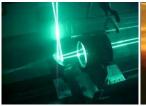
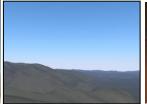
Computer Graphics III – Radiometry

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz





Direction, solid angle, spherical integrals

Direction in 3D

- **Direction** = unit vector in 3D
 - Cartesian coordinates

$$\omega = [x, y, z], \quad x^2 + y^2 + z^2 = 1$$

Spherical coordinates

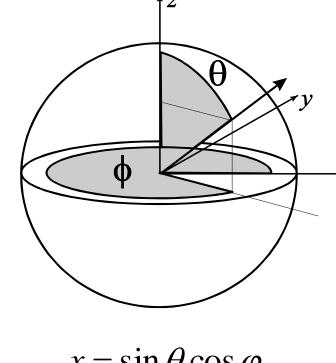
$$\omega = [\theta, \varphi]$$

$$\theta \in [0,\pi]$$

$$\theta = \arccos z$$

$$\varphi \in [0,2\pi]$$

$$\varphi = \arctan \frac{y}{x}$$



x

$$x = \sin \theta \cos \varphi$$

$$y = \sin \theta \sin \varphi$$

$$z = \cos \theta$$

- θ ... polar angle angle from the Z axis
- ullet ϕ ... azimuth angle measured counter-clockwise from the Xaxis

Function on a unit sphere

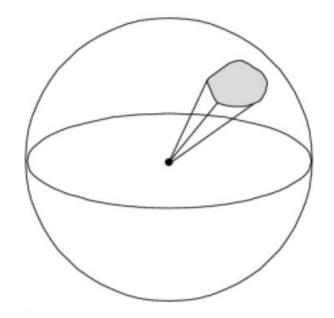
- Function as any other, except that its argument is a direction in 3D
- Notation
 - $\mathbf{P}(\omega)$
 - Arr F(x,y,z)
 - Γ $F(\theta,\phi)$

 - Depends in the chosen representation of directions in 3D

Solid angle

Planar angle

- Arc length on a unit circle
- Solid angle (steradian, sr)
 - Surface area on an unit sphere
 - \Box Full sphere has 4π steradians



Differential solid angle

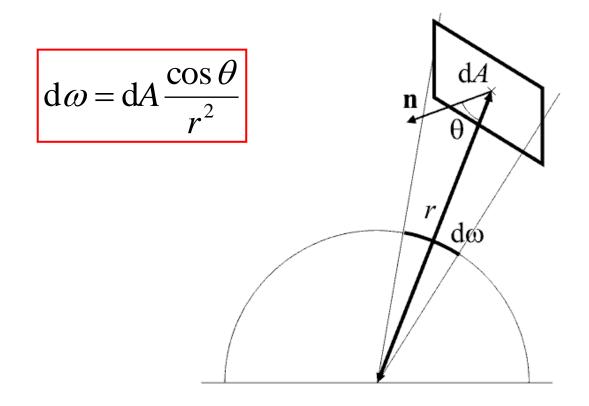
"Infinitesimally small" solid angle around a given direction

- By convention, represented as a 3D vector
 - Magnitude ... dω
 - Size of a differential area on the unit sphere
 - Direction ... ω
 - Center of the projection of the differential area on the unit sphere

