
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Petr Kadleček

Haptic rendering for 6/3-DOF haptic devices

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Petr Kmoch

Study programme: Informatics

Specialization: Software Systems

Prague 2013

I would like to thank my supervisor, Mgr. Petr Kmoch, for his support, avail-
ability and constructive suggestions. He has guided me in the correct directions
during my master thesis and helped me with his feedbacks. I would also like to
express my gratitude to my family and my girlfriend for their continuous support
and patience.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In Prague, April 12th, 2013 Petr Kadleček

Název práce: Haptická vizualizace pro zař́ızeńı se 6/3 stupni volnosti

Autor: Petr Kadleček

Katedra: Kabinet software a výuky informatiky

Vedoućı diplomové práce: Mgr. Petr Kmoch, KSVI

Abstrakt: Využit́ı haptických zař́ızeńı se rozš́ı̌rilo do oblast́ı jako je virtuálńı
simulace výroby, virtuálńı montáž, či simulace lékařských zákrok̊u. Pokrok ve
výrobě umožnil velké rozš́ı̌reńı haptických zař́ızeńı s pohybem v šesti stupńıch
volnosti, avšak s omezenou zpětnou vazbou jen v translaci - tzv. nesymetrická
zař́ızeńı se 6/3 stupni volnosti. Dosavadńı algoritmy pro haptickou vizualizaci
pracuj́ı však správně jen pro symetrická zař́ızeńı. Tato práce analyzuje algoritmy
haptické vizualizace pro zař́ızeńı se třemi a šesti stupni volnosti a na základě
analýzy navrhuje algoritmus haptické vizualizace pro zař́ızeńı se 6/3 stupni vol-
nosti s podporou pseudo-haptického vńımáńı. Algoritmus je na základě analýzy
implementován a otestován v uživatelské studii.

Kĺıčová slova: haptická vizualizace, 6/3 stupň̊u volnosti, pseudo-haptika

Title: Haptic rendering for 6/3-DOF haptic devices

Author: Petr Kadleček

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Petr Kmoch, KSVI

Abstract: Application of haptic devices expanded to fields like virtual manu-
facturing, virtual assembly or medical simulations. Advances in development of
haptic devices have resulted in a wide distribution of assymetric 6/3-DOF hap-
tic devices. However, current haptic rendering algorithms work correctly only
for symmetric devices. This thesis analyzes 3-DOF and 6-DOF haptic rendering
algorithms and proposes an algorithm for 6/3-DOF haptic rendering involving
pseudo-haptics. The 6/3-DOF haptic rendering algorithm is implemented based
on the previous analysis and tested in a user study.

Keywords: haptic rendering, 6/3 degrees of freedom, pseudo-haptics

Contents

1 Introduction 3
1.1 What is haptics? . 3

1.1.1 Tactile sensing . 3
1.1.2 Kinesthetic sensing . 3

1.2 Applications of computer haptics 4
1.3 Haptic devices . 5

1.3.1 Degrees of freedom . 5
1.3.2 PHANToM Desktop . 5

1.4 The goals of the thesis . 6

2 Haptic rendering 7
2.1 1-DOF haptic rendering and stability issues 7

2.1.1 Passivity . 8
2.2 3-DOF haptic rendering . 9

2.2.1 Direct rendering of vector fields 9
2.2.2 God-object method . 10
2.2.3 Virtual proxy method . 11

2.3 6-DOF haptic rendering . 12
2.3.1 Direct rendering . 12
2.3.2 Simulation-based haptic rendering 14

3 6/3-DOF Haptic rendering 17
3.1 Trivial implementations . 17

3.1.1 Mesh-mesh collision . 18
3.1.2 Proxy point set collision 18
3.1.3 Rendering of surface properties 20

3.2 Philosophy of the final approach 20
3.3 Collision detection . 21

3.3.1 Voxel tree . 23
3.4 Collision response . 26

3.4.1 PointShell representation 26
3.4.2 Tangent-plane force model 27
3.4.3 Force filtering . 28

3.5 Rigid body dynamics . 29
3.5.1 Explicit integration of Newton-Euler equations 30
3.5.2 Stability of integration and semi-implicit integration 31

