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• we have heard earlier: need to consider all decisions 

along a path together to work really well

• radiance, BSDF, distance, RR, ..

• NEE works well and is advancing (guided, too!)

• no need to learn this twice!

• 1) all aspects: work with full paths?

• 2) working well except in which area?

Motivation
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Motivation

• Path tracing can efficiently handle the majority of rendering 

problems in practice (see path tracing course Wednesday)
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Motivation

• What about the rest?



99

Motivation

• What about the rest?
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Difficult light transport

outliers

10

Motivation

Unproblematic

light transport
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Motivation

Unproblematic

light transport

(unguided sampling)

Difficult light transport 

(guided sampling)
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• we've seen many approaches today:

• guided NEE (by Alex and Jaroslav)

• 2D marginalised guiding caches (by Jirka and Thomas)

• extensions to products/BSDF (by Sebastian)

• main difference: low dimensional!

Related methods
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• indirect lighting

• conclusion: can augment marginal caches, but why 

discard data in the first place?

Example: marginal vs. high dimensional

reflect or 

transmit?
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Path Integral

𝐼 = ∫𝒫𝑓(𝑋)𝑑𝑋
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Monte Carlo Integration

𝐼 ≈
1

𝑁
∑
𝑖=1

𝑁 𝑓(𝑋𝑖)

𝑝(𝑋𝑖)
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𝑝𝑢
16

Illustration in 1D

• Importance sampling?

𝑓

𝑝
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Guided Sampling in 1D

• Create samples 𝑋𝑖 ∼ 𝑝𝑢

𝑓

𝑝𝑢
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Guided Sampling in 1D

• Keep outliers

𝑓

𝑝𝑢
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Guided Sampling in 1D

𝑓

𝑝𝑢

• Place a Gaussian around each outlier
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Guided Sampling in 1D

• Define guided PDF as sum over all Gaussians 

𝑓

𝑝𝑢
𝑝𝑔
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Guided Sampling in 1D

• Iterate by sampling 𝑝𝑢and 𝑝𝑔

𝑓

𝑝𝑢
𝑝𝑔
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Guided Sampling in 1D

• Keep outliers wrt. 𝑝𝑢 and 𝑝𝑔

𝑓

𝑝𝑢
𝑝𝑔
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Guided Sampling in 1D

• Update 𝑝𝑔

𝑓

𝑝𝑢
𝑝𝑔
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Overview

• In each iteration, sample paths from 𝑝𝑢 and 𝑝𝑔
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• Keep outliers with highest contribution

25

Overview
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• Add paths to the set of guide paths

• Compute Gaussians using neighbourhood 

information

Overview
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• Guided sampling:

• Choose guide path randomly and

• Sample Gaussians incrementally

Overview

• Guided and unguided 

sampling combined 

with multiple 

importance sampling
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Guiding Behaviour

Reference
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Path tracing

29

Guided path tracing

Guiding Behaviour
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Reference

Guiding Behaviour
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Guiding Behaviour

Guided path tracingPath tracing
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• how to derive a good sampling density 

around a guide path?

Guiding PDF
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Path Correlation

Specular/glossy Rough/diffuse
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• Compute Gaussians for sampling using 

nearest neighbours

34

Gaussians

Guide path

Nearest neighbours
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• Compute Gaussians for sampling using 

nearest neighbours

35

Gaussians

𝑥

Guide path

Nearest neighbours

New path
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Gaussians

𝑥

Guide path

Nearest neighbours

New path

• Sample 3D Gaussian at next vertex?
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• Sample 3D Gaussian at next vertex?

