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Figure 1: We render a scene featuring difficult visibility with bidirectional path tracing (BDPT) guided by our parametric distributions
learned on-line in a number of training passes (TP). The insets show equal-time (1h) comparisons of images obtained with different numbers
of training passes. The results reveal that the time spent on additional training passes is quickly amortized by the superior performance of
the subsequent guided rendering.

Abstract

Monte Carlo techniques for light transport simulation rely on im-
portance sampling when constructing light transport paths. Pre-
vious work has shown that suitable sampling distributions can be
recovered from particles distributed in the scene prior to rendering.
We propose to represent the distributions by a parametric mixture
model trained in an on-line (i.e. progressive) manner from a po-
tentially infinite stream of particles. This enables recovering good
sampling distributions in scenes with complex lighting, where the
necessary number of particles may exceed available memory. Us-
ing these distributions for sampling scattering directions and light
emission significantly improves the performance of state-of-the-art
light transport simulation algorithms when dealing with complex
lighting.
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1 Introduction

Despite recent advances, robust and efficient light transport simu-
lation is still a challenging open issue. Numerous algorithms have
been proposed to solve the problem, but certain common lighting
conditions, such as highly occluded scenes, remain difficult. Most
existing unidirectional and bidirectional methods rely on incremen-
tal, local construction of transport sub-paths, which is oblivious to
the global distribution of radiance or importance. As a result, the
probability of obtaining a non-zero contribution upon sub-path con-
nection in highly occluded scenes is low. This is the main reason
why such scenes remain difficult to render. While Metropolis light
transport and related methods [Veach and Guibas 1997; Kelemen
et al. 2002; Cline et al. 2005] strive for importance sampling on the
entire path space, they suffer from sample correlation and are often
outperformed by the classic Monte Carlo approaches.
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http://portal.acm.org/ft_gateway.cfm?id=2601203&type=pdf
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To address the problem of rendering highly occluded scenes, we
augment the sampling of local scattering directions and light emis-
sion, employed when constructing transport sub-paths, with global
information. We sample the scattering and emission proportionally
to an approximation of the equilibrium radiance (for camera sub-
paths) or importance (for light sub-paths). As a result, the sub-paths
are guided to each other – camera sub-paths toward light sources
and light sub-paths toward the camera – which increases the prob-
ability of constructing full paths with non-zero contributions. This,
in turn, significantly reduces variance without introducing bias.

Our work adopts the idea of reconstructing the sampling distribu-
tions from particles [Jensen 1995]. While a number of works have
taken this route, they often use inflexible representations of the dis-
tributions [Jensen 1995] and incur significant overhead [Hey and
Purgathofer 2002]. Most importantly, these methods rely on a lim-
ited number of particles, which is usually insufficient to recover
useful sampling distributions in highly occluded scenes.

We propose to represent the sampling distributions with the
Gaussian mixture model (GMM), extensively used in machine
learning [Bishop 2006]. The GMM is efficient to learn, easy to eval-
uate and sample, and compact to store. The core of our method is an
on-line (progressive) learning step: Instead of learning the distribu-
tions only once from a limited set of particles, we continuously train
them using a potentially infinite stream of particles while keeping
a bounded memory footprint. We use importance sampling based
on this model in a number of light transport algorithms, including
the state-of-the-art bidirectional ones [Veach 1997; Georgiev et al.
2012b; Hachisuka et al. 2012]. Our key contributions are:

• introduction of on-line learning of parametric mixture models
to image synthesis,

• a learning procedure that can handle particles with highly
varying weights,

• importance-driven particle emission from environment light
sources, and

• an efficiency improvement of path sampling-based light trans-
port algorithms in complex, highly occluded scenes.

2 Related Work

Sampling distributions from particles. Jensen [1995] proposed
the use of light-carrying particles, or photons, to guide direction
sampling in a path tracer. He reconstructs the directional PDFs by
counting the number of photons whose directions fall into constant-
sized bins. This corresponds to simple histogram density estima-
tion, which is known to be a poor density estimation method prone
to under- or over-fitting [Bishop 2006]. The method could be made
progressive by accumulating an infinite stream of particles to the
bins. However, this progressivity is rather deceiving because the
regular histogram grid does not adapt to details, thereby producing
poor PDF reconstructions no matter how many particles are used.
A similar approach was taken by Steinhurst and Lastra [2006] and
Budge et al. [2008]. Peter and Pietrek [1998] extended this idea
to using importance particles for guiding photons towards the cam-
era. Hey and Purgathofer [2002] represent the directional PDFs
with cones of adaptive width centered on gathered photons’ direc-
tions. This method yields better results than previous work, but
incurs substantial overhead. Pharr and Humphreys [2010] imple-
ment a simplified version of Hey and Purgathofer’s method with
cones of constant width. Its reduced overhead, however, comes at
the expense of quality. Our paper follows this general line of work,
pointing out that ‘reconstructing sampling PDFs from photons’ is a
general density estimation problem. We adopt parametric mixture
model estimation to learn the sampling PDFs in an on-line (pro-
gressive) manner.

Adaptive sampling. A number of works propose adaptive con-
struction of sampling distributions during rendering. Lafortune and
Willems [1995] store radiance samples in a 5D tree and use this
information for importance sampling and as a control variate. Pe-
goraro et al. [2008a; 2008b] replace the 5D tree with per-pixel di-
rectional distributions. Dutré and Willems [1994; 1995] use adap-
tive sampling similar to the VEGAS algorithm [Lepage 1978] to
emit paths from light sources. Cline et al. [2008] use fixed-size
adaptive importance sampling tables in a path tracer. A common
problem shared by these works is a fixed-resolution or hierarchical
representation of the sampling function which makes it difficult to
capture high-frequency features. The Gaussian mixture model that
we adopt does not suffer from this issue.

