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Jiřı́ Vorba ∗

Charles University in Prague
Weta Digital, Wellington

Jaroslav Křivánek †
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Figure 1: Russian roulette based on material reflectance, as traditionally applied in computer graphics, leads to suboptimal results in
scenes with non-uniform light distribution or complex visibility (left). Our adjoint-driven Russian roulette and splitting (ADRRS) significantly
increases the efficiency in such cases (middle). ADRRS complements the advantages of path guiding (PG) methods [Vorba et al. 2014] and
in conjunction they provide superior results than either method alone (right). All images have been rendered by path tracing in 1 hour.

Abstract

While Russian roulette (RR) and splitting are considered funda-
mental importance sampling techniques in neutron transport sim-
ulations, they have so far received relatively little attention in light
transport. In computer graphics, RR and splitting are most often
based solely on local reflectance properties. However, this strat-
egy can be far from optimal in common scenes with non-uniform
light distribution as it does not accurately predict the actual path
contribution. In our approach, like in neutron transport, we esti-
mate the expected contribution of a path as the product of the path
weight and a pre-computed estimate of the adjoint transport solu-
tion. We use this estimate to generate so-called weight window
which keeps the path contribution roughly constant through RR and
splitting. As a result, paths in unimportant regions tend to be termi-
nated early while in the more important regions they are spawned by
splitting. This results in substantial variance reduction in both path
tracing and photon tracing-based simulations. Furthermore, unlike
the standard computer graphics RR, our approach does not interfere
with importance-driven sampling of scattering directions, which re-
sults in superior convergence when such a technique is combined
with our approach. We provide a justification of this behavior by
relating our approach to the zero-variance random walk theory.

Keywords: Russian roulette, splitting, light transport, importance
sampling, zero-variance schemes.
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1 Introduction

Recently, Monte Carlo light transport simulation has been adopted
by the movie industry as a standard tool for producing photo-
realistic imagery [Seymour 2014]. Since the computation of a
noise-free movie frame can easily take tens of hours, various ap-
proaches to improve computation efficiency have received much
attention [Křivánek et al. 2014b].

Two classic techniques to improve efficiency, Russian roulette (RR)
and splitting, have been used in computer graphics for over 25
years [Arvo and Kirk 1990]. RR aims to save computation time
by terminating transport paths with small contribution, while split-
ting (a.k.a. distributed ray tracing [Cook et al. 1984]), branches
paths into several independent trajectories. In computer graphics,
RR decisions have usually been based on local surface reflectiv-
ity [Jensen 2001; Dutré et al. 2006; Jakob 2010] or on the accumu-
lated path weight (a.k.a. throughput) [Arvo and Kirk 1990; Jensen
1996; Veach 1997]. Splitting often relies on heuristics based on
local BRDF roughness [Szirmay-Kalos and Antal 2005]. While
simple to implement, these local approaches do not work well in
scenes with non-uniform light distribution, as illustrated in Fig. 1.

The sub-optimal performance of RR and splitting – as currently
employed in light transport simulation – is due to the respective
decisions being oblivious to the actual distribution of light (when
tracing paths from the camera) or visual importance (when tracing
paths from the light sources). For example, when the surface re-
flectivity is used as the termination probability in RR, effort is often
spent on sampling long paths on bright surfaces, while dark surfaces
suffer from high variance due to early path termination. The latter is
particularly acute in scenes with difficult visibility or dense partic-
ipating media, where most contributions are due to long paths that
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may absorb lots of energy but originate at bright sources. Unfor-
tunately, the problem cannot be solved simply by making RR less
aggressive across the entire scene, because doing so would waste
resources on sampling longer paths even where not necessary.

We present adjoint-driven Russian roulette and splitting (ADRRS),
a new approach for RR and splitting decisions. To address the short-
comings of the current approaches, we terminate or split paths ac-
cording to an estimate of their total expected contribution to the
image, relative to a reference solution. Paths with an expected con-
tribution much higher than the reference are split, while paths with
a low expected contribution have higher chance of being termi-
nated. The expected contribution is calculated as a product of the
current path weight and an estimate of the adjoint transport solu-
tion (i.e. equilibrium radiance for camera sub-paths or equilibrium
visual importance for light sub-paths), which we pre-compute and
cache in the scene. We show that this approach leads to good impor-
tance sampling of the path space, and, in turn, it can significantly
increase the overall efficiency of the simulation.

Our method works in synergy with path guiding methods [Vorba
et al. 2014; Bashford-Rogers et al. 2012; Hey and Purgathofer
2002; Jensen 1995], and in conjunction they provide superior re-
sults. This is an important advantage over the traditional local RR
decisions, which counteract the guiding methods by terminating po-
tentially important paths before they can even make a contribution.
We provide a theoretical justification of this beneficial behavior
based on the theory of zero-variance random walks [Křivánek and
d’Eon 2014; Xu et al. 2001; Kalos 1963], which, as we show, is the
basis of both the proposed method as well as the guiding schemes.
In summary, we make the following contributions:

• We propose adjoint-driven Russian roulette and splitting
(ADRRS) where paths are terminated or split according to
their expected contribution to the image (Sec. 4).

• We provide a theoretical analysis of the close relation of
ADRRS to the zero-variance random walk schemes, which
explains its variance reduction properties (Sec. 7).

• We develop a solution for obtaining the paths’ expected con-
tribution necessary to use ADRRS in practice (Sec. 5).

• We show that ADRRS can improve the efficiency of path
guiding methods (Sec. 6).

2 Related Work

Particle transport. The origins of simulating the transport of neu-
tral particles (e.g. neutrons or photons) by Monte Carlo (MC) pro-
cesses goes back to the 1940s. The idea of using MC stems from the
probabilistic nature of the particles’ behavior [Spanier and Gelbard
1969]. In the real world, a particle has a certain probability of being
emitted in a given time interval and its further fate is also governed
by probabilistic events: collisions, absorption and scattering. If a
simulated particle follows the events according to the precise phys-
ical probabilities, the MC process is said to be analog. In such a
simulation, all particles have equal, unit statistical weight. In order
to improve computation efficiency, non-analog simulations can be
designed by altering the probabilities of various events in the sim-
ulation. The particle weights are then modified upon each event so
that the simulation remains unbiased [Lux and Koblinger 1991].