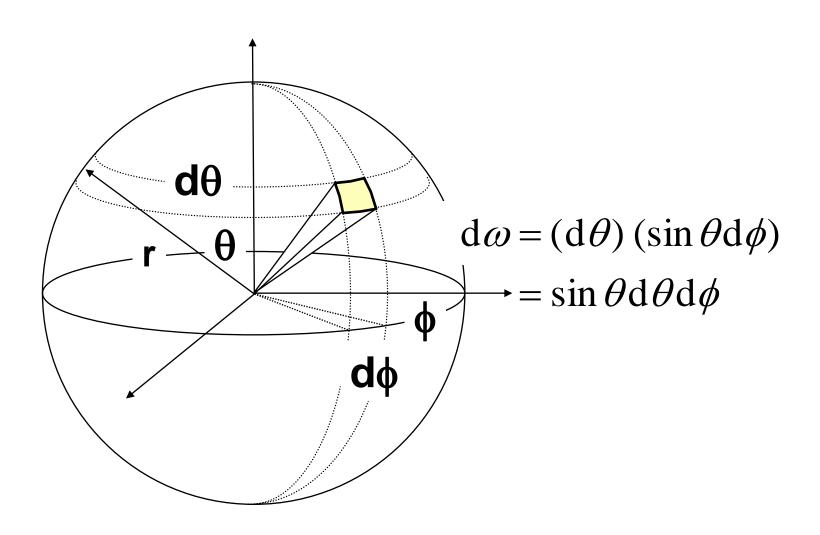
dω

Differential solid angle

(Differential) solid angle subtended by a differential area



Differential solid angle



Radiometry and photometry

Radiometry and photometry

- "Radiometry is a set of techniques for measuring electromagnetic radiation, including visible light.
- Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to **photometric** techniques, which characterize the light's interaction with the human eye."

(Wikipedia)

Radiometry and photometry

Radiometric quantities

Radiant energy
 (zářivá energie) – Joule

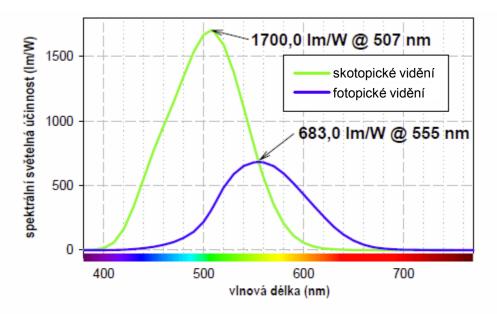
- Radiant flux (zářivý tok) – Watt
- Radiant intensity (zářivost) – Watt/sr
- Denoted by subscript e

Photometric quantities

- Luminous energy (světelná energie) – Lumen-second, a.k.a. Talbot
- Luminous flux (světelný tok) – Lumen
- Luminous intensity (svítivost) – candela
- Denoted by subscript v

• Spectral luminous efficiency $K(\lambda)$

$$K(\lambda) = \frac{d\Phi_{\lambda}}{d\Phi_{e\lambda}}$$



Obr. 7. Spektrální světelná účinnost při fotopickém (denním) vidění a skotopickém (soumrakovém) vidění.

Visual response to a spectrum:

$$\Phi = \int_{380 \text{nm}}^{770 \text{nm}} K(\lambda) \Phi_{e}(\lambda) d\lambda$$

Relative spectral luminous efficiency V(λ)

- Sensitivity of the eye to light of wavelength λ relative to the peak sensitivity at λ_{max} = 555 nm (for photopic vision).
- CIE standard 1924



Obr. 6. Poměrná spektrální světelná účinnost při fotopickém (denním) a skotopickém (soumrakovém) vidění.

Radiometry

 More fundamental – photometric quantities can all be derived from the radiometric ones

Photometry

 Longer history – studied through psychophysical (empirical) studies long before Maxwell equations came into being.

Radiometric quantities

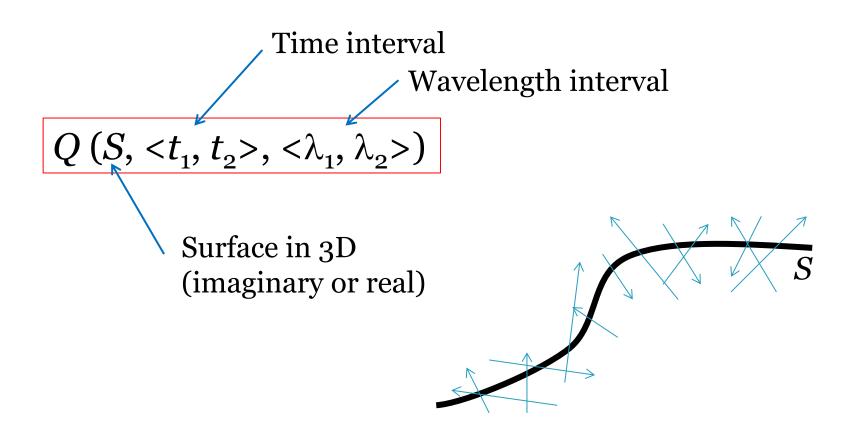
Transport theory

Empirical theory describing flow of "energy" in space

Assumption:

- Energy is continuous, infinitesimally divisible
- Needs to be taken so we can use derivatives to define quantities
- Intuition of the "energy flow"
 - Particles flying through space
 - No mutual interactions (implies linear superposition)
 - Energy density proportional to the density of particles
 - This intuition is abstract, empirical, and has nothing to do with photons and quantum theory

Radiant energy – Q[J]



Unit: Joule, J

Spectral radiant energy – Q[J]

- Energy of light at a specific wavelength
 - "Density of energy w.r.t wavelength"

$$Q_{\lambda}(S,\langle t_{1},t_{2}\rangle,\lambda) = \lim_{\substack{d(\lambda_{1},\lambda_{2})\to 0\\\lambda\in\langle\lambda_{1},\lambda_{2}\rangle}} \frac{Q(S,\langle t_{1},t_{2}\rangle,\langle\lambda_{1},\lambda_{2}\rangle)}{\mu\langle\lambda_{1},\lambda_{2}\rangle} = \text{formally} = \frac{dQ}{d\lambda}$$

- We will leave out the subscript and argument λ for brevity
 - We always consider spectral quantities in image synthesis
- Photometric quantity:
 - Luminous energy, unit Lumen-second aka Talbot

Radiant flux (power) – $\Phi[W]$

- How quickly does energy "flow" from/to surface S?
 - "Energy density w.r.t. time"

$$\Phi(S,t) = \lim_{\substack{d \langle t_1, t_2 \rangle \to 0 \\ t \in \langle t_1, t_2 \rangle}} \frac{Q(S, \langle t_1, t_2 \rangle)}{\mu \langle t_1, t_2 \rangle} = (\text{formálně}) = \frac{dQ}{dt}$$

- **Unit**: Watt *W*
- Photometric quantity:
 - Luminous flux, unit Lumen

Irradiance – E [W.m⁻²]

What is the spatial flux density at a given point x on a surface S?

$$E(\vec{x}) = \lim_{\substack{d(S) \to 0 \\ \vec{x} \in S, \ S \subseteq P}} \frac{\Phi_i(S)}{\mu(S)} = (\text{formálně}) = \frac{d\Phi_i}{dS}$$

- Always defined w.r.t some point \mathbf{x} on S with a specified surface normal $N(\mathbf{x})$.
 - □ **Irradiance DOES depend on** *N***(x)** (Lambert law)
- We're only interested in light arriving from the "outside" of the surface (given by the orientation of the normal).

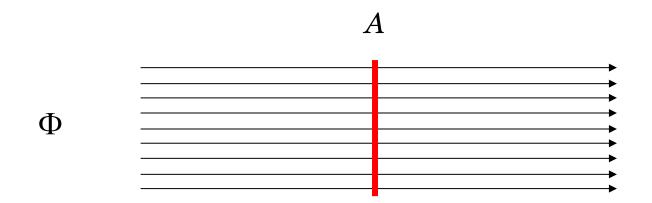
Irradiance – E [W.m⁻²]

- **Unit**: Watt per meter squared *W.m*⁻²
- Photometric quantity:
 - □ Illuminance, unit Lux = lumen.m⁻²

light meter (cz: expozimetr)