Caching. Bashford-Rogers et al. [2012] employ a parametric
model for importance sampling, where cosine lobes are used to
model directional distributions, cached and re-used across pix-
els. The idea of caching sampling distributions was also used by
Georgiev et al. [2012a], who precompute and cache discrete distri-
butions of the contributions of virtual point lights (VPLs) to scene
points. As opposed to these techniques, we store the learned di-
rectional distributions in a spatial cache not only to amortize the
overhead, but mainly to maintain a persistent representation of the
distributions, thereby enabling their progressive refinement through
on-line learning. Other solutions such as irradiance and radiance
caching [Ward et al. 1988; Křivánek et al. 2005] can be used when
systematic error is acceptable; however, we pursue unbiased results.

Sampling emission from environment maps. Tsai et al. [2008]
employ spherical Gaussians to sample from the product of environ-
ment illumination and BRDFs. Bashford-Rogers et al. [2013] guide
emission from environment maps using importance. We address a
more general problem of sampling both indirect illumination and
environment emission.

Progressive GMM learning in rendering. Jakob et al. [2011] use
a Gaussian mixture model to represent spatial distribution of scalar
irradiance in participating media. The accelerated expectation max-
imization (EM) algorithm [Verbeek et al. 2006] used for this pur-
pose allows progressive model updates, but it fundamentally relies
on the ability to produce a good fit from the initial batch of parti-
cles. Thanks to the maximum a posteriori (MAP) formulation of the
model estimation, our on-line technique robustly handles situations
where particles are extremely scarce.

3 Background

In this section, we review Monte Carlo integration with importance
sampling and learning of parametric mixture models.

3.1 Rendering Equation and Importance Sampling

Light transport simulation involves finding values of the equilib-
rium outgoing radiance Lo that satisfy the rendering equation:

Lo(x, ωo) = Le(x, ωo) +

∫
H+

Lin(x, ωi)fr(x, ωi, ωo) cos θidωi.

Here Le(x, ωo) is the radiance emitted from a point x in a direc-
tion ωo, Lin(x, ωi) is the incoming radiance from ωi, fr denotes the
BRDF, and θi is the angle between the surface normal at x and the
incoming light direction ωi [Dutré et al. 2006]. Monte Carlo meth-
ods for solving the rendering equation involve sampling rays in ran-
dom directions ωi over the hemisphere H+ to recursively estimate
the integral in the equation. To reduce the Monte Carlo estimator’s
variance, it is crucial to employ an importance sampling strategy
that draws the direction samples from a distribution closely propor-
tional to the integrand. The traditional BRDF importance sampling



can be ineffective when the incoming radiance term Lin(x, ωi) is
the primary source of the integrand’s variation. Common exam-
ples include caustics, indirect highlights, and complex visibility. It
is therefore beneficial to enhance the importance sampling with an
estimate of the directional distribution of incoming radiance. One
way to achieve this is to obtain the distribution from a ‘photon map’
generated by particle tracing before the rendering starts [Jensen
1995]. We follow this general strategy and note that the problem
can be viewed as density estimation in the directional domain. We
advocate the use of a parametric mixture model to represent the dis-
tributions, which enables on-line learning from a potentially infinite
stream of particles. Additionally, we build distributions of camera
importance for guiding paths starting from the light sources.

3.2 Parametric Mixture Models and the EM Algorithm

We now review the classic batch EM (Expectation Maximization)
algorithm, which is well known to the graphics community. We
then present the off-line stepwise EM algorithm, a generalization
of batch EM with better convergence properties [Liang and Klein
2009]. The stepwise EM formulation allows deriving the on-
line stepwise EM algorithm for learning from a potentially infinite
stream of particles. While batch EM is reviewed only for reference,
both stepwise EM variants are essential components of our method.
Bishop [2006] and Cappé [2011] provide more details on EM.

Parametric mixture models. A parametric finite mixture model is
a convex combination of simpler parametric distributions. We use
the Gaussian mixture model (GMM) with K components:

GMM(s|θ) =
K∑
j=1

πjN (s|µj ,Σj), (1)

where N (s|µj ,Σj) is a Gaussian distribution over s ∈ Rd with a
mean µj and a covariance matrix Σj . The mixing coefficients πj
satisfy πj ≥ 0 and

∑K
j=1 πj = 1. The mixture is defined by a

parameter vector θ = {π1, µ1,Σ1, . . . , πK , µK ,ΣK}.

Maximum likelihood (ML) estimation. The density estimation
problem for a mixture model p(s|θ) (e.g. the GMM), consists in
finding parameters θ so that p(s|θ) is a good approximation of the
unknown distribution that generated a given finite set ofN observed
samples S = {s0, . . . , sN−1 ∈ Rd}. A common approach is to
use the parameter vector θML that maximizes the log-likelihood
L(S, θ) = ln p(S|θ) =

∑N−1
q=0 ln p(sq|θ).

Maximum a-posteriori (MAP) estimation. A fundamental prob-
lem with ML estimation is over-fitting, i.e. introducing patterns
not present in the original distribution [Bishop 2006]. This is-
sue is particularly pressing in our approach, where we may have
only a few observed samples available to construct initial esti-
mates. To deal with this issue, we adopt the maximum a posteri-
ori solution θMAP, which seeks the mode of the posterior distri-
bution p(θ|S) over model parameters θ, given by Bayes’ theorem:
p(θ|S) ∝ p(S|θ)p(θ) (i.e. posterior ∝ likelihood × prior). With
only a few samples, the solution is mostly determined by our prior
beliefs (e.g. that PDFs with extreme values are unlikely), modeled
by the prior distribution p(θ), which is overridden as more samples
are observed. Gauvain and Lee [1994] provide more details.