The close relation between MC light transport simulation in com-
puter graphics and MC processes simulating the transport of neu-
tral particles has been pointed out by several authors [Křivánek and
d’Eon 2014; Christensen 2003; Veach 1997; Arvo and Kirk 1990].
While light transport is described by the rendering equation [Kajiya
1986], particle transport in physics is governed by the linear Boltz-
mann equation. The similarities between the two were first pointed
out by Arvo and Kirk [1990], which allowed them to adopt useful

techniques, such as Russian roulette (RR) and splitting [Kahn 1956;
Kahn and Harris 1951] in computer graphics.

Russian roulette and splitting. Arvo and Kirk [1990] suggest
to use RR in non-analog simulations for unbiased termination of
particles with low weights. If the weight drops below a threshold,
the particle path is terminated with a certain probability. They also
identify distributed ray tracing [Cook et al. 1984] to be an instance
of splitting and discuss the circumstances under which splitting can
reduce variance. However, they fail to propose a practical method
without an exponential branching of the ray-tree. Jensen [1996]
proposes to use material absorption as the RR termination proba-
bility in photon tracing to minimize photon weight fluctuations.

Some works in computer graphics derive the termination and split-
ting rates by direct optimization of efficiency (i.e. reciprocal of the
product of variance and computation time). For example, Szirmay-
Kalos and Antal [2005], using a series of simplifying assumptions,
arrive at a RR/splitting heuristic based on local BRDF reflectiv-
ity and roughness, and user-specified global constants. Bolin and
Meyer [1997] derive optimal termination and splitting rates through
a variance analysis of nested estimators, but they do not describe a
working method based on these results. In contrast, we provide a
practical algorithm that relies on a well-founded theory, albeit not
on the optimization of efficiency. While Veach [1997] proposes
efficiency-optimized RR for light path connections in bidirectional
path tracing, our work describes RR in a more general context.

Importance sampling. Unlike in graphics, in the neutron trans-
port literature, RR and splitting are understood as importance sam-
pling techniques [Veach 1997; Hammersley and Handscomb 1964;
Spanier and Gelbard 1969]. For example, to reliably estimate the
radiation escaping through a nuclear reactor shield, it is impracti-
cal to use an analog simulation since the probability of penetrating
the thick shield by a particle is extremely low (≤ 10−9). To solve
similar problems in the nuclear engineering practice, users of the
MC simulators define, usually semi-automatically, an importance
function over the domain of interest [Wagner and Haghighat 1998].
The simulation then terminates particles in the parts of the domain
designated as unimportant, while splitting them in high-importance
regions. This strategy effectively adapts the number of surviving
particles to the user-specified importance.

As mentioned above, a common practice in computer graphics is
to drive RR decisions by the particle weight [Veach 1997; Jensen
1996; Arvo and Kirk 1990]. However, doing so results in poor im-
portance sampling, because no information on the expected future
behavior of the particle is taken into account. In our work, we show
that – rather than relying solely on the particle weight – it is benefi-
cial to drive RR and splitting also by the adjoint quantity (radiance
when tracing a particle from the camera, and visual importance
when starting from the light sources). This adjoint quantity value
gives us an estimate of the path’s expected future behavior, which
– when multiplied by the path weight – provides the expected total
contribution of the path to the solution.

There is a vast body of work that uses adjoints in rendering sur-
veyed by Christensen [2003]. Two closely related works are that of
Keller and Wald [2000] and Georgiev and Slusallek [2010]. They
both use importance-driven RR to randomly decide about deposit-
ing a photon and a virtual point light, respectively, while they use
classical RR based on local reflectance properties during path con-
struction. Consequently, they may need to sample a tremendous
number of paths to achieve low variance in visually important re-
gions with low illumination. Our work, in contrast, address this is-
sue by employing adjoint-driven RR during path construction itself
to directly influence length of sampled paths. The works of Szécsi
et al. [2003] and Szirmay-Kalos and Antal [2005] reduce variance



due to RR by returning an irradiance estimate upon path termina-
tion (instead of the usual zero). In contrast, we exploit a similar
estimate to compute optimal termination and splitting rate itself.

Path guiding methods. A direct approach to distributing paths
according to visual importance is importance sampling of emission
from light sources [Vorba et al. 2014; Bashford-Rogers et al. 2013;
Dutré and Willems 1994], and of scattering directions during in-
cremental path construction [Vorba et al. 2014; Bashford-Rogers
et al. 2012; Hey and Purgathofer 2002; Jensen 1995]. In this way,
paths are directly guided towards regions with high contribution to
the computed image. Such guided path sampling is a non-analog
simulation that typically leads to high local variation of particle
weights [Vorba et al. 2014; Keller and Wald 2000; Suykens and
Willems 2000]. In contrast, our adaptive RR and splitting achieves
more balanced weights locally than the guiding methods.

Weight window. In neutron transport simulations, RR and split-
ting are combined in one variance reduction tool called the weight
window [Hoogenboom and Légrády 2005; X-5 Monte Carlo team
2003; Booth and Hendricks 1984]. This technique is designed to
keep the particle weight within a certain interval that may vary over
the simulation domain. This interval can be user-specified or based
on an automatic importance computation [Wagner and Haghighat
1998; Wagner 1997; Booth and Hendricks 1984]. If a particle
weight is below or above the interval bound, RR or splitting is
applied, respectively, so that the particle weight stays within the
interval. Vorba et al. [2014] employs the weight window facility
but the bounds are set manually and are not adapted to the scene.
We achieve a significant performance gain by setting the weight
window bounds according to a spatially and directionally-varying
radiance or visual importance solution.

Booth and Hendricks [1984] set the interval bounds so that the
weight window center is inversely proportional to an importance
function. This keeps more particles in important regions and less
in unimportant ones. The normalization constant for computing
the weight window bounds from the importance is set heuristically
so that particles are within the weight window immediately upon
their emission. Based on an analysis of zero-variance random walk
schemes, Wagner and Haghighat [1998; 1997] suggest a theoret-
ically founded approach where an estimate of the final solution
serves as the said normalization constant. Adopting this approach
allows us to keep particle/path weights around the optimal levels.

While Booth and Hendricks [1984] compute the importance func-
tion solely by forward particle tracing, we follow Vorba et al. [2014]
and use interleaved particle tracing from both the camera and light
sources. This yields more reliable radiance or visual importance
estimates even in scenes with difficult visibility.