Lambert cosine law

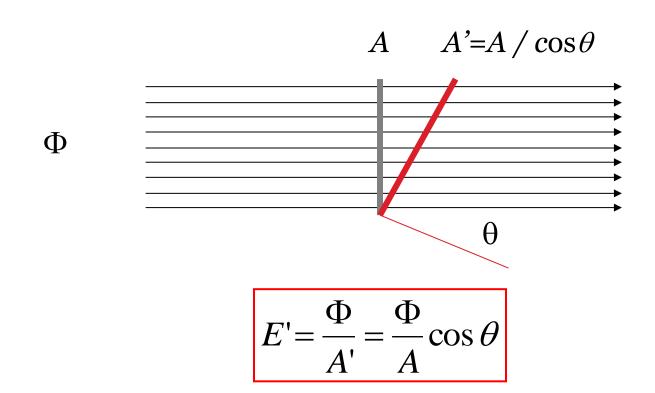
Johan Heindrich Lambert, *Photometria*, 1760



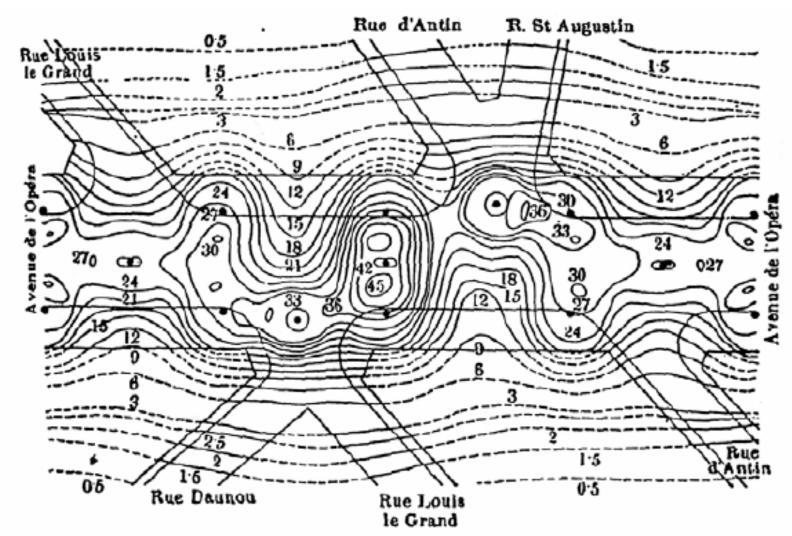
$$E = \frac{\Phi}{A}$$

Lambert cosine law

Johan Heindrich Lambert, *Photometria*, 1760



Irradiance Map or Light Map



Isolux contours

CG III (NPGR010) - J. Křivánek 2016

Typical Values of Illuminance [lm/m²]

Sunlight plus skylight	100,000 lux
Sunlight plus skylight (overcast)	10,000
Interior near window (daylight)	1,000
Artificial light (minimum)	100
Moonlight (full)	0.02
Starlight	0.0003

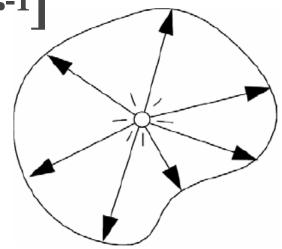
Radiant exitance -B [W.m⁻²]

- Same as irradiance, except that it describes exitant radiation.
 - The exitant radiation can either be directly emitted (if the surface is a light source) or reflected.
- Common name: radiosity
- Denoted: B, M
- **Unit**: Watt per meter squared W.m⁻²
- Photometric quantity:
 - □ Luminosity, unit Lux = lumen.m⁻²

Radiant intensity – I [W.sr⁻¹]

• Angular flux density in direction ω

$$I(\omega) = \frac{d\Phi(\omega)}{d\omega}$$



- Definition: Radiant intensity is the power per unit solid angle emitted by a point source.
- Unit: Watt per steradian *W*.sr⁻¹
- Photometric quantity
 - Luminous intensity,
 unit Candela (cd = lumen.sr⁻¹), SI base unit

Point light sources

- Light emitted from a single point
 - Mathematical idealization, does not exist in nature
- Emission completely described by the radiant intensity as a function of the direction of emission: $I(\omega)$
 - Isotropic point source
 - Radiant intensity independent of direction
 - Spot light
 - Constant radiant intensity inside a cone, zero elsewhere
 - General point source
 - Can be described by a goniometric diagram
 - □ Tabulated expression for $I(\omega)$ as a function of the direction ω
 - Extensively used in illumination engineering

Spot Light

- Point source with a directionallydependent radiant intensity
- Intensity is a function of the deviation from a reference direction d:

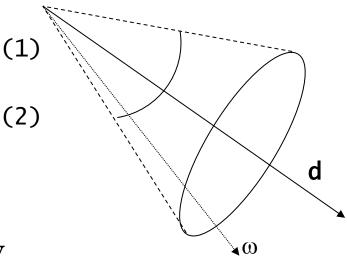
$$I(\omega) = f(\angle \omega, \mathbf{d})$$

• E.g.