Batch expectation maximization (Batch EM). Expectation max-
imization (EM) [Dempster et al. 1977] is an iterative procedure to
find the ML or MAP estimates for mixture models. The classic,
or batch EM algorithm [Liang and Klein 2009] for a finite set of
observed samples starts with an initial guess of parameters and pro-
ceeds in iterations over the sample set. In each iteration, which

consists of the expectation (E) and the maximization (M) steps, it
obtains a new estimate θnew based on the current estimate θold:

1 repeat
2 // E-step: Eq. (3)

3 ujN−1 := COMPUTESUFFICIENTSTATS(S, θold)
4 // M-step

5 θnew := θ(u1
N−1, . . . ,u

K
N−1)

6 until CONVERGED();

Since the log-likelihood L(S, θ) over the EM iterations is a non-
decreasing function of θ, the iterative solution θnew converges to a
local maximum. The following condition is often used as a conver-
gence criterion:

∣∣L(S, θold)− L(S, θnew)∣∣ < ε |L(S, θnew)|.

In the E-step, the responsibilities γqj of every component j for
each sample sq are evaluated. Informally, they give the probability
that the sample sq would be drawn from the component j if we
sampled from the mixture θold. For the GMM, the responsibilities
are computed as

γqj =
πjN (sq | θoldj )∑K
h=1 πhN (sq | θoldh )

. (2)

With these responsibilities, we can compute the sufficient statistics
ujN−1 for every mixture component j as the weighted average

ujN−1 =
1

N

N−1∑
q=0

γqju(sq), (3)

where u(sq) = (1, sq, sqs
T
q ) is a triplet consisting of the number

1, the vector sq , and the matrix sqs
T
q . The subscript N − 1 sug-

gests that the sufficient statistics are based on N observed samples
s0, . . . , sN−1. The ML and MAP estimates depend on the observed
samples in S only through these sufficient statistics.

In the M-Step, the sufficient statistics are used to obtain a
new GMM estimate θnew using a closed form update formula
θnew = θ(u1

N−1, . . . ,u
K
N−1). Details are provided in Sec. 4.2.

Off-line stepwise EM. We now describe the stepwise EM formula-
tion [Liang and Klein 2009], whose on-line variant forms the basis
of our approach. In batch EM, the sufficient statistics are recom-
puted from all N samples (E-step) and only then, the distribution
parameters can be updated (M-step). The stepwise formulation,
on the other hand, continuously updates the statistics with every
observed sample, which enables more frequent parameter updates,
and therefore faster convergence.

Off-line stepwise EM, like batch EM, iterates over the sample set
until convergence, as shown in Alg. 1. In the E-step, the sufficient
statistics for each mixture component j are updated using the for-
mula:

uji = (1− ηi)uji−1 + ηi γqju(sq), (4)

where i ≥ 0 is an index that increments with each processed sam-
ple and q = i mod N is the index of the sample sq in the sam-
ple set S. In other words, the samples from S are processed over
and over, while the index i keeps growing. The updated statistics
uji are given by a weighted average of the statistics γqju(sq) for
the currently observed sample sq and the statistics uji−1 for all the
previously observed samples. The weight in this average is given
by the decreasing sequence {ηi}i≥1 of stepsizes that must obey∑
i ηi = ∞ and

∑
i η

2
i < ∞. A sequence which satisfies these

conditions is ηi = i−α with the effective values of the stepsize
parameter α ∈ [0.6, 0.9] [Cappé 2011].



The distribution parameters θold are updated in the M-step after
processing every m-th sample (1 ≤ m ≤ N ). The formula is
the same as in batch EM, with the current sufficient statistics ui as
inputs:

θnew = θ(u1
i , . . . ,u

K
i ). (5)

Algorithm 1: Off-line stepwise EM

1 // Index of sufficient statistics
2 i := 0
3 repeat
4 // Iterate over a batch of N samples
5 for q := 0 to N − 1 do
6 // E-step: Eq. (4)

7 uji := UPDATESUFFICIENTSTATS(sq, θold)
8 if i+ 1 mod m = 0 then
9 // M-step: every m-th observed sample; Eq. (5)

10 θnew := θ(u1
i , . . . ,u

K
i )

11 end
12 i := i+ 1
13 end
14 until CONVERGED();

On-line stepwise EM. The batch EM and the off-line stepwise EM
algorithms base inference on a finite set of N samples stored in
memory. Our method, however, targets scenarios where the num-
ber of samples (e.g. photons) necessary for reliable inference would
be impractical or even impossible to store. The off-line stepwise
EM formulation, unlike batch EM, can be easily modified for this
purpose [Sato and Ishii 2000; Liang and Klein 2009; Cappé 2011].
The key is Equation (4) that enables progressive embedding of the
information from any number of particles into a small set of statis-
tics. If we consider the input set S = {s0, s1, . . . ∈ Rd} to be an
infinite stream of samples, then the on-line stepwise EM algorithm
is obtained from Alg. 1 by removing the outer cycle (lines 3 and 14)
that iterates over the finite batch of samples. As such, the on-line
algorithm continues learning as long as the samples are streamed.
Details with respect to our application are given in Sec. 4.2.

4 Our Approach

We now present an overview of our unbiased guiding method
(Sec. 4.1) followed by details of our technical contribution: MAP
density estimation from weighted particles (Sec. 4.2), caching
of distributions (Sec. 4.3), and emission from environment light
sources (Sec. 4.4). In Sec. 4.5, we discuss the use of Russian
roulette in our method.