Go-with-the-winners. Szirmay-Kalos and Antal [2005] base RR
and splitting rate on efficiency analysis and use a heuristic vari-
ance approximation based on local material properties and scene-
dependent parameters. They introduced the term “go-with-the-
winners” to computer graphics that is often used in a general MC
context to refer to RR and splitting. Note that Grassberger [2002]
points out there is no fundamental difference between RR and
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Figure 2: By convention, the direction ωo is always aligned with
the direction of the transported quantity.

splitting as described by Kahn [1951; 1956] and the “go-with-
the-winners” strategy. The term was coined by Aldous and Vazi-
rani [1994] as a mean for population control in randomized opti-
mization algorithms.

3 Background

Light transport in a scene without participating media is described
by the rendering [Kajiya 1986] or, alternatively, by the visual im-
portance [Spanier and Gelbard 1969; Veach 1997, Sec. 3.7] trans-
port equations (see also the supplemental). In the following text,
we describe how the transport equations can be solved by particle
tracing.

Particle tracing. By tracing M visual importance particles from
the camera, we can estimate the pixel value I using the following
MC estimator [Veach 1997]:

〈I〉 =
1

M

∑
k

νi(yk, ωk)Le
o(yk, ωk). (1)

The above sum is updated when a particle k with its weight
νi(yk, ωk), coming from a direction ωk, collides at a location yk.
In fact, the particle contributes to the sum only when the self emit-
ted outgoing radiance Le

o(yk, ωk) is non-zero. Note that the above
estimator corresponds to unidirectional path tracing [Kajiya 1986]
without explicit connections to light sources (next event estima-
tion); extension to next event estimation is discussed in Sec. 5.4.

The particle weight is given by the product of the emitted visual im-
portance [Veach 1997, p. 91], and the bidirectional scattering distri-
bution functions (BSDFs) and geometric factors along the particle
path, divided by the probability density (pdf) of generating the path.
To describe the way in which the weight is updated during a colli-
sion at some surface point y, we distinguish between the incident
weight νi(y, ωi) just before the collision, the weight after applica-
tion of RR/splitting ν̂(y, ωi), and the outgoing weight νo(y, ωo),
just after the scattering. The last two are related by the weight up-
date formula

νo(y, ωo) = ν̂(y, ωi)
fs(y, ωo→ωi)|cos θo|

p(ωo|y)
, (2)

where p(ωo|y) is a directional pdf for sampling the scattering di-
rection ωo, fs denotes BSDF and the arrow notation in fs marks the
direction of light flow. The outgoing weight νo after one collision
then enters the next collision as its incoming weight νi. Extension
for participating media would include attenuation between y and
the next collision, which we leave for future work.

Let us emphasize that, throughout the paper, we use a convention,
depicted in Fig. 2, that ωo always points in the direction of the trans-
ported quantity. Thus Eq. (2) also holds for light tracing [Dutré and
Willems 1994] with the minor modification that the arguments of
the BSDF need to be swaped.

Russian roulette and splitting. To avoid sampling infinite par-
ticle paths, tracing of a particle can be terminated using Russian
Roulette: At any collision, the particle survives with a given prob-
ability Psurv > 0 and its weight is divided by Psurv to keep the esti-
mator unbiased. Similarly, the particle path can be split into n in-
dependent paths, and dividing the particle weight by n again keeps
the resulting estimator unbiased.

Various approaches have been proposed in computer graphics to de-
termine the survival probability or the splitting factor as discussed
in Sec. 1 and 2. An important contribution of this paper is an ap-
proach to Russian roulette and splitting where the survival proba-
bility and the splitting factor are determined in a manner that yields
significant variance reduction.



4 Adjoint-Driven RR and Splitting

In this section, we describe the theory behind our adjoint-driven
Russian roulette and splitting (ADRRS) approach to termination
and splitting along incrementally sampled paths. Practical render-
ing algorithms based on this approach are described in Sec. 5 and 6.
In Sec. 7, we show its variance reduction properties and also that
our approach is motivated by zero-variance sampling schemes.

4.1 Unified Russian Roulette and Splitting

In our approach to Russian roulette (RR) and splitting, we fol-
low previous work [Szirmay-Kalos and Antal 2005; Wagner and
Haghighat 1998; Booth and Hendricks 1984] and we base the re-
spective decisions on a single real value q > 0. We consider a par-
ticle that has just left a collision (or emitting) event at x, as shown
in Fig. 3. After sampling its outgoing direction ωx

o and determining
the position y of the next collision, we contribute the source radi-
ance/importance from y to the solution (Eq. (1) for path tracing).
Then, we determine q(y, ωi), as described in the next section, and
if q < 1 we play RR to randomly terminate the path with probabil-
ity 1 − q. Conversely, if q > 1, we split the path into q new paths.
(Details on dealing with non-integer q are given in Sec. 5.1.) To
compensate for termination or splitting at y, the incoming particle
weight νi is divided by q to obtain the weight ν̂ of each survived or
split particle:

ν̂(y, ωi) =
νi(y, ωi)

q(y, ωi)
. (3)

Each particle resulting from the collision at y is then traced using
the same procedure independently.

ADRRS
x

y

νi(y, ωi)

ν̂ (y, ωi)

νo(y, ωo)

≡

ωi

 ωo

νo(x, ωx
o )

ωx
o

Figure 3: After we have accounted for a particle’s contribution
from a collision at y, we apply our ADRRS to decide about the
particle’s termination/splitting. All potentially spawned particles at
y have weight ν̂(y, ωi) and are scattered and traced independently.

4.2 Determining the RR/Splitting Factor q

In our ADRRS, the RR/splitting factor q at y is directly propor-
tional to the total expected contribution E[c(y, ωi)] of the parti-
cle that collided at y to the computed measurement I (e.g. a pixel
value) [Wagner and Haghighat 1998; Booth and Hendricks 1984]:

q(y, ωi) =
E[c(y, ωi)]

I
=
νi(y, ωi)Ψ

r
o(y, ωi)

I
. (4)

For a path traced from a light source, the adjoint Ψ stands for the
visual importance W , while for a path traced from the camera, it
stands for radiance L. Here, we use only its reflected part Ψr =
Ψ − Ψe without the source term Ψe, because we are interested in
the expected contribution of the particle that is scattered at y.