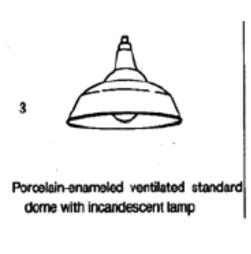
$$I(\omega) = I_o \cos \angle(\omega, \mathbf{d}) = I_o(\omega \cdot \mathbf{d})$$

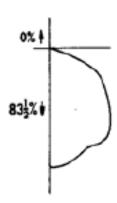
$$I(\omega) = \begin{cases} I_o & \angle(\omega, \mathbf{d}) < \tau \\ 0 & \text{otherwise} \end{cases}$$

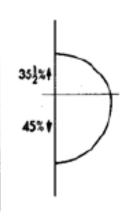
What is the total flux emitted by the source in the cases (1) a (2)?
 (See exercises.)

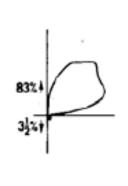


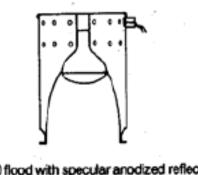
Light Source Goniometric Diagrams

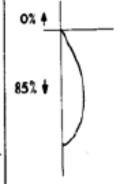








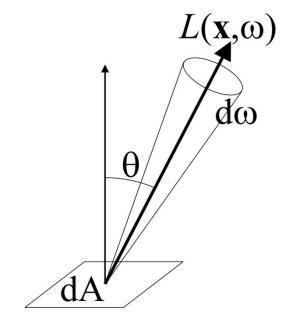




Radiance – L [W.m⁻².sr⁻¹]

• Spatial and directional flux density at a given location \mathbf{x} and direction $\mathbf{ω}$.

$$L(\mathbf{x}, \omega) = \frac{d^2 \Phi}{\cos \theta dA d \omega}$$

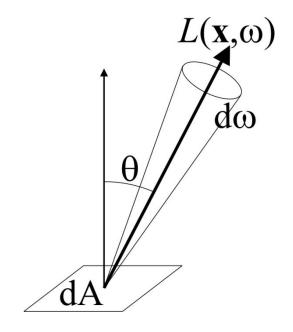


■ **Definition:** *Radiance* is the power per unit area **perpendicular to the ray** and per unit solid angle in the direction of the ray.

Radiance – L [W.m⁻².sr⁻¹]

• Spatial and directional flux density at a given location \mathbf{x} and direction $\mathbf{ω}$.

$$L(\mathbf{x}, \omega) = \frac{d^2 \Phi}{\cos \theta dA d \omega}$$



- **Unit**: *W*. m⁻².sr⁻¹
- Photometric quantity
 - Luminance, unit candela.m⁻² (a.k.a. Nit used only in English)

The cosine factor $\cos \theta$ in the definition of radiance

- $\cos \theta$ compensates for the decrease of irradiance with increasing θ
 - □ The idea is that **we do not want** radiance to depend on the mutual orientation of the ray and the reference surface
- If you illuminate some surface while rotating it, then:
 - Irradiance does change with the rotation (because the actual spatial flux density changes).
 - **Radiance does** <u>not</u> **change** (because the flux density change is exactly compensated by the $\cos \theta$ factor in the definition of radiance). And that's what we want.