4.1 Overview

Our method is split into two strictly separated phases: a) train-
ing of hemispherical distributions representing the incoming radi-
ance or importance from particles (training phase), and b) using the
trained distributions for importance sampling in rendering (render-
ing phase). During the training phase, the directional distributions
are placed and cached at scene surfaces and progressively updated.
The distributions stay fixed during the entire rendering phase.

Training phase. The training phase, depicted in Fig. 2, consists
of several training passes. Each training pass comprises tracing a
batch of importons from the camera followed by a batch of photons
from the light sources. We start by tracing a batch of importons
without our guiding (Fig. 2a). Every succeeding particle tracing
step is then guided by our distributions, which are created and pro-
gressively refined throughout the entire training phase. Radiance

distributions are trained by photons and used to guide paths from
the camera. Conversely, importance distributions are trained by
importons and used to guide paths from the light sources. Guid-
ing refers to importance sampling of local scattering directions and
emission from environment light sources based on our distributions,
as described below.

New distributions are created on-the-fly during the guided parti-
cle tracing steps (Fig. 2c, f). They are stored in a spatial cache
so that they can be reused at nearby locations and refined in the
subsequent training passes. We keep two separate caches, one for
importance and the other for radiance distributions. If the particle
tracing process requests a distribution at a certain point and none is
available at any nearby location, a new distribution is created and
cached. We train the new distribution from the particle map con-
structed during the preceding particle tracing step (e.g. the importon
map if we currently trace a photon) by collecting N nearest parti-
cles and using them as the input for off-line stepwise EM. As we
use the method only for importance sampling of indirect illumina-
tion, we train the distributions using particles that have scattered at
least once. The new distribution is then cached together with meta-
information necessary for its refinement in the subsequent training
passes (see Sec. 4.2).

After a batch of particles has been traced, we use it to update all dis-
tributions in the respective cache (Fig. 2d, e). For each cached dis-
tribution, we find the N nearest particles and use on-line stepwise
EM to update it. At any given time, only the last two particle maps
(one for radiance and the other for importance) are kept in memory.
We delete the maps before constructing new ones (Fig. 2b, g), and
thus our method keeps a bounded memory footprint while allowing
for an arbitrary number of training passes. Unlike the particle maps,
the two distribution caches are persistent and are continuously up-
dated throughout the whole training phase.

The motivation behind our use of interleaved, mutually guided im-
porton and photon tracing steps is that with every training pass, the
distributions become more accurate and provide improved impor-
tance sampling for the subsequent training passes. This approach
significantly improves the efficiency of the training phase.

Rendering phase. With the two caches of distributions obtained
in the training phase, we can guide the construction of both cam-
era and light sub-paths in virtually any path sampling-based light
transport algorithm (including bidirectional ones). To guide a uni-
directional algorithm, such as path tracing, we simply discard the
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Figure 2: The training phase preceding the rendering phase. Pro-
cesses related to importons or importance distributions use green
background while processes related to photons or radiance distri-
butions are in orange.



unnecessary distribution cache. As in the training phase, we use the
distributions for importance sampling of the local scattering direc-
tions and emission from environment light sources. If no guiding
distribution is available at a nearby position, a new one is trained
from the latest batch of particles.

Distribution representation. After investigating a number of al-
ternatives, we decided to model the directional distribution p(ω|x)
at a spatial location x with a mixture of bi-variate Gaussians
GMM(s) on a 2D plane, i.e. s ∈ R2. To do this, we project the
hemisphere H+ onto a unit square using the area preserving map-
ping S of Shirley and Chiu [1997].

Sampling from the distribution model. To generate a new direc-
tion ω after a particle has collided with a surface at a position x,
we randomly choose between BRDF sampling and sampling from
our guiding distribution p(ω|x). Both strategies are then combined
using multiple importance sampling [Veach 1997]. To sample a
direction ω′ from our guiding distribution, we first draw a 2D posi-
tion s′ from the GMM(s) and then we apply the inverse mapping
so that ω′ = S−1(s′). To compensate for the change of variables,
we multiply the PDF value by the Jacobian of S−1, which is a con-
stant 1

2π
for Shirley and Chiu’s mapping. Should the sample s′ lie

outside of the unit square, the particle path is terminated.

4.2 Learning Distributions from Weighted Particles

A particle tracing algorithm generates particles pi = (xi, ωi, wi),
defined by their position xi, incoming direction ωi, and weight
wi (also referred to as ‘flux’ when tracing photons). The particle
weight is a product of the particle emission function, BRDFs, and
geometry factors divided by the probability density of generating
the particle path [Pharr and Humphreys 2010]. The density of the
photons or importons together with their weights form an unbiased
representation of the equilibrium incoming radiance Lin or impor-
tanceWin, respectively [Veach 1997]. Therefore, an approximation
of a sampling PDF p(ω|x) ∝ Lin(x, ω) can be reconstructed from
the directions and weights of photons pi in the vicinity of x. Sim-
ilarly, directions and weights of importons in the vicinity of x can
be used to reconstruct a sampling PDF p(ω|x) ∝Win(x, ω).

Here, we present a new generalization of the stepwise EM algo-
rithms (both off-line and on-line) that supports density estimation
from a set of weighted particles. Before delving into its descrip-
tion, let us clarify, on an example of a single distribution, the use of
off-line and on-line stepwise EM in our method (see Fig. 3). A dis-
tribution is initialized by off-line stepwise EM from the set of par-
ticles available in the first training pass. We then store its sufficient
statistics ui and its counter i so that the learning can be resumed in
the subsequent training passes by on-line stepwise EM.

o�-line 

i   = 0
N = 4

1st TP 2nd TP 3rd TP

10x

i   = 39
N = 5

i   = 44
N = 7

i   = 51

on-line on-line ...

st
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t

Figure 3: An example of learning of a single distribution from a
stream of particles processed first by the off-line and then by the
on-line stepwise EM algorithms. In the first training pass (TP),
we use the off-line algorithm that iterates until convergence (10
times in our example) over the N = 4 particles available in the
first TP. In the subsequent training passes, the on-line algorithm is
used, which processes each particle only once. The index i of the
sufficient statistics associated with the trained distribution is incre-
mented with each processed particle.