The idea behind Eq. (4) is to compare E[c] to the true value of
the measurement I . We are likely to terminate particles that are not
expected to make a contribution larger than I . This, in turn, saves
resources for sampling particles with a more significant expected
contribution. In contrast, when E[c] exceeds the true measurement
value I , we split the particle path. This results in a better explo-
ration of the relevant regions of the path space, albeit at the expense
of some additional computational resources.

c(y, ωi)

yωi

transport
direction

Figure 4: Realizations of the path contribution variable c(y, ωi)
correspond to the different possible particle paths beyond y.

Particle contribution and its expected value. The particle con-
tribution c(y, ωi) is a random variable associated with a particle
that has reached the point y from the direction ωi and has the weight
νi(y, ωi). The variable is distributed over all possible realizations
of the particle path beyond y, as shown in Fig. 4. For example in
path tracing, the outcome of c for one such specific realization is
given by the particle’s contribution to the sum in the measurement
estimator in Eq. (1). Note that each particle sampled beyond y is
an unbiased estimate of Ψr

o(y, ωi). Thus the expected contribution
E[c(y, ωi)] is given by the product of the path weight νi and the
outgoing reflected adjoint Ψr

o.

4.3 Weight Invariant in ADRRS

We design our ADRRS so that it maintains the following invariant:

ν̂(y, ωi) =
I

Ψr
o(y, ωi)

, (5)

which holds for particle weight in a zero-variance (ZV)
scheme [Wagner and Haghighat 1998]. While this invariant arises
naturally under the ZV scheme (see the supplemental), our ADRRS
keeps it through termination and splitting. Our termination/splitting
rate q (Eq. (4)) follows directly from Eq. (5) and the weight up-
date formula after termination/splitting (Eq. (3)). Note that ADRRS
keeps this invariant with arbitrary emission and scattering probabil-
ities. This principle allows us to justify the importance sampling
properties of ADRRS in Sec. 7 through inspection of q.

5 Algorithm

In this section we develop a practical solution for incremental path
sampling (either from the camera or from the light sources) based
on our adjoint-driven Russian roulette and splitting (ADRRS), de-
scribed earlier. Evaluating the RR/splitting factor q according to
Eq. (4) requires knowing the final measurement I as well as the
value of the adjoint transport quantity Ψ everywhere in the scene,
none of which are readily available up front. Our solution builds on
an approximate estimate of those quantities obtained in a prepro-
cessing step, as described in Sec. 5.2 and 5.3. To make the resulting
algorithm robust to the inaccuracies of these estimates, we apply
the weight window facility as described next.

We conduct the following exposition in a general tenor that applies
to tracing paths in either direction. We recall that the adjoint Ψ
stands for the radiance L for a camera path (as in path tracing), and
for the visual importance W in the case of a path traced from the
light sources (as in light or photon tracing). Differences between
the two cases are pointed out when necessary.

5.1 Weight Window

The weight window is a classic technique from neutron transport
used to control particle weights through RR and splitting [Hoogen-
boom and Légrády 2005; Booth and Hendricks 1984]. In our algo-
rithm, it amends the ADRRS step shown in Fig. 3.

The weight window defines an interval of acceptable particle
weights 〈δ−, δ+〉 (see Fig. 5). A particle with a weight νi that enters



δ+

δ−

ν̂split

pass through

roulette

Figure 5: The weight window ensures – through selective RR or
splitting – that the weight of all particles that pass the window is
within the interval of acceptable weights 〈δ−, δ+〉.

a weight window may be terminated, pass unchanged, or be split.
In any case, the weight window ensures that the weight ν̂ of each
leaving particle stays within the window bounds, i.e. ν̂ ∈ 〈δ−, δ+〉.
If the weight of a particle entering the window is below the lower
bound, νi < δ−, we play Russian roulette with the survival proba-
bility q = νi/δ

−. If the particle survives, its new weight ν̂ is set to
νi/q = δ−. Particles entering the window with a weight inside the
bounds, νi ∈ 〈δ−, δ+〉, pass the window intact (i.e. ν̂ = νi). Fi-
nally, if νi > δ+, the particle is split into q = νi/δ

+ new particles,
each with a weight of ν̂ = νi/q = δ+.

If the particle is to be split into a non-integer number of new par-
ticles, we use an expected-value split approach [Booth 1985]. We
split the particle into n = bqc new particles with the probability
n + 1 − q, and into n + 1 particles otherwise. Irrespective of that
decision, each new particle is assigned a weight of ν̂ = νi/q. Al-
though this splitting strategy does not preserve the original weight
exactly, the total weight is still preserved in an expected-value sense
and thus the estimator stays unbiased.

Weight window bounds. To calculate the weight window bounds
for a particle incident from the direction ωi at y, we start by setting
the window center Cww = (δ− + δ+)/2 to the desired particle
weight given by Eq. (5),

Cww =
Ĩ

Ψ̃r
o(y, ωi)

. (6)

The measurement estimate Ĩ is invariant along the entire particle
path while the adjoint quantity estimate Ψ̃r

o(y, ωi) depends on the
scattering location y and the incoming direction ωi. Computation
of these two estimates is explained in Sec. 5.2 and 5.3.

Booth and Hendricks [1984] as well as Wagner and Haghighat
[1997] all suggest to set the window width as δ+ = sδ−, with
the ratio parameter s = 5. The formula for computing the weight
window lower bound then reads

δ− =
2Cww

1 + s
. (7)

s = 1 (i.e. disabled weight window) s = 5

Figure 6: Weight window increases robustness of our ADRRS. It
relaxes termination and splitting when the path weight is close
to the weight window center not to introduce additional noise. It
also compensates for imprecisions in the adjoint estimate (glossy
teapot). Left: Without weight window. Right: Our weight window
size. Images are rendered by light tracing in 30 minutes.

We have experimented with the parameter s and verified that per-
formance is not particularly sensitive to its value [Booth 2006].

A practical consequence of using weight window are more relaxed
RR and splitting decisions than those given by Eq. (4). As a result,
the algorithm is more robust to the inaccuracies of our measure-
ment and adjoint estimates. The weight window achieves this by
allowing some leeway on the particle weight before any RR/split-
ting action is taken (Fig. 6).

a) b)Let us emphasize that
weight window is differ-
ent from clamping of the
RR/splitting factor q to
a finite interval, which
we do apply on top of
the weight window out-
put. When RR is to be
played, we additionally
force the survival proba-
bility q to be above 0.1
(Fig. (b) on the right). Very small survival probabilities could oth-
erwise result in high variance in some cases due to the inaccuracies
in the measurement and adjoint estimates (Fig. (a)).

