
Advanced 3D graphics for movies and games
(NPGR010)

– Low-discrepancy sequences
and quasi-Monte Carlo methods

Jiří Vorba, MFF UK/Weta Digital

jirka@cgg.mff.cuni.cz

Slides by prof. Jaroslav Křivánek, extended by Jiří Vorba

mailto:jirka@cgg.mff.cuni.cz

Path tracing

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Quasi-Monte Carlo

◼ Goal: Use point sequences that cover the integration
domain as uniformly as possible, while keeping a
‘randomized’ look of the point set

Low Discrepancy
(more uniform)

High Discrepancy
(clusters of points)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Recall: Stratified samples

◼ Samples can still form clumps at borders

◼ Suffers from course of dimensionality

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Random One sample per stratum Jittered stratified sampling

Path tracing

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

estimateLin(x, omegaInAtX) // radiance incident at “x” from the direction “omegaInAtX”

{ // (“omegaInAtX” is pointing *away* from “x”)

Spectrum throughput = (1,1,1)

Spectrum accum = (0,0,0)

while(1) // we don’t cut off the path length now

{

hit = findNearestIntersection(x, omegaInAtX)

if noIntersection(hit) // ray leaves the scene – it “hits” the background

return accum + throughput * bkgLight.getLe(x, - omegaInAtX)

omegaOut := -omegaInAtX // omegaOut at hit.pos

if isOnLightSource(hit) // ray happened to directly hit a light source

accum += throughput * getLe(hit.pos, omegaOut) // “pick up” emission

// now estimate the reflected radiance

[omegaIn, pdfIn] := generateRandomDir(hit) // omegaIn at hit.pos

throughput *= 1/pdfIn * brdf(hit.pos, omegaIn, omegaOut) * dot(hit.n, omegaIn)

survivalProb = min(1, throughput.maxComponent())

if rand() < survivalProb // Russian Roulette – survive (reflect)

throughput /= survivalProb

x := hit.pos // “recursion”

omegaInAtX := omegaIn // “recursion”

else

break; // terminate path

}

return accum;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

BSDF sampling

◼ We need 2 random samples to cover hemisphere

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐿refl(𝑥, 𝜔out) = න

𝐻(𝐱)

𝐿in(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

BSDF sampling

◼ We need 2 random samples to cover hemisphere

◼ + 1 to choose a component

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐿refl(𝑥, 𝜔out) = න

𝐻(𝐱)

𝐿in(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

r

n

s
d

r

n
f

cos

2

2modifPhong +
+=

Transformation method – cdf
inversion

◼ U is uniformly distributed
in [0,1]n

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Transformation of point sets

Image credit: Alexander Keller
Advanced 3D Graphics (NPGR010) - J. Vorba 2020

MC vs. QMC

Image credit: Alexander Keller

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Random

◼ Mersenne twister

◼ Pseudorandom number generator

◼ Available in C++11

◼ 32-bit wide (period)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

#include <random>

const uint32_t seed = 123;

std::mt19937 generator (seed);

std::uniform_real_distribution<float> dis(0.0, 1.0);

float ksi = dis(generator);

Large state – 2.5KB

Random - seeding

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Truly random – seed by
current time

But we want deterministic
renders!

Why?

Debugging!

Imagine chasing a source of firefly

Stay away from srand() and rand()

◼ Bad statistical properties

◼ Short period (only 16-bit)

◼ More details
❑ https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Source: Wikipedia

#include <stdlib.h>

#include <time.h>

srand(time(NULL));

float ksi = rand() / (float) RAND_MAX;

Bad idea!

https://channel9.msdn.com/Events/GoingNative/2013/rand-Considered-Harmful

Random

◼ Xorshift (by George Marsaglia)

◼ Pseudorandom generator

◼ Fast, tiny state

◼ 32-bit, (64-bit, 128-bit)

◼ Xorshift+ (statistically as good as Mersenne twister)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

S
o
u
r
c
e
:

W
i
k
i
p
e
d
i
a

Quasi Monte Carlo (QMC) methods

◼ Use of strictly deterministic sequences instead of random
numbers

❑ Also true for pseudo-random numbers

◼ All formulas as in MC, just the underlying proofs cannot
reply on the probability theory (nothing is random)

◼ Based on low-discrepancy sequences

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Defining discrepancy

◼ s-dimensional “brick” function:

◼ True volume of the “brick” function:

◼ MC estimate of the volume of the “brick”:

total number of sample points

number of sample points that
actually fell inside the “brick”

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Discrepancy

◼ Discrepancy (of a point sequence) is the maximum
possible error of the MC quadrature of the “brick”
function over all possible brick shapes:

❑ serves as a measure of the uniformity of a point set

❑ must converge to zero as N -> infty

❑ the lower the better (cf. Koksma-Hlawka Inequality)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Koksma-Hlawka inequality

◼ Koksma-Hlawka inequality

❑ the KH inequality only applies to f with finite variation

❑ QMC can still be applied even if the variation of f is infinite

„variation“ of f

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Van der Corput Sequence (base 2)

◼ point placed in the middle of the interval

◼ then the interval is divided in half

◼ has low-discrepancy

T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

1 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 3 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 34 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 34 5 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 34 56 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence (base 2)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

0 1

12 34 56 7 T
a

b
le

 c
re

d
it

:
L

a
sz

lo
 S

zi
rm

a
y

-K
a

lo
s

Van der Corput Sequence

◼ b ... Base

◼ radical inverse

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Van der Corput Sequence

◼ b ... Base

◼ radical inverse

◼ Example:

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝑖 = 123
𝑏 = 10

123 = 3 ∗ 100 + 2 ∗ 101 + 1 ∗ 102

→

Φ10 123 =
3

10
+

2

102
+

1

103
= 0.321

Van der Corput Sequence (base b)

double radicalInverse(const int base, int i)

{

double digit, radical;

digit = radical = 1.0 / (double)base;

double inverse = 0.0;

while(i)

{

inverse += digit * (double)(i % base);

digit *= radical;

i /= base;

}

return inverse;

}

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Van der Corput Sequence (base b)

◼ Discrepancy of sequence P

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐷𝑁
∗ 𝑃 = 𝑂

log𝑁

𝑁

Sequences in higher dimension

Image credit: Alexander Keller
Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Sequences in higher dimension

◼ Discrepancy

Image credit: Alexander Keller
Advanced 3D Graphics (NPGR010) - J. Vorba 2020

𝐷𝑁
∗ 𝑥𝑖 = 𝑂

(log𝑁)𝑠

𝑁

Sequences in higher dimension

Image credit: Alexander Keller
Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Sequences vs sets

◼ Set

❑ Number of samples need to be known a-priory

❑ Hammersley, stratified samples

❑ Usually needs to be recomputed if we change N

◼ Sequence

❑ We don’t need to know number of samples beforehand

❑ Points added without recomputing of previous points

❑ Halton

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Progressive sequences/sets

◼ Any prefix preserves low-discrepancy

◼ Suitable for progressive rendering

Advanced 3D Graphics (NPGR010) - J. Vorba 2020 S
o
u
r
c
e
:

C
h
r
i
s
t
e
n
s
e
n
[
2
0
1
8
]

Quasi-Monte Carlo (QMC) Methods

◼ Disadvantages of QMC:

❑ Regular patterns can appear
in the images (instead of the
more acceptable noise in
purely random MC)

❑ Random scrambling can
be used to suppress it

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

S
o
u
r
c
e
:

h
t
t
p
:
/
/
e
x
t
r
e
m
e
l
e
a
r
n
i
n
g
.
c
o
m
.
a
u
/

Scrambling

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ Low-dimensional projections show visible patterns

◼ Mitigated by scrambling

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

Scrambling - permutations

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ Low-dimensional projections show visible patterns

◼ Mitigated by scrambling

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

Scrambling - permutations

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

◼ Apply the same permutation at every digit

Φ𝜎𝑏 𝑖 =

𝑗=0

∞

𝜎𝑏 𝑎𝑗 𝑖 𝑏−𝑗−1

(Φ𝜎17 𝑖 , Φ𝜎19(𝑖)), 𝑖 = 0…63

Scrambling – permutations by Faure

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

◼ In general, permutations for each base can be arbitrary

◼ Deterministic perms. by Faure

◼ When b is even: Take and append 2𝜎𝑏
2

(Φ𝜎17 𝑖 , Φ𝜎19(𝑖)), 𝑖 = 0…63

2𝜎𝑏
2
+ 1

Scrambling – permutations by Faure

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

◼ In general, permutations for each base can be arbitrary

◼ Deterministic perms. by Faure

◼ When b is odd: Take , increment each value ,
insert in the middle

𝜎𝑏−1

(Φ𝜎17 𝑖 , Φ𝜎19(𝑖)), 𝑖 = 0…63

≥
𝑏 − 1

2𝑏 − 1

2

Scrambling – permutations by Faure

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

(Φ17 𝑖 , Φ19(𝑖)), 𝑖 = 0…63

◼ Faure permutations can be implemented efficiently without
branching

(Φ𝜎17 𝑖 , Φ𝜎19(𝑖)), 𝑖 = 0…63

Use in path tracing

◼ Objective: Generated paths should cover the entire
high-dimensional path space uniformly

◼ Approach:

❑ Paths are interpreted as “points” in a high-dimensional
path space

❑ Each path is defined by a long vector of “random numbers”

◼ Subsequent random events along a single path use
subsequent components of the same vector

❑ Only when tracing the next path, we switch to a brand new
“random vector” (e.g. next vector from a Halton sequence)

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

◼ Path “i” sampled based on
the “i-th” sample from
the sequence

Path tracing

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

(𝑢𝑜, 𝑢1, 𝑢2, 𝑢3, 𝑢4)

(𝑢5, 𝑢6, 𝑢7)

(𝑢8, 𝑢9, 𝑢10)

𝑈𝑖 = (𝑢𝑜, … , 𝑢10)

Time, lens, pixel

BSDF

BSDF

Progressive rendering with Halton

◼ Option 1:

❑ Halton sequence per pixel, use different scrambling

❑ Loose low-discrepancy properties in the image plane

❑ In fact results into stratified sampling in the image plane

◼ Option 2:

❑ Use nearest power of two to your resolution

❑ It is possible to compute index of n-th sample in the Halton
sequence given the pixels coordinates

❑ Skip samples falling outside your actual pixels

❑ Details: PBRT, 3rd edition – Chapter 7.4.2.

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

Further study material

◼ (t,s)-sequences

❑ (0,2)- sequence: Sobol sequence generator matrices

◼ Rank-1 lattice sequences

◼ Multi-jittered samples

◼ References

◼ https://sites.google.com/view/myfavoritesamples

◼ Christiane Lemieux: Monte Carlo and Quasi-Monte Carlo
Sampling [2008]

Advanced 3D Graphics (NPGR010) - J. Vorba 2020

https://sites.google.com/view/myfavoritesamples
https://www.springer.com/gp/book/9780387781648