Save for some subtle differences, our new weight-aware formula-
tion affects both off-line and on-line stepwise EM in the same man-
ner. Thus, in the following statements, we refer to both algorithms
as stepwise EM unless the algorithm variant is explicitly stated.

Weighted data log-likelihood. The log-likelihood L(S, θ), as
given in Sec. 3.2, does not allow density estimation from a weighted
set of samples. Thus, we introduce the following weighted data log-
likelihood

L(S,w, θ) =
N−1∑
q=0

wq ln p(sq|θ), (6)

where S = {s0, . . . , sN−1} is a set of N observed samples with
their corresponding weights w = {w0, . . . , wN−1}. This defini-
tion is in line with the intuition that a weighted sample (sq, wq)
corresponds to an unweighted sample sq observed wq times.

Taking measures against over-fitting is extremely important when
using weighted particles, because the particle weights might dif-
fer by orders of magnitude. To this end, we employ a MAP so-
lution (see Sec. 3.2) based on conjugate priors. Conjugate priors
have the same functional form as the resulting posterior distribution
and therefore lead to a greatly simplified Bayesian analysis [Bishop
2006]. Our approach based on the weighted data log-likelihood re-
quires a careful treatment of the MAP approach. This is reflected
in both the E-step and the M-step of stepwise EM. In the following
paragraphs, we extend the sufficient statistics (E-step) and provide
formulae for updating the model parameters. Please refer to the
supplemental material for their derivation.

Our weighted stepwise EM: E-step. To account for the weight
wq of an observed sample sq , we modify the sufficient statistics
update formula (4) to

uji = (1− ηi)uji−1 + ηiwqγqju(sq), (7)

where u(sq) = (1, sq, sqs
T
q ). The only difference from Equation

(4) is the multiplication of the second summand by wq . This cor-
responds to the interpretation of weight wq as a multiplicity of the
new observed sample sq . Additionally, we keep track of the av-
eraged total particle weight required for normalization of mixture
weights in the M-step:

wi = (1− ηi)wi−1 + ηiwq, (8)

Our weighted stepwise EM: M-step. We have derived an update
function for model parameters, θnew = θ(u1

i , . . . ,u
K
i , wi), that

takes the current modified sufficient statistics (7) and the averaged
total particle weight wi. By letting uji = ((uγ)

j
i , (s)

j
i , (ss

T )
j

i ), we
decompose the sufficient statistics uji into a real number, a vector
and a matrix that are computed from Equation (7). Then the specific
formulae defining the vector function θ read as follows:

πnew
j =

(uγ)
j
i

wi
+
ν − 1

n

1 +
K(ν − 1)

n

, µnew
j =

(s)ji
(uγ)

j
i

(9)

Σnew
j =

b

n
I +

(ssT )
j

i −A + (uγ)
j
iB

wi

a− 2

n
+

(uγ)
j
i

wi

(10)

where

A = (s)ji (µ
new
j )T + µnew

j (sT )
j

i , B = µnew
j (µnew

j )T ,



I is the identity matrix,K is the number of mixture components and
n is the total number of observed samples (see the details below).
Scalars a, b and ν are parameters of conjugate priors induced by the
MAP solution (see the supplemental material for more details).

We ran extensive experiments with both synthetic and real data
from light transport simulation and by comparing our algorithm re-
sults to the reference solutions, we have concluded that the most
suitable values for our application are a = 2.01, b = 5 × 10−4,
ν = 1.01. Likewise, we found that both the on-line and the off-line
stepwise EM algorithms achieve the best results when the M-step is
executed every m = 10 samples (see Alg. 1) and with the stepsize
parameter α = 0.7 (see Sec. 3.2). We decided to use K = 8 com-
ponents in the mixture as it proved sufficient in all tested scenes.

Differences between the off-line and the on-line versions. The
number of observed samples n in Equations (9) and (10) governs
the effect of our prior beliefs. The more samples we have ob-
served the weaker the effect of priors. In on-line stepwise EM,
we simply set n to the current value of the index of sufficient statis-
tics i. However, to fully exploit the MAP approach and thus to
prevent over-fitting in our off-line stepwise EM, it is necessary to
set n = min(i,N). This is necessary because the algorithm iter-
ates over the same batch of N samples multiple times (see Fig. 3)
before it converges and the index i could be much higher than the
actual number of unique observed samples.

4.3 Caching of Distributions

Once the EM algorithm creates a hemispherical distribution p(ω|x)
at x, we cache it for reuse at nearby locations. The main reason for
using a persistent cache of distributions is to enable their on-line
refinement. Our cache is inspired by the traditional lazy evalua-
tion scheme from (ir-)radiance caching [Ward et al. 1988; Křivánek
et al. 2005]. It maintains a set of distributions, and for each query
point it either returns an existing distribution or creates (i.e. trains)
and stores a new one. Our caching scheme, however, exhibits an im-
portant difference from (ir-)radiance caching. While (ir-)radiance
caching blurs the stored values to obtain a biased, yet perceptually
plausible result, we strive for an unbiased result.

