

Volumetric Zero-Variance-Based Path Guiding

Sebastian Herholz¹ Derek Nowrouzezahrai ² Yangyang Zhao² Hendrik P. A. Lensch¹

Oskar Elek³ Jaroslav Křivánek³

¹University of Tübingen

²McGill University Montreal

³Charles University Prague

MOTIVATION

MOTIVATION

- A correct physically-based simulation of volumetric effects is crucial for rendering realistic scenes
- In the recent years, brute-force path tracing these effects started to become applicable in production environments ([Fong2017], [Novak2018])
- Increased complexity of the light transport makes it still challenging

1

10 min

Guiding (Our)

10 min

• The variance is defined by how well we can generate random paths proportional to the volumetric light transport:

$$\sigma^2 = V\left[\frac{f(X)}{p(X)}\right]$$

 If the PDF for all paths is proportional to the light transport function we would get a perfect **zero-variance** estimator:

$$\sigma^2 = V\left[\frac{f(X)}{p^{zv}(X)}\right] = 0$$

THE 4 SAMPLING DECISIONS:

1. Scatter: $P_m(x_j, \omega_j)$

3. Direction: $p_{\omega}(\omega_{j+1}|\mathbf{x}_{j+1},\omega_j)$

2. Distance: $p_d(d_{j+1}|\mathbf{x}_j, \omega_j)$

4. Termination: $P_{RR}(x_j, \omega_{j-1})$

VOLUME RENDERING EQUATION

• Incident radiance (volume):

$$L(x, \omega) = T(\dots) \cdot L_o(\dots) + \int T(\dots) \cdot \sigma_s(\dots) \cdot L_i(\dots) dd$$

Surface contribution Volume contribution

• In-scattered radiance:

$$L_i(\dots) = \int f(\dots) \cdot L(\dots) \mathrm{d}\omega'$$

VOLUME RENDERING EQUATION

• Incident radiance (volume): Transmittance $L(x, \omega) = T(...) \cdot L_o(...) + \int T(...) \cdot \sigma_s(...) \cdot L_i(...) dd$

Known Local Quantities

• In-scattered radiance:

$$L_i(...) = \int \underbrace{f(...)}_{\uparrow} L(...) d\omega'$$
Phase function

~

VOLUME RENDERING EQUATION

Unknown Light Transport Quantities

• In-scattered radiance:

$$L_i(\dots) = \int f(\dots) \cdot L(\dots) d\omega'$$

incident radiance

STANDARD SAMPLING

1+2 Scatter and Distance:

• Based on the transmittance

3 Direction:

• Based on the phase function

STANDARD SAMPLING

4 Termination:

• Based on local albedo or throughput

CHALLENGES FOR VOLUME SAMPLING

Why do we need volumetric path guiding?

- Light shafts:
 - We need to scatter inside the light shaft.

- Light shafts:
 - We need to scatter inside the light shaft.
 - We need to follow the direction of the light shaft.

- Light shafts:
 - We need to scatter inside the light shaft.
 - We need to follow the direction of the light shaft.
 - We need to scatter towards the light shaft.

Our guiding (1024 spp)

No guiding (1024 spp)

SUB-SURFACE-SCATTERING

- Sub-Surface-Scattering:
 - We 'often' need stay close to the surface

SUB-SURFACE-SCATTERING

- Sub-Surface-Scattering:
 - We 'often' need to stay close to the surface
 - We need to leave the object with the right direction

No guiding (256 spp)

Our guiding (256 spp)

- Dense media (back illuminated):
 - We may need to 'avoid' generating a scattering event even if the transmittance is low (e.g. strong light source behind the volume).

Our guiding (256 spp)

No guiding (256 spp)

- Non-dense media (no back illumination):
 - We may need to '**force**' a scattering event even if the transmittance is high.

Our guiding (256 spp)

No guiding (256 spp)

SPECIALIZED SOLUTIONS: SHORTCOMINGS

- Many individual solutions:
 - Equiangular Sampling:
 - Joint-Importance Sampling:
 - Zero-Variance Dwivedi Sampling:
 - Directional (illumination-based) guiding:
- Only considering sub-sets or special cases:
 - Surface-bounded volumes
 - Homogenous or isotropic volumes
 - Single scattering
- None of the current methods importance samples the full volumetric light transport!

