= Importance sampling with the density p(0) = cos(6) / «

Q

Q

6...angle between the surface normal and the generated ray

, x = cos(2mry) /1 =1,
¢ = 27nr,

y = sm(2nry), /1 —r,
0 = ﬂCDS(,\/ﬁ"—E) J_

z =,/

= r1,r2...uniform random variates on <0,1)

Generating the direction:

Reference: Dutre, Global illumination Compendium (on-
line)

Derivation: Pharr & Huphreys, PBRT
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sampleDiffuse ()

// generate spherical coordinates of the direction
float rl = rand(0,1), r2 = rand(0,1);

float sinTheta = sqgrt(l - r2);

float cosTheta = sqgrt(r2);

float phi = 2.0*PI*rl;

float pdf = cosTheta/PI;

// convert [theta, phi] to Cartesian coordinates

Vec3 dir (cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);

return dir;
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Sampling of the glossy (specular)
reflection

= Importance sampling with the pdf p(6) = (n+1)/(2x)
cos™(0)
o 6...angle between the ideal mirror reflection of ®, and the
generated ray
o Formulas for generating the direction:

direction 2

n+1
x = cos(2nr )Nl —7r,

¢ = 2nr,

2
1 —
0 = acas(;‘f+1J Yy = si11(2ﬂ:r1),\/1—r;_1

1
n+1

- }‘2

= r1,r2...uniform random variates on <0,1)
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sampleSpecular ()

// build a local coordinate frame with R = z-axis

Vec3 R = 2*dot (N, incDir)*N - incDir; // ideal reflected direction

Vec3 U = arbitraryNormal (R); // U 1is perpendicular to R

Vec3 V = crossProd (R, U); // orthonormal basis with R and U

// generate direction in local coordinate frame

Vec3 locDir = rndHemiCosN(n); // formulas form prev. slide, n=phong exp.

// transform locDir to global coordinate frame

Vec3 dir = locDir.x * U + locDir.y * V + locDir.z * R;

return dir;
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evalPdf (incDir, genDir, pd, ps)

return
pd * getDiffusePdf (genDir) +
ps * getSpecularPdf (incdir, genDir);

formulas from prev. slides
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Variance reduction methods for
MC estimators




Variance reduction methods

= Importance sampling

o The most commonly used method in light transport (most
often we use BRDF-proportional importance sampling)

= Control variates

= Improved sample distribution

o Stratification
o quasi-Monte Carlo (QMC)

CG III (NPGRO10) - J. Kfivanek 2015

23



Importance sampling

bl

\/F\ f(x)
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p(X)

0 X, XX, X, X, X, 1
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Importance sampling

m Parts of the integration domain with high value of the
integrand f are more important
0 Samples from these areas have higher impact on the result

= Importance sampling places samples preferentially to
these areas

0 I.e. the pdf p is “similar” to the integrand f

= Decreases variance while keeping unbiasedness
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Control variates

T(x)
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g(x)
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Control variates

Consider a function g(x), that approximates the
integrand and we can integrate it analytically:

| :j f(x)dx = j[f(x)—g(x)]dx+jg(x)dx

e

Numerical integration (MC)
Hopefully with less variance
than integrating f(x) directly.

We can integrate
analytically
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Control variates vs. Importance
sampling

= Importance sampling

o Advantageous whenever the function, according to which
we can generate samples, appears in the integrand as a
multiplicative factor (e.g. BRDF in the reflection
equation).

= Control variates

o Better if the function that we can integrate analytically
appears in the integrand as an additive term.

= This is why in light transport, we almost always use
importance sampling and almost never control variates.
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Better sample distribution

= Generating independent samples often leads to

1

clustering of samples e
o Results in high estimator variance o

0e -

= Better sample distribution => better
coverage of the integration domain ..
by samples => lower variance u

=
I

= Approaches
o Stratified sampling
o quasi-Monte Carlo (QMC)
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Stratified sampling

= Sampling domain subdivided into disjoint areas that are
sampled independently

AP
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Stratified sampling

Subdivision of the sampling domain Q into N parts Q;:

j X) dx = Zj X) dx = ZI

9 1=l

Resulting estimator:

N
Istrat:%Zf(Xi)’ >(i Egli
i=1
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Stratified sampling

= Suppresses sample clustering

= Reduces estimator variance

o Variance is provably less than or equal to the variance of a
regular secondary estimator

= Very effective in low dimension
o Effectiveness deteriorates for high-dimensional integrands
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How to subdivide the interval?