5.2 Adjoint Solution Estimate Ψ̃r
o(y, ωi)

To setup the weight window bounds at y, we need an estimate of
the outgoing reflected adjoint quantity Ψ̃r

o(y, ωi). One could use a
photon/importon density estimate but that would be neither accu-
rate nor fast enough. Alternatively, a solution similar to radiance
caching [Křivánek et al. 2005; Gassenbauer et al. 2009] could be
used that stores the spatial-directional distribution of the adjoint.
However, we have found that a simpler approach outlined below
and illustrated in Fig. 7 (a) provides fairly robust estimates without
having to store any directional information.

We obtain the outgoing adjoint at y from a pre-computed cache.
Instead of the full spatial-directional distribution of Ψi(y, ω), we
pre-compute and cache an estimate G̃(y) of the quantity

G(y) =

∫
Ψi(y, ω) cos θy dω, (8)

that corresponds to irradiance or diffuse visual importance. Here
θy is the angle between the direction ω and the surface normal at y.
An estimate of the reflected outgoing adjoint is then calculated as

Ψ̃r
o(y) =

κ(y)

π
G̃(y), (9)

where κ(y) is the total material reflectivity at y. We obtain G̃(y)
by querying a spatial cache at y.

x

y

x

y

(b)(a)

= maxΨ̃r
o {

ωi ωi

Ψ̃r
o(y)

Ψ̃r
o(y)

Ψ̃r
i (x, ωx

o)

ωx
o

Figure 7: Adjoint solution estimate in our basic ADRRS implemen-
tation (a) and when ADRRS is combined with path guiding (b).
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Figure 8: Measurement estimates Ĩ for two example scenes.

Pre-processing and caching. We base our pre-processing stage
on the iterative scheme proposed by Vorba et al. [2014], where
they interleave shooting particles from the camera and from light
sources for faster convergence. Our basic implementation differs
from Vorba et al. in that the traced particles are used to compute an
approximation to irradiance and diffuse visual importance, respec-
tively (i.e. G̃), rather than for fitting directional distributions. (A
more advanced implementation that uses Vorba et al.’s directional
distributions will be described in Sec. 6.)

We also adopt their spatial caching approach. When an estimate
of G̃ is not available we use kernel density estimation to compute a
new estimate from nearby particles (e.g. from photons when we cur-
rently trace from the camera). Each cached estimate has a validity
radius where the record can be reused. The radius is never allowed
to be larger than the furthest particle used for the estimation and the
caching scheme makes the cache denser in places of strong light
field changes. We refer the reader to the work of Vorba et al. [2014]
for a more detailed description of their caching scheme.

We refine G̃ in every iteration using progressive kernel density
estimation and at the same time, we estimate its relative error
(i.e. stddev(G̃)/G̃). Our ADRRS is applied at a collision only if
the relative error of the associated cache record is below a thresh-
old value of 30%. Otherwise we use a large weight window with
the globally-fixed size as described by Vorba et al. [2014] and in
Sec. 6. Note that unlike bidirectional path tracing [Veach 1997] or
vertex connection and merging [Georgiev et al. 2012; Hachisuka
et al. 2012] we do not construct a combined estimator to compute
G̃ and rather keep our implementation simple. To achieve smoother
estimates of G̃ we average it over nearby cached estimates.

5.3 Measurement Estimate Ĩ

When calculating the weight window center using Eq. (6),
Booth [1984] recommends, instead of Ĩ , using a normalization con-
stant so that the particle weight is exactly in the weight window cen-
ter after the first collision. We adopt a more principled approach due
to Wagner and Haghighat [1997], where they use an approximation
Ĩ of the measurement I that we eventually strive to calculate. In
this way, the particle weights ν̂(y, ωi) oscillate around the ideal
value I/Ψr

o(y, ωi), which is motivated by the zero-variance theory,
as discussed in Sec. 7.

In our implementation, the actual meaning of Ĩ depends on the di-
rection of path sampling. For paths from the camera (path tracing),
we set Ĩ to be an estimate of the pixel value that the respective path
passes through. We compute the pixel value from the pre-computed

irradiance cache (Sec. 5.2) using four jittered primary rays. We
query the cache immediately on diffuse and glossy surfaces while
continuing the path on purely specular surfaces. If no non-specular
surface is hit within ten bounces, we treat the surface of the 10th
bounce as diffuse and query the irradiance cache. Fig. 8 shows the
resulting estimates for two example scenes.

For paths from light sources (light or photon tracing), we set Ĩ to
the average pixel value estimated as above, over the entire image.
We use this approach because we do not know up front which pixel
the path would contribute to. While this heuristic has worked well
in our tests, a thorough analysis of ADRRS when calculating sev-
eral measurements (i.e. pixel values) simultaneously would be an
interesting avenue for future work.

5.4 Path Sampling Algorithm

Algorithm 1 shows simplified pseudocode for processing a colli-
sion in our path sampling algorithm. The procedure receives the
previous and the current collision locations x and y respectively,
the incident direction ωi at y, and the incident particle weight νi.
Its steps should be self-explanatory. Below we discuss some addi-
tional details of the full path sampling algorithm.

First collision. When tracing a particle from the camera, we ini-
tialize the RR/splitting factor q to 1 at the first collision so no RR or
splitting is carried out there. In Fig. 3, x is the camera vertex and y
corresponds to the first collision. Applying our ADRRS in this case
would only serve to compensate the variations of the light contribu-
tion within one pixel, which are usually small. On the other hand,
when tracing particles form light sources, we initialize q according
to our algorithm right at the first collision, so RR/splitting can take
place there. (In this case, in Fig. 3, x is a light source vertex.)

Tree pruning. To avoid overly bushy ray trees due to splitting,
we impose a maximum splitting factor at each collision to 100. In
addition, we limit the size of the entire ray tree by the following
heuristic. We associate a number scount with every event along a
path which conservatively estimates the total number of rays in the
tree. We initialize scount to 1 and we multiply it at every collision
by the splitting factor determined at that event. We disable splitting
once scount > 1000.