(a) Path traced light transport in clouds

(a) Distance Sampling

(b) Equi-angular Sampling

SPECIALIZED SOLUTIONS: SHORTCOMINGS

- Many individual solutions:
 - Equiangular Sampling:
 - Joint-Importance Sampling:
 - Zero-Variance Dwivedi Sampling:
 - Directional (illumination-based) guiding:
- Only considering sub-sets or special cases:
 - Surface-bounded volumes
 - Homogenous or isotropic volumes
 - Single scattering
- None of the current methods importance samples the full volumetric light transport!

(a) Path traced light transport in clouds

(b) Equi-angular Sampling

SPECIALIZED SOLUTIONS: SHORTCOMINGS

- Many individual solutions:
 - Equiangular Sampling:
 - Joint-Importance Sampling:
 - Zero-Variance Dwivedi Sampling:
 - Directional (illumination-based) guiding:
- Only considering sub-sets or special cases:
 - Surface-bounded volumes
 - Homogenous or isotropic volumes
 - Single scattering
- None of the current methods importance samples the full volumetric light transport!

(a) Path traced light transport in clouds

(b) Equi-angular Sampling

ZERO-VARIANCE-BASED VOLUMETRIC PATH GUIDING

TECH TALK: TUE: 30TH JULY TIME: 9:00 AM ROOM: 152

Extend the concept to volumes

31

- Consider the complete volumetric light transport:
 - No prior assumptions or special cases
 - Guide based on the **optimal** zero-variance decisions
- Replace unknown quantities by estimates:

Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding

$$L(\mathbf{x},\omega) = \tilde{L}(\mathbf{x},\omega) \qquad L_i(\mathbf{x},\omega) = \tilde{L}_i(\mathbf{x},\omega)$$

ZV-BASED VOLUMETRIC PATH GUIDING: GOALS

- Leverage recent success of local surface guiding methods: [Vorba2014],
 - [Herholz2016], [Mueller2017]

[Hoogenboom 2008]

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

- Guiding **all** local sampling decisions:
 - 1+2 Guided product distance sampling:

• 3 Guided product directional sampling:

• 4 Guided Russian roulette and Splitting:

~ X

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

- Guiding **all** local sampling decisions:
 - 1+2 Guided product distance sampling:

• 3 Guided product directional sampling:

• 4 Guided Russian roulette and Splitting:

ZV-BASED VOLUMETRIC PATH GUIDING: CONTRIBUTIONS

- Guiding **all** local sampling decisions:
 - 1+2 Guided product distance sampling:

• 3 Guided product directional sampling:

• 4 Guided Russian roulette and Splitting:

Χ.

P=1-q

VOLUME RADIANCE ESTIMATES

VOLUME RADIANCE ESTIMATES

- Spatial caches via BSP-tree: max. 2K photons per node:
 - Similar 3D structure as PPG [Mueller2017]

VOLUME RADIANCE ESTIMATES

- Pre-processing step to fit estimates from photons (50M):
 - EM-fitting of von Mises-Fisher mixtures (similar to [Vorba2014]'s GMMs)

VON MISES-FISHER MIXTURE MODELS

• Spherical Distribution:

$$V(\omega|\Theta) = \sum_{i=1}^{K} \pi_{i} v(\omega|\mu_{i}, \kappa_{i})$$

- Features (closed-form):
 - Sampling
 - Convolution
 - Product

RADIANCE ESTIMATES

Incident Radiance Distribution

In-Scattered Radiance Distribution

• Convolution between incident radiance L and the phase function f

INCIDENT RADIANCE ESTIMATES

IN-SCATTERED RADIANCE ESTIMATES

28 JULY - 1 AUGUST

GUIDED SAMPLING DECISIONS

DISTANCE SAMPLING

1. Volume or surface decision

 p_{d} $\mathbf{x}_{i} \qquad \mathbf{x}_{j+1}$

2. Scatter distance

DISTANCE SAMPLING

• Standard distance PDF:

$$p_d^{std}(\dots) \propto T(\dots) \cdot \sigma_s(\dots)$$

GUIDED PRODUCT DISTANCE SAMPLING

NAÏVE TABULATED APPROACH

- Naïve tabulated approach:
 - Step through the complete volume and build a tabulated PDF
- Inefficient (large scenes dense media):
 - we always need to evaluated all bins first