® Uniform subdivision of the interval
0 Natural approach for a completely unknown integrand f

m If we know at least roughly the shape of the integrand f,
we aim for a subdivision with the lowest possible variance
on the sub-domains

®m Subdivision of a d-dimensional interval leads to N¢
samples

0 A better approach in high dimension is N-rooks sampling
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Combination of stratified sampling
and the transformation method
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Quasi-Monte Carlo methods (QMC)

= Use of strictly deterministic sequences instead of
(pseudo-)random numbers

= Pseudo-random numbers replaced by low-discrepancy
sequences

= Everything works as in regular MC, but the underlying
math is different (nothing is random so the math cannot
be built on probability theory)

CG III (NPGRO10) - J. Kfivanek 2015 35



Discrepancy
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Stratified sampling

10 paths pe pxl |
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‘ Quasi-Monte Carlo

10 ahs per ixl a
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Same random sequence for all pixels

Henrik Wann Jensen

~ A

10 paths per pixel
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Image-based lighting




Image-based lighting

= Introduced by Paul Debevec (Siggraph 98)

= Routinely used for special effects in films & games
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Image-based lighting

= Illuminating CG objects using measurements of real light
(=light probes)

/; ’4 ;>‘
Eucaliptus ST
grove ’ |

Grace
cathedral

Uffizi
gallery

© Paul Debevec



Point lighting
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Image-based lighting




Image%sed lighting




Image-based lighting




'Mapping

Eucaliptus grove

Grace cathedral

Debevec’s spherical ~ “Latitude —longitude” (spherical coordinates) Cube map



'Mapping
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Debevec’s spherical ~ “Latitude —longitude” (spherical coordinates) Cube map



Mapping

= Mapping from direction in Cartesian
coordinates to image UV.

float d = sqrt(dir.x*dir.x + dir.y*dir.y);

float r=d>0? 0.159154943*acos(dir.z)/d : 0.0;
u=o0.5+dirx*r;

v=o0.5+diry *r;

Quote from “http://ict.debevec.org/~debevec/Probes/”
The following light probe images were created by taking two pictures of a mirrored ball at ninety degrees of
separation and assembling the two radiance maps into this registered dataset. The coordinate mapping of
these images is such that the center of the image is straight forward, the circumference of the image is
straight backwards, and the horizontal line through the center linearly maps azimuthal angle to pixel
coordinate.

Thus, if we consider the images to be normalized to have coordinates v=[-1,1], v=[-1,1], we have
theta=atanz2(v,u), phi=pi*sqrt(u*u+v*v). The unit vector pointing in the corresponding direction is
obtained by rotating (0,0,-1) by phi degrees around the y (up) axis and then theta degrees around the -z
(forward) axis. If for a direction vector in the world (Dx, Dy, Dz), the corresponding (u,v) coordinate in the
light probe image is (Dx*r,Dy*r) where r=(1/pi)*acos(Dz)/sqrt(Dx"2 + Dy2).



Sampling strategies for image based
lighting

= Technique (pdf) 1:
BRDF importance sampling
Generate directions with a pdf proportional to the BRDF

= Technique (pdf) 2:
Environment map importance sampling

o Generate directions with a pdf proportional to L(®)
represented by the EM
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BRDF IS
600 samples

EMIS

600 samples

MIS

300 + 300 samples

‘ Sampling strategies

Diffuse only Ward BRDF, a=0.2

Ward BRDF, a.=0.05

Ward BRDF, a.=0.01



Sampling according to the
environment map luminance

= Luminance of the environment map defines the sampling
pdf on the unit sphere

= For details, see PBRT
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