Next-event estimation. So far, we have only discussed unidirec-
tional path or light tracing algorithms, but our ADRRS naturally
extends to using next-event estimation (i.e. explicit connections to
light sources or the camera). A theoretical justification is based on
the idea of replacing self-emission, Le

o or W e
o , by the sources of

first-scattering events (e.g. direct illumination on surfaces serves as
the new emission term). All the derivations can then be carried out
with those re-defined source terms as before [Hoogenboom 2008].
In practice, we do the following. Suppose we have reached a scat-
tering event at y and determined the integer splitting factor of n. At
this point, we in fact draw n pairs of sample rays, one ray in each
pair by sampling a scattering direction ωo and another by explicit
light source or sensor sampling. The direct illumination contribu-
tions of these rays are then combined using multiple importance
sampling [Veach 1997].

6 Combining ADRRS with Path Guiding

In this section we combine our ADRRS with path guiding meth-
ods based on adjoint-driven importance sampling of scattering di-
rections [Vorba et al. 2014; Bashford-Rogers et al. 2012; Hey and
Purgathofer 2002; Jensen 1995]. We show on the method of Vorba
et al. that ADRRS works in synergy with path guiding and the com-
bination leads to superior results than either method alone.



Algorithm 1 Pseudocode showing the ADRRS-related steps in pro-
cessing a collision event along an incrementally constructed path.

1: procedure HANDLECOLLISION(x,y, ωi, νi)
2: // x . . . previous collision location, y . . . current collision location
3: // ωi . . . incident direction at y, νi . . . particle weight
4: CONTRIBUTE(y, ωi, νi) // Eq. (1)
5: G̃ := LOOKUPCACHE(y) // Sec. 5.2
6: Ψ̃r

o := CALCADJOINT(G̃, x, y, ωi) // Eq. (9) or (11)
7: 〈δ−, δ+〉 := CALCWWBOUNDS(Ψ̃r

o, Ĩ) // Eqns. (6) and (7)
8: [n, ν̂] := APPLYWW(νi, 〈δ−, δ+〉) // Sec. 5.1
9: for j = 1 . . . n do

10: ωo := SAMPLEDIR(y)
11: νo := UPDATEWEIGHT(ν̂, ωi, ωo) // Eq. (2)
12: z := INTERSECT(y, ωo)
13: HANDLECOLLISION(y, z, −ωo, νo) // Recurse to next event
14: end for
15: end procedure

Motivation. Vorba et al. [2014] observed that the classic RR, based
only on particle weights, is adverse to path guiding in scenes with
difficult visibility. The reason is that a particle guided towards a
high-contribution region may be terminated before being able to
reach it. In fact, aggressive RR may offset the advantages of path
guiding entirely, and just add overhead.

To address this problem, Vorba et al. employ RR with very low
threshold δ− = 10−6 on relative change of weight, leading to
vastly increased average path length. Such an approach is not satis-
factory because effort is wasted on sampling long paths in unimpor-
tant regions (see Fig. 10), while other paths may still be terminated
prematurely. In addition to RR, they apply splitting if the particle
weight exceeds two times its original value. Effectively, they use a
globally fixed weight window with an extensive size of s = 2×106.

Our approach. We address the above problem by using our
ADRRS, which allows us to sample close-to-optimal path lengths
without any adverse effects on path guiding. Moreover, ADRRS
effectively improves the quality of path space importance sampling
over baseline path guiding, as discussed in Sec. 7.1 and shown in
Figs. 10 and 13. We base our implementation on the on-line learn-
ing algorithm of Vorba et al. [2014]. We pre-compute and cache the
diffuse quantity G̃ (Sec. 5.2) together with Vorba et al.’s directional
sampling distributions. ADRRS is applied both in the training and
the rendering stages. As opposed to the basic approach from Sec. 5,
the scattering directions ωo are sampled from the pre-computed di-
rectional distributions as in Vorba et al.’s work. Furthermore, we ex-
ploit the cached directional distributions to obtain more accurate es-
timates of the adjoint, which substantially improves the robustness
of our method, especially in scenes with glossy materials (Fig. 9).

Adjoint from directional distribution. We use the cached direc-
tional distribution p̃(ω|x) at x to estimate the incoming adjoint at
x reflected from y, that does not involve the source illumination
from y, as

Ψ̃r
i (x, ω

x
o) =

p̃(ωx
o |x)G̃(x)

cos θx
−Ψe

o(y, ωi). (10)

This equation follows from the fact that the directional distribu-
tion is designed such that p̃(ωx

o |x) ∝ Ψi(x, ω
x
o) cos θx with G̃(x)

(Eq. (8)) being the normalization factor [Vorba et al. 2014].

In practice, we obtain the final adjoint estimate as shown in Fig. 7
(b):

Ψ̃r
o(y, ωi) = max

{
Ψ̃r

o(y)︸ ︷︷ ︸
Eq. (9)

, Ψ̃r
i (x, ω

x
o)︸ ︷︷ ︸

Eq. (10)

}
. (11)

Eq. (11) Eq. (9)

Figure 9: A glossy surface with (middle) and without (right) the
conservative adjoint estimate given by Eq. (11). Both insets were
rendered at 64 samples per pixel.

This conservative estimate produces a lower weight window cen-
ter and thus lower termination rates, which eliminates some high-
frequency noise otherwise appearing in certain scenarios especially
in the presence of glossy materials (Fig. 9).

7 ADRRS and Zero-Variance Schemes

It has been known for a long time in neutron transport [Kalos 1963],
and recently pointed out in computer graphics [Křivánek and d’Eon
2014; Xu et al. 2001], that particle paths can be constructed such
that the estimator in Eq. (1) has zero variance (ZV). In other words,
the solution can be found with only one particle path. While this
cannot be achieved without knowing the computed solution in ad-
vance, zero-variance schemes are an invaluable tool for studying
and designing variance reduction techniques.

Recall from Sec. 4.3 that the termination/splitting rate q in ADRRS
is designed to keep the same principle (Eq. (5)) that governs particle
weight in the ZV scheme. In this section, we study the importance
sampling properties of ADRRS through the inspection of q.