Typical Values of Luminance [cd/m²]

Surface of the sun	2,000,000,000 nit
Sunlight clouds	30,000
Clear day	3,000
Overcast day	300
Moon	0.03

The Sky Radiance Distribution

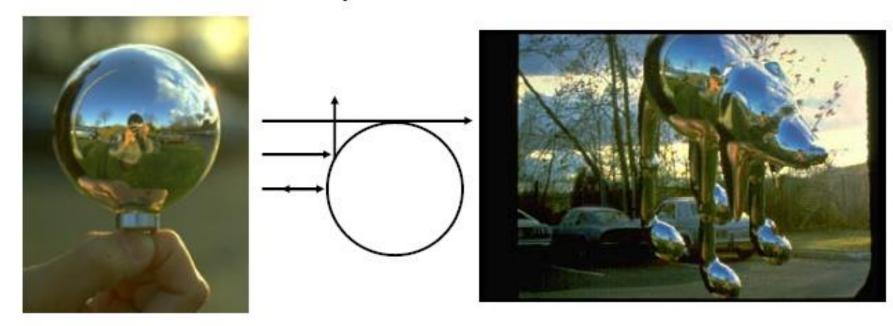
Plate 5-16. Fisheye view of clear sky at the South Pole. (Photographed by the author)

Plate 5-17. View of slightly hazy sky in Wisconsin. (Photographed by the author)

From Greenler, Rainbows, halos and glories

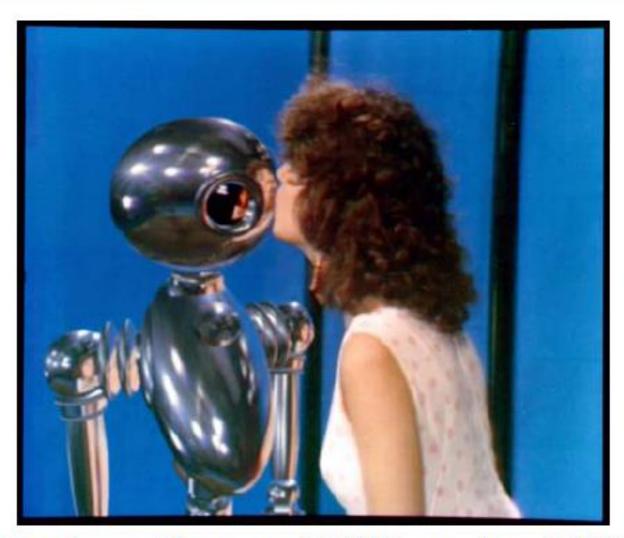
Gazing Ball ⇒ Environment Maps

Miller and Hoffman, 1984



- Photograph of mirror ball
- Maps all spherical directions to a to circle
- Reflection direction indexed by normal
- Resolution function of orientation

Environment Maps



Interface, Chou and Williams (ca. 1985)

CS348B Lecture 4

CG III (NPGR010) - J. Křivánek 2016

Pat Hanrahan, 2006

Calculation of the remaining quantities from radiance

$$E(\mathbf{x}) = \int_{H(\mathbf{x})} L(\mathbf{x}, \omega) \cos \theta \, d\omega$$

$$\Phi = \int_{A} E(\mathbf{x}) dA_{\mathbf{x}}$$

$$= \int_{A} \int L(\mathbf{x}, \omega) \cos \theta d\omega dA_{\mathbf{x}}$$

$$= \int_{A} \int_{H(\mathbf{x})} L(\mathbf{x}, \omega) \cos \theta d\omega dA_{\mathbf{x}}$$

 $\cos \theta d\omega =$ projected solid angle

 $H(\mathbf{x})$ = hemisphere above the point \mathbf{x}

Area light sources

- Emission of an area light source is fully described by the emitted radiance $L_e(\mathbf{x}, \omega)$ for all positions on the source \mathbf{x} and all directions ω .
- The total emitted power (flux) is given by an integral of $L_e(\mathbf{x},\omega)$ over the surface of the light source and all directions.