37

Gaussians

𝑥

Guide path

Nearest neighbours

New path
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• Compute 6D covariance matrix for path 

segments

38

Guide path

Nearest neighbours

New path
𝑥

Gaussians
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• Compute 6D covariance matrix for path 

segments

• And conditional Gaussian using 𝑥

39

Gaussians

Guide path

Nearest neighbours

New path
𝑥
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• Compute 6D covariance matrix for path 

segments

• And conditional Gaussian using 𝑥

40

Gaussians

Guide path

Nearest neighbours

New path
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• Compute 6D covariance matrix for path 

segments

• And conditional Gaussian using 𝑥

41

Gaussians

Guide path

Nearest neighbours

New path
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Sampling next vertex

Next vertex in volume Next vertex on surface

Sampling

of

Gaussian

Sampling

of

BSDF
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Next vertex in volume Next vertex on surface

Sampling

of

Gaussian

Sampling
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BSDF



44

44

Sampling next vertex

Next vertex in volume Next vertex on surface

Sampling

of

Gaussian

Sampling

of

BSDF



45

45

Sampling next vertex
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Sampling next vertex

Next vertex in volume Next vertex on surface

Sampling

of

Gaussian

Sampling

of

BSDF
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• Many guide paths could sample the same path X

• We have to sum up all individual probability 

densities

• For fast evaluation, we truncate

Gaussians (≈ 3𝜎)

• Acceleration structure for fast pruning

47

Guided PDF

Guide paths 

Path

𝑋𝑙

𝑋
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• add incrementally, but how to pick?

What is a good guide path?
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Selecting Guide Paths

• Outliers ≠ samples with high contribution 𝐶 = 𝑓/𝑝

• Outliers classification: Density based outlier rejection      

(DBOR, Zirr et al. [2018])
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Selecting Guide Paths

• DBOR: DeCoro et al. [2010] / Zirr et al. [2018]

• Framebuffer cascade with histogram 

• Samples split according to throughput

• bad sampling? count nearest neighbours

𝐶 ∈ [0,81] 𝐶 ∈ [81,82 ] 𝐶 ∈ [82,83 ] 𝐶 ∈ [83, ∞)
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Pool DBOR Cascade
path tracing

guided path tracing
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• collect candidate outliers for every iteration/thread

• accept a fixed number of new guide paths every 

iteration

• pick the largest contributions (biggest effect on rMSE)

Selecting Guide Paths
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• combine guided and unguided sampling

Constructing a full estimator
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• Balance heuristic:

𝑝 𝑋 = 𝑢 ⋅ 𝑝𝑢 𝑋 + 1 − 𝑢 ⋅ 𝑝𝑔(𝑋)

𝐼(𝑋) =
𝑓(𝑋)

𝑝(𝑋)

• 𝑢: ratio of sampling unguided paths

• what if this combination still doesn't cover full path 

space efficiently?

Multiple importance sampling
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• Outliers contribute fully to the image

• We remove outliers with DBOR to get clean images 
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Remaining outliers

Outliers

removed
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Pool

Reference
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PTPath tracing

Pool - 30min
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PT Guided PTGuided path tracing

Pool - 30min

104k guide paths (≈310MB)
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PT Guided PT

Guided PT+DBOR

Guided path tracing + DBOR

Pool - 30min

104k guide paths (≈310MB)
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PT guided PT

PT + DBOR guided PT+DBOR

Path tracing + DBOR

Pool - 30min
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Dragon

Reference



62

62

PTPath tracing

Dragon - 10h
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PT Guided PTGuided path tracing

Dragon - 10h

69k guide paths (≈207MB)
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PT Guided PT

Guided PT+DBOR

Guided path tracing + DBOR

Dragon - 10h

69k guide paths (≈207MB)
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PT Guided PT

PT + DBOR Guided PT+DBOR

Path tracing + DBOR

Dragon - 10h
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Limitations & Future Work

• When every path is an outlier, no path is an outlier 

• Impossible to cover all of path space with guide paths

path tracing guided path tracing

7921spp, RMSE 0.75 4405spp, RMSE 1.30
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• Works only in principle. Sebastian's method is better here!

Dense scattering media?
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Limitations & Future Work

• Temporal stability is challenging
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Limitations & Future Work

• Temporal stability is challenging

• Improvement: Resample guide paths from previous frame

independent guide path cache resampled guide path cache
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• Data driven path sampling with local exploration 

behaviour

• Path construction using information of multiple 

existing paths

• Other Monte Carlo samplers possible as the 

unguided sampler

• Similarities to Sequential Monte Carlo

• Guide paths could be hand picked (artist) or from 

Markov Chain without detailed balance 70

Conclusion



© 2019 SIGGRAPH. ALL RIGHTS RESERVED.

THANK YOU!