7.1 Zero Variance, Importance Sampling, and ADRRS

To study importance sampling properties of ADRRS and its rela-
tion to ZV schemes, we derive, in the supplemental document, the
following equation for the RR/splitting rate q at a collision y:

q(y, ωi) =
pzv(ω

x
o |x)

p(ωx
o |x)

. (12)

x yωi ωx
i

ωx
o

That is to say, the RR/splitting rate
at y is given by the ratio of the zero-
variance pdf to the actually used pdf
for sampling the scattering direction
ωx
o at the preceding vertex x. The pdf pzv(ω|x) that ensures ZV

estimation (see the supplemental document) is proportional to the
product of the cosine-weighted BSDF lobe and the directional
distribution of the adjoint quantity incident at x: pzv(ω|x) ∝
Ψi(x, ω)f+

s (x, ωx
i →ω)|cos θx|. Here, we use ωx

i to denote the in-
cident direction at x. Note that f+

s (·, ωx
i →ω

x
o) = fs(·, ωx

i →ω
x
o)

for light tracing while f+
s (·, ωx

i →ω
x
o) = fs(·, ωx

o→ω
x
i ) for path

tracing. To simplify the following discussion, we assume, with no
bearing on our results, that y is not on a source or sensor; general
form of Eq. (12) is presented in the supplemental document.

Interestingly, Eq. (12), which is derived for infinitesimal weight
window (i.e. s = 1 in Eq. (6)), shows that q takes the same form
at any collision irrespective of any previous collisions before x (i.e.
there is no weight term νi of a particle incident at x). We can thus
limit ourselves to discussing the effect of ADRRS on the variance
of a local estimator of the (hemi)spherical integral at x.



x

split roulette

pzv(ω|x)
p(ω|x)

RR and splitting as importance
sampling. Suppose we have drawn
the scattering direction ωx

o from
a general pdf p(ω|x). Eq. (12)
states that the factor q is deter-
mined by comparing the pdf value
for the sampled direction to the pdf
value pzv(ω

x
o |x) dictated by the ZV

scheme. We keep samples untouched in those parts of the
(hemi)sphere where p(ωx

o |x) = pzv(ω
x
o |x), we split where our

sampling rate is too low, i.e. p(ωx
o |x) < pzv(ω

x
o |x), while we ran-

domly terminate where we place too many samples, i.e. p(ωx
o |x) >

pzv(ω
x
o |x).

Residual variance. In the case of RR, the above procedure is
equivalent to rejection sampling, where p(ω|x) serves as the pro-
posal density and pzv(ω|x) is the target density. However, split-
ting cannot reduce any variance introduced due to sampling from
p(ω|x) (as opposed to the ideal pdf pzv(ω|x)) because splitting
only occurs at the next collision event y. Only variance from sub-
sequent bounces can be reduced. It is therefore not effective when
most of the variance is gained through the use of an inappropriate
scattering pdf at x. An example is shown and discussed in Sec. 8.
Booth [2012] provides further discussion of this limitation.

Zero-variance sampling. By using ADRRS on top of a ZV
scheme (i.e. when p(ω|x) = pzv(ω|x) for all ω), we still obtain
a ZV estimator because q becomes qzv, the ZV termination rate
(see the supplemental document). In other words, it follows from
Eq. (12) that q = 1 when y is not on a light source or sensor and
thus no termination or splitting takes place which is inline with the
ZV scheme. However, there is a clear difference between direct
sampling from pzv(ω|x) in the ZV scheme and ADRRS, where we
can sample from an arbitrary p(ω|x). While the former has zero
variance, i.e. it solves the integral with a single sample, ADRRS
only strives for variance reduction through RR-implied rejection
and splitting at y.

Path guiding methods. Path guiding methods strive to sample
scattering directions from a pdf p(ω) that closely approximates
the ZV pdf pzv(ω) [Vorba et al. 2014; Hey and Purgathofer 2002;
Jensen 1995]. Path guiding and ADRRS work in synergy to approx-
imate the optimal ZV scheme even more closely. To see why, recall
the rejection sampling interpretation of ADRRS. On one hand, the
better the path guiding distribution (i.e. the closer the proposal pdf
p(ω) to the target ZV pdf pzv(ω)), the less work for RR and split-
ting. On the other hand, should the path guiding distribution p(ω)
fail to approximate the ZV pdf pzv(ω) closely enough, our ADRRS
still steps in to improve the effective particle distribution.

RMSE:  2.05x10-2 RMSE:  1.92x10-2RMSE:  3.37x10-2

Our ADRRS + Path guidingPlainPath guiding

Figure 10: Path guiding (PG) of Vorba et al. [2014] (left) applied
in Progressive Photon Mapping (PPM) does not match the effi-
ciency of plain PPM (middle) due to its overhead coming mainly
from sampling long paths. PPM with our ADRRS and PG (right)
achieves superior results than plain PPM even in this simple scene.
All images took 5 minutes to render (including the training time).

8 Results

Here, we experimentally validate the theoretical outcomes of Sec. 7.
Results in Fig. 13 confirm the strong variance reduction capabili-
ties of our adjoint-driven Russian roulette and splitting (ADRRS)
in path tracing (PT) and light tracing (LT). Additionally, we
show the results of the combination of ADRRS with path guid-
ing (PG) [Vorba et al. 2014], which yields a practical and efficient
algorithm capable of rendering complex scenes with difficult visi-
bility. Interestingly, this combination is beneficial even in simple
scenes where the overhead of path guiding, coming from excessive
path lengths, would offsets its advantages if used without ADRRS
(Fig. 10). We encourage the reader to view the supplemental ma-
terial for all our results rendered with PT, LT and also progressive
photon mapping (PPM) [Hachisuka et al. 2008].

Setup. All images in Fig. 13 were rendered for 1 hour on an Intel
Core i7-2600K CPU using 8 logical cores. Our implementation is
based on the Mitsuba renderer [Jakob 2010] and the path guiding
code of Vorba et al. [2014]. We set the maximum path length to 40
bounces. The ‘plain’ light and path tracing algorithms use classic
albedo-based RR from the fifth bounce on, and no splitting.

We include the pre-computation time in the reported total time of
all our results. The pre-computation times of PG and our ADRRS
with path guiding (ADRRS + PG) are listed in Table 1. Results
rendered with our ADRRS-only use the same pre-computation as
ADRRS + PG to achieve the same quality of cached irradiance/vi-
sual importance. This allows us to compare the effect of adding PG
on top of ADRRS. Unlike ADRRS + PG, the PG-only results do
not use our ADRRS in the training stage.

ADRRS + PG PG
Crytek sponza 150s 114s
Veach door 222s 192s
Living room 462s 426s
Classroom 588s 462s

Table 1: Training times of ADRRS + PG and PG-only.

Scenes. We adopt three scenes from the work of Vorba et
al. [2014], namely Living room, Veach door and Classroom, with-
out any change. Our fourth scene is the Crytek Sponza [2010].
Common to all the scenes is complex visibility with many regions
lit only by high-order indirect illumination.