OUR INCREMENTAL GUIDED PRODUCT DISTANCE SAMPLING

- Incremental approach:
 - At each step make a local decision, if we scatter inside the bin

• We only need to step until the scattering event happens

Full CDF (30min)

Spp: 548 49 Avg. steps: 18

Our incremental (30min)

Spp: 1140 Avg. steps: 4

Spp: 960 reIMSE: 1.342

No guiding **Distance** guiding

Spp: 960 relMSE: 1.342

Spp: 424 reIMSE: 0.901

No guiding (256 spp)

• Here, distance sampling is not the main cause of variance!!

DIRECTIONAL SAMPLING

• Standard PDF:

$$p^{std}_{\omega}(\dots) \propto \tilde{f}(\dots)$$

GUIDED PRODUCT DIRECTIONAL SAMPLING

• Our guided PDF:

$$\tilde{p}^{zv}_{\omega}(\dots) \propto \tilde{f}(\dots) \cdot \tilde{L}(\dots)$$

OUR GUIDED PRODUCT DIRECTIONAL SAMPLING

Incident radiance VMM

56 Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding

OUR GUIDED PRODUCT DIRECTIONAL SAMPLING

58 Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding

Spp: 2212 reIMSE: 0.376

No guiding Directional guiding

No guiding Directional guiding Dist + Direct

IMPORTANCE OF THE PRODUCT FOR DENSE ANISOTROPIC MEDIA
No GuidingProduct GuidingIllum Guiding(256 spp)(256 spp)(256 spp)

Directional

Distance

4a. Termination

4b. Splitting

64

4a. Termination

4b. Splitting

- Post-sampling compensation strategies:
 - Identify, if we did a sub-optimal sampling decision
 - Terminate: to increase performance
 - Split: bound/reduce sample variance

- Path contribution: E[X]
 - The expected contribution if we continue the path

- Reference solution: *I*
 - the final pixel value

- Path contribution: E[X]
 - The expected contribution if we continue the path

- Reference solution: *I*
 - the final pixel value

GUIDED RUSSIAN ROULETTE AND SPLITTING Path contribution Survival prob / $\rightarrow q = \frac{E[X]}{I}$

- If $q \leq 1$: Russian Roulette
 - Terminates low contributing paths
 - Survival probability: q

• If q > 1: Splitting

Reference solution

• Splits an under sampled paths with a potential high contribution (*q* times)

• See course notes or paper for more details

GUIDED RUSSIAN ROULETTE AND SPLITTING: PIXEL ESTIMATE

• Ray marched cache to integrate: $T \cdot \sigma_s \cdot \tilde{L}_i$

Guided RR

Spp: 1500 75 reIMSE: 0.174

+ Guided splitting

Spp: 1340 reIMSE: 0.066

No guiding

Time: 60 min Spp: 10644 reIMSE: 11.58 **Distance guiding**

Time: 60 min Spp: 4624 reIMSE: 3.520

Distance + directional guiding

Time: 60 min Spp: 4448 reIMSE: 0.468

Distance + directional guiding + GRRS

Time: 60 min Spp: 3796 reIMSE: 0.321

OPEN PROBLEMS AND LIMITATIONS

Open Challenges to make it bullet proof

SPATIAL CACHE STRUCTURE

- Naive approach to define the resolution:
 - Heuristic based on sample numbers
 - Takes time or many samples to model/separate fine features (e.g. thin shafts or caustics) (PPG by [Mueller2017] has the same problem)
 - Influences the performance of some sampling methods (e.g. distance)
- Ideal structure should adjust to the light transport characteristics

INSUFFICIENT CACHE SIZES

- Shared problem with other 3D caching based guiding approaches (e.g. [Vorba2014], [Mueller2017], ...)
- By merging the samples of a spatial cache we blur the directional distribution
- Can lead to incorrect estimates of L and L_i

PRODUCTION CHALLENGES

How can we get good guiding estimates?