Spacing of cached distributions. To achieve a good perfor-
mance, we space the distributions so that they adapt to the angu-
lar frequency of the radiance/importance function, as illustrated in
Fig. 4 (e.g. for radiance, more distributions should be created in
sharp caustics). To space the distributions, we assign to each of
them a validity radius that determines the maximum spatial dis-
tance where the distribution can be reused. The validity radius for
a distribution is computed as a harmonic mean of the validity radii
of its individual mixture lobes (i.e. GMM components), weighted
by the mixing coefficients πj . To determine the validity radius of
a lobe, we first predict how the lobe would change if we observed
the environment from a slightly different position (see Fig. 5). We
then set the validity radius such that the Kullback-Leiber diver-
gence [Bishop 2006] between the original and the changed lobe
stays below a certain threshold for any location within the valid-
ity radius. We additionally improve the spacing of distributions by
the neighbour clamping heuristic [Křivánek et al. 2006]. We also
clamp the validity radii to be between 0.5 and 1 times the distance
between the distribution position x and the furthest particle used
for its training. Details are provided in the supplemental material.

Distribution reuse. We have experimented with different inter-
polation strategies and concluded that simply re-using the nearest
suitable distribution is the most robust solution. When we query the
cache at the position x, we search for M nearby distributions and
from among those we select one with a suitable position and normal
orientation. Specifically, we choose the distribution that minimizes

Figure 4: An example of radiance and importance caches in a Cor-
nell box scene (left). The black dots represent positions of distribu-
tions used for guiding camera (center) and light paths (right). The
cache adapts to the scene by placing more records where the radi-
ance/importance function contains high angular frequencies.

‖x− xi‖2

h
+ 2
√
1− n · ni, (11)

where xi and ni are the position and the normal of i-th candidate
respectively, n is the normal at x and h is the distance to the furthest
of the M candidates. Finally, we check if the query point x lies
within the validity radius of the selected distribution. If it does, that
distribution is reused, otherwise we create a new one.

4.4 Environment Emission Sampling

We have observed that guiding only the scattering directions is in-
sufficient in complex scenes with environment lighting. This is be-
cause most particles emitted from the environment fail to enter im-
portant parts of the scene through small openings (see Fig. 1). Here,
we present our approach for driving the particle emission from an
environment light source by importance. Emission from other light
source types is left for future work.

An environment light defines the emitted radiance Le(ω) over di-
rections ω. Emitting a particle from an environment light requires
sampling a joint PDF p(x, ω) = p(ω)p(x|ω) that we factor into
the PDF p(ω) to sample the particle direction ω, and p(x|ω) to
sample the starting position x on a disk outside the scene that is
perpendicular to ω [Georgiev 2012; Pharr and Humphreys 2010].
These distributions are trained by the importons that have left the
scene (see Fig. 6a) during the importance distributions update step
in Fig. 2.

Directional distribution. We compute p(ω) as a product of
pL(ω) ∝ Le(ω) given by the environment map and of pW(ω)

Figure 5: Calculation of the lobe validity radius. Left: We assume
that the green lobe of a distribution at the position x corresponds
to an importance/radiance highlight at the position y seen from x
along the lobe axis. If we move the lobe to a new position x′, the
direction of the lobe (red) pointing towards the highlight changes.
The validity radius is set such that the resulting change of the lobe,
measured by the KL-divergence, does not exceed a given thresh-
old. Right: The same situation in the unit square domain where
the corresponding Gaussian distribution is defined and where the
KL-divergence is actually measured.
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Figure 6: To learn the importance distribution p(x|ω) for sampling
starting positions of light paths from the environment, conditional
on the direction ω, we construct a disk perpendicular to ω outside
the scene. A GMM model of the distribution is trained from im-
portons that leave the scene in a direction less than 1◦ from ω (a).
The position x of the light paths emitted in a direction close to ω is
sampled using the learned distribution p(x|ω) (b).

that is the directional distribution of importance reconstructed from
the importons that left the scene. We represent pW(ω) with a
fixed-resolution bitmap. In each pixel, the PDF is computed
from importon directions using a progressive kernel density esti-
mate [Hachisuka et al. 2008]. To avoid introducing bias due to zero
probability of sampling directions that did not receive any impor-
tons, we combine sampling from the product pL(ω) × pW(ω) and
from pL(ω) via multiple importance sampling [Veach 1997].

Position distributions. The distributions p(x|ω) defined on a disk
perpendicular to ω (see Fig. 6b) are stored in a unit sphere cache in-
dexed by ω. This allows to reuse the stored distributions for nearby
directions and enables their on-line training. To represent p(x|ω),
we train our GMM (see Sec. 3.2) from importons that left the scene
in a direction less than 1◦ from ω. Prior to the training, these im-
portons are projected onto the perpendicular disk (see Fig. 6a).

4.5 Russian Roulette

Path termination via Russian Roulette (RR) [Arvo and Kirk 1990]
affects the distribution of particles together with their weights, with-
out changing the expected value of the quantity they represent.
This is commonly called biasing in the neutron transport literature
[Booth 1985; Booth 2012]. Our method is also a biasing technique:
we strive to reduce variance by guiding particles toward important
areas (e.g. in front of the camera). However, combining different
biasing techniques could be counterproductive. When we use our
guiding method, we must not base the random walk termination by
RR on a local decision (derived from e.g. the surface albedo) as is
commonly done in light transport simulation [Pharr and Humphreys
2010]. This approach might result in a termination of particles that
could eventually yield an important contribution.

During particle tracing, we base our Russian roulette on particle
weights. We set the RR survival probability to min{wi/w∗

i wt, 1},
where wi is the current particle weight, w∗i is the particle weight
before any biasing or scattering (i.e. light source power for photons
or source importance for importons) and wt is a fixed, empirically
determined threshold that we set to 10−5 for all our renderings. In
other words, we do not attempt to terminate particles unless their
weight drops at least wt times from its initial value. Note that due
to guiding, important areas contain many particles with very small
weights and our RR ensures that these particles are not killed. Ide-
ally, wt should locally adapt to the distribution of importance or
radiance in the scene [Haghighat and Wagner 2003].