In the Crytek Sponza scene with mainly diffuse materials, the sun-
light enters the atrium and indirectly illuminates most of the shot.
Our ADRRS alone achieves substantial variance reduction in com-
parison to standard path and light tracing. Using path guiding on
top of our ADRRS (ADRRS+PG) yields superior result without any
of the spike noise present in path guiding alone.

All the illumination in the Veach door scene enters through the
door ajar from the back room. We use Vorba et al.’s version of the
scene, which differs from that of Lehtinen et al. [2013] in that the
light source size is roughly 250× smaller. This makes the Vorba
et al.’s scene more realistic – and substantially more challenging
(see Fig. 11). In PT, our ADRRS + PG combination significantly
reduces the spike noise produced by path guiding alone. However,
unlike in the Crytek Sponza scene, some of this noise still remains.
This is due to the combination of the small light source and spec-
ular reflections on the floor, which effectively disqualifies any next
event estimation. When a path guiding distribution on a wall fails to
accurately target the caustic-like illumination due to specular light
source reflection on the floor, ADRRS cannot remedy the situation
by splitting that is decided on the wall (vertex x in Fig. 3). This
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Figure 11: Two versions of the Veach Door scene. We rendered 40
light bounces by plain path tracing (left) and path tracing with our
ADRRS and path guiding (right). The Vorba et al. version (top) is
more challenging than the version of Lehtinen et al. (bottom): its
250× smaller light source is responsible for the spiky noise.

is because physical splitting on the specular reflection on the floor
(vertex y) is ineffective (see “Residual Variance” in Sec. 7.1)

Illumination in both the Living room and Classroom scenes is sim-
ilar. The Sun is shining through window glass covered by curtains
and jalousies respectively, and large parts of the scenes are lit by
light after many bounces. While in LT, our ADDRS alone provides
excellent results, the results in PT expose the ADRRS limitations
discussed in Sec. 7.1. Referring back to the rejection sampling
interpretation of ADRRS, the proposal distribution could be the
floor BRDF, while the target zero-variance distribution is close to
a delta-distribution as it encompasses the sunlight passing through
the window-panes. ADRRS cannot reduce variance in this case be-
cause the physical split can only occur on the glass (vertex y in
Fig. 3), where it would be ineffective. Nevertheless, the combina-
tion of our ADRRS with path guiding addresses the problem and
yields superior results.

Effect of RR and splitting. We show separately the effect of our
adjoint-driven RR (ADRR) and adjoint-driven splitting in Fig. 12.
We rendered the Crytek Sponza scene for 20 minutes with a guided
path tracer (a), guided path tracer with our ADRR (no splitting)
(b), and guided path tracer with full ADRRS (c). The variance re-
duction in (b) stems from sampling nearly optimal path lengths by
our ADRR. The splitting in (c) significantly improves sampling of
regions where light is transported through several bounces.

Our ADRRS + PG (20 minutes)
Path guiding

 Our ADRRS 
+ PG

Our ADRR + PG
(no splitting)

Figure 12: Our adjoint-driven RR without splitting (middle) in
guided path tracing reduces variance of guided path tracing (left).
Application of splitting (right) provides a substantial additional
variance reduction in regions reached by light after several events.

9 Limitation, Discussion, and Future Work

Inaccurate adjoint and measurement estimates. Grossly in-
accurate adjoint or measurement estimates can produce increased
variance, as in the top right image in Fig. 11 under the table. This
can happen for example due to light leaks well-known from photon
mapping, such as those visible in Fig. 8. This limitation is common
to all variance reduction techniques based on estimated quantities,
and in practice it can be alleviated by adaptive image sampling.

Efficiency-driven RR and splitting. While the close relation of
our ADRRS to zero-variance path sampling schemes provides a
solid justification of its variance reduction properties, nothing in
the theory suggests that ADRRS would be optimal with respect to
efficiency. As such, an efficiency-driven RR and splitting is an im-
portant avenue for future research.

Splitting and combined estimators. We have shown that splitting
is an effective variance reduction tool in unidirectional path sam-
pling algorithms. It would be interesting to extend its use to bidirec-
tional algorithms based on combining various estimators [Křivánek
et al. 2014a; Georgiev et al. 2012; Hachisuka et al. 2012]. A chal-
lenge associated with this idea would be the development of proper
combination weights that would respect the correlation of split
paths due to their common shared prefix [Popov et al. 2015].

Participating media. When simulating transport in media, parti-
cles typically undergo many more events than on surfaces before
making an image contribution. At the same time, whenever a light
source or the camera is inside a medium, there can be tremendous
variation of the respective adjoint quantity. For those reasons, it is
likely that extending our method to participating media would result
in a substantially greater increase in efficiency than on surfaces.

10 Conclusion

We have introduced an approach for selective path termination and
splitting that we call adjoint-driven Russian roulette and splitting
(ADRRS). The termination and splitting decisions are driven by
a pre-computed estimate of the adjoint transport quantity so that
a significant variance reduction is achieved. We have provided a
theoretical justification of the variance reduction properties – and
its limits – by juxtaposing ADRRS to a zero-variance path sam-
pling scheme. To make the method practical and robust, we have
introduced the idea of adaptive weight window from the neutron
transport field. We have shown that our ADRRS complements the
directional importance sampling techniques (path guiding) and to-
gether they result in robust and efficient simulations even in fairly
simple unidirectional methods such as path and light tracing. These
are easier to implement than combined path integral estimators such
as bidirectional path tracing [Veach 1997] or vertex connection and
merging [Georgiev et al. 2012; Hachisuka et al. 2012] and are fa-
vored in practice for their easy combination with a broad scale of
production features.
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Figure 13: We render four scenes dominated by indirect lighting for 1 hour. Results in the figure come from path and light tracing, respectively,
with albedo-based RR applied from the fifth bounce on (Plain), our ADRRS, path guiding alone (PG), and our ADRRS with PG. Our ADRRS
achieves substantial variance reduction over the albedo-based RR (Plain). Superior results are achieved by complementing our ADRRS with
path guiding. The training time is included in the reported 1 hour. Complete images are shown in the suppelemental material.
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AND CANADA, J. 2014. Recent advances in light transport sim-
ulation: Some theory and a lot of practice. In ACM SIGGRAPH
2014 Courses, ACM, New York, NY, USA, SIGGRAPH ’14.
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