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

- Pre-processing step:
 - Fitting a VMM for each phase function
- Fitting up to K = 4 components
 - Details in the course notes
- Open Challenge:
 - Procedural phase functions or procedural mixtures?
 - How to deal with changing mean cosines (roughening/mollification)?

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

- Pre-processing step:
 - Fitting a VMM for each phase function
- Fitting up to K = 4 components
 - Details in the course notes
- Open Challenge:
 - Procedural phase functions or procedural mixtures?
 - How to deal with changing mean cosines (roughening/mollification)?

Photon-based pre-processing ([Herholz2019][Vorba2014])

Pros:

- Photons directly represents the light transport
- Spatial distribution corresponds to important features (light shaft)
- Number of traced photons can be fixed
- No additional fitting during rendering

Photon-based pre-processing ([Herholz2019][Vorba2014])

Cons:

- Pre-processing step:
 - Long time to first render iteration
- Complex scenes need bidirectional learning:
 - Ping-Pong style [Vorba2014]
- It is not the ideal solution for artists in production

Progressive learning (PPG-style [Mueller2017])

Pros:

- First experiments show promising results
- No pre-processing
- Refines spatial and directional distributions in each iteration
- Sample data gets more reliable

Progressive learning (PPG-style [Mueller2017])

Cons (open challenges):

- Sample count grows exponential:
 - Memory and fitting time increases
 - Shorter update rates ?
 - Online fitting for mixtures?
- Spatial structure adapts slowly to LT:
 - Important for distance sampling

CONCLUSION

- Even approximate local sampling decisions lead to a good approximation of the globally optimal guiding distribution (and thus significantly reducing MC variance)
- Converges to optimal ZV estimator in the hypothetical limit (i.e., if the approximations were perfect)
- Solely based one guiding structure for all decisions (incident radiance VMMs)

THANK YOU

REFERENCES

- [Fong2017]: "Production volume rendering"
- [Novak2018]: "Monte Carlo methods for volumetric light transport simulation"
- [Kulla2012]: "Importance sampling techniques for path tracing in participating media"
- [Georgiev2012]: "importance sampling of low-order volumetric scattering"
- [Krivanek2014]: "A zero-variance-based sampling scheme for Monte Carlo subsurface scattering"
- [Meng2016]: "Improving the Dwivedi sampling scheme"
- [Vorba2014]: "Online learning of parametric mixture models for light transport simulation"
- [Vorba2016]: "Adjoint-driven Russian roulette and splitting in light transport simulation"
- [Herholz2016]: "Product importance sampling for light transport path guiding"
- [Koerner2016]: "Subdivision next-event estimation for path-traced subsurface scattering"
- [Mueller2017]: "Practical path guiding for efficient light-transport simulation"
- [Hoogenboom2008]: "Zero-varianceMonte Carlo schemes revisited"
- [Pegoraro2008]:" Sequential Monte Carlo integration in low-anisotropy participating media"
- [Bashford2012]: "A significance cache for accelerating global illumination"

ADJOINT ESTIMATE ACCURACY

COMPARING AGAINST EQUIANGULAR SAMPLING

BUMPY SPHERE

LOS ANGELES • 28 JULY - 1 AUGUST

INCREMENTAL GUIDED DISTANCE SAMPLING

98 Sebastian Herholz | Volumetric Zero-Variance-Based Path Guiding

INCREMENTAL GUIDED DISTANCE SAMPLING

VMM PHASE FUNCTION FITTING: PRE-PROCESSING STEP

- Using up to K = 4 components
- Optimization Problem:

$$\underset{\Theta_f}{\arg\min} \sum_{n=1}^{N} \left[\mathcal{L}_{\log}(f(\omega_n, \dots), V(\omega_n, \Theta_f)) \right]^2$$

$$\mathcal{L}_{\log}(d,m) = \log(d+\epsilon) - \log(m+\epsilon)$$

$$\epsilon = (1e - 4) \cdot \max(d_1, \dots, d_n)$$

VMM PHASE FUNCTION FITTING

 Manifold representation of the VMM parameters for an HG phase function model for different mean cosines