(a) Jensen 8×8 (b) Jensen 32×32

(c) Hey and Purgathofer (d) Our GMM
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Figure 7: Demonstration of the superior flexibility of the paramet-
ric Gaussian mixture model (GMM) over previously used models.
Four renderings of a Cornell box scene with diffuse walls and two
glossy blocks lit by the sun are rendered by guided path tracing us-
ing Jensen’s [1995] method with the histogram resolution of 8× 8
(a) and 32 × 32 (b), Hey and Purgathofer’s [2002] hemispherical
footprints (c), and with our GMM (d). The distributions trained at
two selected locations in the scene are also visualized. One distri-
bution contains low-frequency illumination while the other contains
a sharp directional peak caused by a reflection of the sun.

5 Applications and Results

We first demonstrate the flexibility of the Gaussian mixture model
in rendering. Then we show that guiding various path-sampling al-
gorithms using our progressively trained distributions provides su-
perior rendering results in complex, highly occluded scenes.

5.1 Flexibility of the Gaussian Mixture Model

We compare our GMM to Jensen’s histograms [1995] and Hey and
Purgathofer’s hemispherical footprints [2002] in terms of their abil-
ity to model distributions encountered in rendering. Fig. 7 shows a
simple Cornell box scene with two glossy blocks. It is rendered
with path tracing using the histogram model with two different his-
togram resolutions, the hemispherical footprints model, and finally
our GMM. Note that the on-line learning, which is discussed in the
following section, is not applied so that the comparison is fair. In-
stead, during the training phase, we emit 5M photons in a single
batch and all the models are trained from 250 nearest photons.

The figure shows that higher histogram resolution captures high
frequencies in the incoming radiance distribution inside caustics,
while the ability to represent low frequencies deteriorates at the
same time due to over-fitting. Thus, while the quality of caustics
at the histogram resolution of 32×32 pixels is superior to the qual-
ity at the 8× 8 resolution, the noise is increased on the walls.

Hemispherical footprints are more flexible than the fixed histogram
grid as they take into account the directional density of particles.
However, the method is closely related to kernel density estimation
and as such it suffers from the optimal bandwidth selection problem
[Silverman 1986]. Visualization of a distribution inside the sun’s
reflection suggests insufficient generalization – the distribution is
discontinuous between individual observed samples in its peak.

Finally, the GMM with only 8 components in the mixture exhibits
sufficient flexibility to represent both low frequencies and sharp
peaks in the distributions. Note that when compared to the other
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Figure 8: Equal-time (1h) comparison of different distribution
models in a scene with difficult visibility. Light enters the classroom
from the sun and the sky through small gaps between the window
blinds. The scene was rendered by path tracing guided by 8×8 (a)
and 32×32 (b) histogram model, hemispherical footprints model
(c), and our Gaussian mixture model (d). Each method was given
a fixed number of emitted photons (500M) in one unguided tracing
step. Each distribution was then trained from a single batch of 500
nearest photons without additional on-line learning.

methods, the GMM excels at generalizing from the observed data
(i.e. it avoids discontinuities between the individual samples). This
is further supported by Fig. 8, which shows that the GMM provides
superior rendering results in a scene with difficult visibility.

5.2 On-line Learning Results

In Fig. 9, we compare classical implementations of (1) path tracing
(PT), (2) bidirectional path tracing (BDPT) and (3) vertex connec-
tion and merging (VCM) [Georgiev et al. 2012b] to the same im-
plementations guided by our method with the distributions trained
in the on-line (progressive) manner. We also show images rendered
by (4) Veach’s Metropolis light transport with manifold exploration
(Veach MLT) [Jakob and Marschner 2012]. We also present cor-
responding L1 error plots in Fig. 10. The supplemental material
contains additional results for progressive photon mapping (PPM)
and other flavours of MLT (Kelemen MLT [2002] and energy redis-
tribution path tracing [Cline et al. 2005]) as well as RMSE plots.

Setup. Our method uses 30 training passes in all the presented
scenes. We set the maximum path length to 40 bounces. All im-
ages, save the references, were rendered in 1 hour (including the
training phase) on a single Intel Core i7-2600K CPU using 8 logical
cores. The reference images were rendered with BDPT for 10–60
days. We used the Corona Renderer [Karlı́k 2009] to produce all
the results except the MLT images, which were rendered in Mit-
suba [Jakob 2010] with default settings. We verified that our BDPT
implementations in both renderers converge to the same result.

Scenes. In Fig. 9, we show renderings of three scenes that feature
difficult visibility and contain many locations that are poorly sam-
pled with regular path sampling-based methods. Two of the scenes
(Living room and Classroom) feature environment lighting and use
our method for importance-driven emission sampling. All the light
in rendered images is due to indirect illumination.

The Living room scene allows only a small fraction of the light
from the sun and the sky to enter the room through a glass window
and a small gap between the curtains. The walls are diffuse and
there are a few semi-glossy objects, including the floor. Note that
even BDPT and VCM struggle to resolve the image in the dark
closet on the left. The scene was rendered at a resolution of 1024×
576 pixels. One million photons and importons were emitted in
each training pass. The training phase took 10.3 minutes.

The Classroom scene is lit by the sun and the sky through win-
dow blinds. For regular MC algorithms, it is especially difficult
to sample the dark half of the classroom. Windows and highly
glossy chairs and table legs together with a semi-glossy floor create
specular–glossy–glossy light transport paths that form many caus-
tics/indirect highlights. While our method improves sampling of
the caustics and the dark parts of the scene, sampling of the glossy-
glossy highlights remains a challenge. The reason is that we do
not sample from the product of the BRDF and the incoming ra-
diance/importance, but rather combine the two via multiple impor-
tance sampling. The scene was rendered at a resolution of 960×480
pixels. 0.5 million photons and importons were emitted in each
training pass. The training phase took 7 minutes.