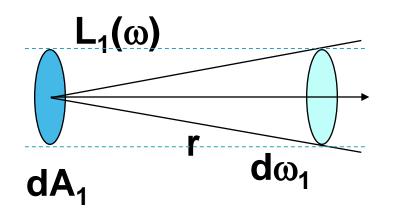
$$\Phi = \int_{A H(\mathbf{x})} L_e(\mathbf{x}, \omega) \cos \theta \, d\omega \, dA$$

Properties of radiance (1)

Radiance is constant along a ray in vacuum

- Fundamental property for light transport simulation
- This is why radiance is the quantity associated with rays in a ray tracer
- Derived from energy conservation (next two slides)

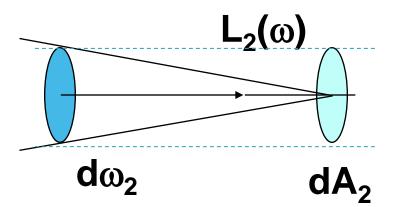
Energy conservation along a ray



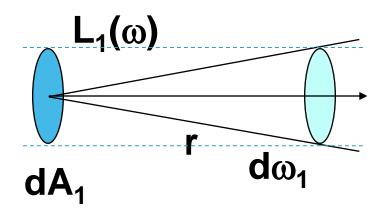
 $L_1 d\omega_1 dA_1 = L_2 d\omega_2 dA_2$

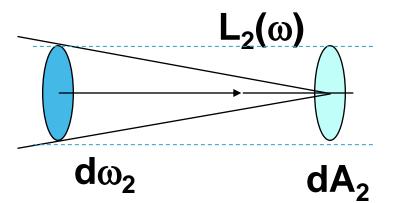
emitted flux

received flux



Energy conservation along a ray





$$L_1 d\omega_1 dA_1 = L_2 d\omega_2 dA_2$$

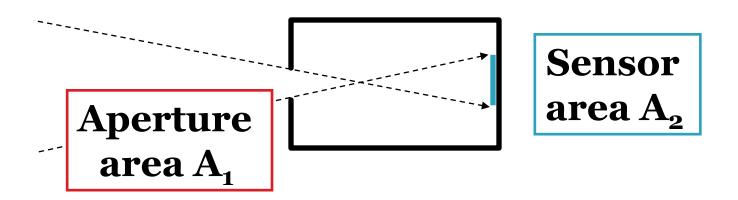
$$\frac{T = d\omega_1 dA_1 = d\omega_2 dA_2 =}{dA_1 dA_2}$$

$$= \frac{dA_1 dA_2}{r^2}$$
ray throughput

$$L_1 = L_2$$

Properties of radiance (2)

Sensor response (i.e. camera or human eye) is directly proportional to the value of radiance reflected by the surface visible to the sensor.



$$\underline{\mathbf{R}} = \int_{\mathbf{A}_2} \int_{\Omega} \mathbf{L}_{in} (\mathbf{A}, \boldsymbol{\omega}) \cdot \mathbf{cos} \boldsymbol{\theta} \, d\boldsymbol{\omega} \, d\mathbf{A} = \underline{\mathbf{L}_{in} \cdot \mathbf{T}}$$

Incoming / outgoing radiance

- Radiance is **discontinuous** at an interface between materials
 - Incoming radiance $L^i(\mathbf{x}, \omega)$
 - radiance just before the interaction (reflection/transmission)
 - Outgoing radiance $-L^o(\mathbf{x},\omega)$
 - radiance just after the interaction

Radiometric and photometric terminology

Fyzika Physics	Radiometrie <i>Radiometry</i>	Fotometrie Photometry
Energie	Zářivá energie	Světelná energie
Energy	Radiant energy	Luminous energy
Výkon (tok)	Zářivý tok	Světelný tok (výkon)
Power (flux)	Radiant flux (power)	Luminous power
Hustota toku	Ozáření	Osvětlení
Flux density	<i>Irradiance</i>	Illuminance
dtto	Intenzita vyzařování <i>Radiosity</i>	??? Luminosity
Úhlová hustota toku	Zář	Jas
Angular flux density	Radiance	Luminance
???	Zářivost	Svítivost
Intensity	Radiant Intensity	Luminous intensity

Next lecture

Light reflection on surfaces