
Computer graphics III

Path tracing

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

mailto:Jaroslav.Krivanek@mff.cuni.cz

Tracing paths from the (pinhole)
camera

renderImage()

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

for k = 1 to N

{

wk := random direction through the pixel

pixelColor += estimateLin(cameraPosition, wk)

}

pixelColor /= N;

writePixel(k, pixelColor);

}

}

CG III (NPGR010) - J. Křivánek

Tracing paths from the (pinhole)
camera

◼ For progressive rendering, swap the loop nesting:

renderImage()

{

for k = 1 to N // rendering “passes”

{

for all pixels

{

Spectrum pixelColor = (0,0,0);

...

CG III (NPGR010) - J. Křivánek

Path tracing, v. 0.1

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (y, –ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

return estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf

CG III (NPGR010) - J. Křivánek

Path Tracing – Loop version

◼ Path tracing only has tail recursion

❑ Can be unrolled into a loop for better efficiency

◼ New feature: “Russian Roulette” for unbiased path
termination

CG III (NPGR010) - J. Křivánek

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1)

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

}

return accum;

}

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1)

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else // terminate the path – break the while loop

break;

}

return accum;

}

Terminating paths – Russian roulette

◼ Continue the path with probability q

◼ Multiply weight (throughput) of surviving paths by 1 / q

◼ RR is unbiased!

CG III (NPGR010) - J. Křivánek



 

=
otherwise0

 if/ qqY
Z



][
1

1
0

][
][YE

q
q

q

YE
ZE =

−
+=

Survival probability

◼ It makes sense to use the surface reflectance r as the
survival probability

❑ If the surface reflects only 30% of light energy,
we continue with the probability of 30%. That’s how light
behaves in physical reality.

CG III (NPGR010) - J. Křivánek

Survival probability

◼ What if we cannot calculate r? Then there’s a convenient
alternative, which in fact works even better:

1. First sample a random direction win according to pdf(win)

2. Update the path throughput

3. Use the updated throughput as the survival probability

◼ If direction sampling pdf(win) is exactly proportional to
BRDF*cos, the above strategy turns out to be exactly
equivalent to setting survival probability to the surface
reflectance (prove this).

CG III (NPGR010) - J. Křivánek

Survival probability

◼ Our work: Adjoint-driven Russian Roulette & Splititng
[Vorba & Křivánek 2016]

❑ Weight the survival probability by the expected path
contribution

◼ If we enter a bright region, continue path even if throughput
might be low

◼ If we enter a dark region, kill the path even if throughput
might be high

❑ If the “survival probability” ends up > 1, split the path

CG III (NPGR010) - J. Křivánek

Adjoint-drive RR and splitting

CG III (NPGR010) - J. Křivánek

Vorba and Křivánek. Adjoint-Driven Russian Roulette and Splitting in
Light Transport Simulation. ACM SIGGRAPH 2016

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1)

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else // terminate the path – break the while loop

break;

}

return accum;

}

◼ We usually sample the direction win from a pdf similar to

fr(x, win → wout) cos qin

◼ Ideally, we would want to sample proportionally to the
integrand itself

Lin(x, win) fr(x, win→ wout) cos qi,

but this is difficult, because we do not know Lin upfront.
With some precomputation, it is possible to use a rough
estimate of Lin for sampling [Jensen 95, Vorba et al.
2014]. This is called “path guiding”.

CG III (NPGR010) - J. Křivánek

Direction sampling – genRandomDir()

Path guiding

CG III (NPGR010) - J. Křivánek

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Path guiding

CG III (NPGR010) - J. Křivánek

Vorba, Karlík, Šik, Ritschel, and Křivánek. On-line Learning of Parametric
Mixture Models for Light Transport Simulation. ACM SIGGRAPH 2014

Direct illumination calculation
in a path tracer

Direct illumination: Two strategies

CG III (NPGR010) - J. Křivánek

◼ At each path vertex, we are calculating direct
illumination

❑ i.e. radiance reflected from the surface point exclusively due
to the light coming directly from the light sources

◼ Two sampling strategies

1. Explicit light source sampling
(“next event estimation”)

2. BRDF-proportional sampling
(already in the above code)

The use of MIS in a path tracer

◼ At each path vertex do both:

❑ Explicit light source sampling

◼ Generate point on light source & cast shadow ray

❑ BRDF-proportional sampling

◼ One ray can be shared for the calculation of both direct and
indirect illumination

◼ But the MIS weight is applied only on the direct term
(indirect illumination is added unweighted because there is no
alternative technique to calculate it)

CG III (NPGR010) - J. Křivánek

Dealing with multiple light sources

◼ Option 1:

1. Loop over all sources and send a shadow ray to each one

◼ Option 2:

1. Choose one source at random (ideally with prob
proportional to light contribution)

2. Sample illumination only on the chosen light, divide the
result by the prob of picking that light

❑ (Scales better with many sources but has higher variance
per path)

◼ Beware: The probability of choosing a light influences
the sampling pds and therefore also the MIS weights.

CG III (NPGR010) - J. Křivánek

Learning the lights’ contributions

CG III (NPGR010) - J. Křivánek

Before (no learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for
adaptive direct illumination sampling. ACM SIGGRAPH 2018

Learning the lights’ contributions

CG III (NPGR010) - J. Křivánek

After (with learning)

Vévoda, Kondapaneni, Křivánek. Bayesian online regression for
adaptive direct illumination sampling. ACM SIGGRAPH 2018