In the Door scene, light enters the room through a small slit. This
is a recreation of the well-known scene from Veach and Guibas’
paper [1997] provided by Lehtinen et al. [2013]. To make the scene
more realistic, we have made the area light source much smaller and
used more light bounces. The scene was rendered at a resolution of
800×600 pixels. 300k photons and importons were emitted in each
training pass. The training phase took 3.75 minutes.

Error and convergence. Fig. 10 shows the dependence of the L1

error on time in all three scenes, comparing both the classical and
our guided versions of the algorithms. Fig. 11 demonstrates that
our method converges to the reference.

On-line learning. To demonstrate progressive improvement of dis-
tributions during the training phase, we rendered the Living room
scene several times with guided BDPT. We used 2, 5 and 30 train-
ing passes, while all other settings were kept the same. In Fig. 1,
we present an equal-time comparison (1 hour) including the time
spent on the training phase. The results reveal that the time spent
on additional training passes is quickly amortized by the superior
performance of the subsequent guided rendering.

Discussion. Guided BDPT and PPM (see the supplemental ma-
terial) yield superior results compared to their classical versions.
However, although VCM is a combination of BDPT and PPM, the
improvement of guided VCM is only subtle over guided BDPT. We
suspect that the guiding might render some path sampling tech-
niques – that would otherwise be an essential component of the
combined algorithm – less important.

6 Discussion, Limitations and Future Work

Alternative distribution models. We have experimented with a
range of alternatives to Gaussian mixtures. The von Mises-Fisher
(vMF) distribution [1953] is defined directly on the unit sphere,
but its isotropic shape is not suitable for fitting highly anisotropic
structures in the directional domain, often produced by caustics.
The Kent distribution [1982] is a directional distribution that does
support anisotropy, but becomes bi-modal for a range of param-
eters and is numerically unstable. An anisotropic spherical func-
tion [Xu et al. 2013] derived from the Bingham distribution [1974]
was developed for interactive rendering. However, at the moment,
there is no known analytical sampling procedure. We further ex-
perimented with an anisotropic distribution similar to the lobe of
the Ward BRDF [Ward 1992], but its learning was too expensive.
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Figure 9: Three scenes with complex visibility rendered with path tracing (PT), bidirectional path tracing (BDPT), vertex connection and
merging (VCM), and their respective versions guided by our method. We also present reference images and results of Veach’s Metropolis
light transport (MLT) with manifold exploration. All images, except the references, were calculated in one hour, including the time spent on
30 training passes. The results show that the overhead of our method is amortized by the improved sampling, as the noise levels are reduced
in all tested algorithms, especially in dark areas. (“EV+v” in the insets refers to a multiplication of the image brightness by 2v .)
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Figure 10: Time dependence of L1 error for 60 minutes of ren-
dering. The learning phase of our method is included in the com-
parison, so the graphs for the guided versions do not start at zero
time.

Limitations and Future Work. The overhead of our method in the
rendering phase, that may offset its advantages in simple scenes,
comes mostly from querying the cache. This takes 26% of the exe-
cution time for path tracing, and up to 45% for bidirectional meth-
ods, since they need to access both radiance and importance caches
at each path vertex. Optimization should focus on this aspect, since
sampling and evaluation of the GMMs each takes only about 5% of
the total time.

Importance sampling based on our distributions can occasionally
generate excessive particle weights (training phase) or path contri-
butions (rendering phase) and produce spiky image noise. Splitting
and Russian roulette based on our importance/radiance distributions
and particle weights [Haghighat and Wagner 2003] could resolve
this issue and improve overall performance.

While the fixed number of components in the mixture may be insuf-
ficient to capture some complex distributions, we have not encoun-
tered any problems due to this limitation in our tests. Nonetheless,
adaptive determination of the number of components would be an
interesting avenue for future work.

Because the distributions created in the later training passes have
access to fewer particles, they may be less refined than the distribu-
tions created earlier. Adaptive refinement of the distributions during
rendering could help resolve this issue.

Since our distributions only model incoming radiance or impor-
tance, we cannot provide good importance sampling of some com-
plex glossy-glossy inter-reflections. This could be alleviated by
sampling from the product of the incoming radiance or importance
and the BRDF.

Our importance-driven emission is currently limited to environment
light sources. Using our distributions to sample emission from other
light source types, as well as for radiance-driven emission of impor-
tons from the camera, would improve the efficiency of our method.

Reference Our guided BDPT Difference (EV+9)

Figure 11: Our method converges to the reference image computed
by plain BDPT (left). We rendered the scene for approximately two
days with our guided BDPT that used 30 TP (middle). The refer-
ence image was rendered by BDPT for approximately 10 days. The
uniform distribution of positive (green) and negative (red) differ-
ences (right) suggests that any residual error is only due to vari-
ance. Brightness of the difference image was multiplied by 29.

Finally, our method shares the same overall goal with Metropolis
light transport, that is globally optimized importance sampling of
entire light transport paths. It would be interesting to see if the two
approaches can complement each other to achieve further benefits.

7 Conclusion

We have proposed the use of a parametric mixture model to rep-
resent directional distributions for importance sampling in Monte
Carlo light transport simulation. The core of our approach is an
on-line learning procedure that allows one to train the distributions
from a potentially infinite stream of particles. With this approach,
we can recover good importance sampling distributions in difficult
lighting configurations, where an excessively large number of parti-
cles would otherwise be necessary. This, in turn, enables rendering
scenes with complex visibility, where the existing state-of-the-art
methods are ineffective.
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