3.6 Virtual coupling . 32
3.7 Pseudo-haptics . 35

3.7.1 6/3-DOF interaction . 36
3.7.2 Simulation-based solution to pop-through effect 37
3.7.3 Integration of pseudo-haptics 39

3.8 Virtual Phantom . 40

1

4 User study 43
4.1 Testing applications . 43

4.1.1 Rabbit and hammer . 43
4.1.2 Pipe and torus . 44
4.1.3 Pipe and tube . 45
4.1.4 Piping and tube tool . 45

4.2 Results . 46

5 Conclusion 48
5.1 Summary . 48
5.2 Future work . 48

Attachments 53

A Programmer’s guide 54
A.1 Integration into CHAI 3D . 54

A.1.1 Generic tool . 54
A.1.2 Application flow . 55

A.2 VoxMap . 55
A.2.1 cVoxMapTreeNode . 55

A.3 6/3-DOF Pointer . 56
A.3.1 Point-shell force algorithms 56

A.4 Shadow map light . 59
A.5 Virtual Phantom . 59

B User Documentation 60
B.1 System requirements . 60
B.2 User study keyboard shortcuts . 60
B.3 Running Virtual Phantom . 60

C Contents of the accompanying CD 61

2

1. Introduction

1.1 What is haptics?

The word haptic originates from Greek “hapt-esthai” or “haptó” which means
“to feel” or “to touch”. Haptic technology makes it possible to use the sense
of touch with computers. It is another modality of human-computer interaction.
Haptic perception is usually divided into two subsystems: tactile (cutaneous) and
kinesthetic.

1.1.1 Tactile sensing

The sense of touch is generally understood as a skin receptor response to stimuli
such as pressure, vibration or temperature. These receptors help us with rec-
ognizing objects, especially when determining the surface texture of an object,
also called haptic texture. Various mechanoreceptors (e.g. Meissner corpuscle,
Pacinian corpuscle, Merkel disks, Ruffini endings) are sensitive to different fre-
quencies and detect diverse types of stimuli as shown in Figure 1.1. Devices that
make use of cutaneous mechanoreceptors are called tactile or touch devices.

Figure 1.1: Approximate frequencies of cutaneous mechanoreceptors (on the left)
and kinesthetic sensors (on the right)

1.1.2 Kinesthetic sensing

To recognize the shape of an object we mainly use a part of the somatosensory
system called kinesthetic sense. Kinesthetic sense provides us with information
about movement and position of our body parts in the environment. We are able
to feel various forces in different directions using our muscles and joints and use
this information to determine the size, shape and other characteristics of objects
we touch and the forces they exert. Control bandwidth of the kinesthetic system
is approximately 5 Hz and the sensing bandwidth is around 20 Hz [1]. Haptic
modality of human-computer interaction utilizes the sense of touch and kines-
thetic sense to perceive virtual objects; it generally incorporates hands, upper
torso, head and other parts of the body.

3

1.2 Applications of computer haptics

There are many situations where we depend on haptic perception in everyday life.
The role of computer haptics in virtual reality is to simulate these situations or
even let us experience interaction impossible in the real world. Many new areas
of haptic applications have emerged and become an intriguing research topic.

Medical simulations

Medical simulations create an opportunity for training surgical procedures. Virtu-
al tissue behavior is haptically rendered through a surgical instrument connected
to a haptic device. Combination of stereoscopy and haptics provides realistic sen-
sation and helps students to improve their fine motor skills. Augmented reality
helps to enhance sensations of telemanipulation, for example using virtual objects
or guiding cues [2].

Virtual prototyping

Virtual prototyping aims to create virtual reality prototypes of complex systems
and objects that are costly or require excessive effort to manipulate. Typical
applications are new design evaluation, virtual assembly or physical ergonomics
tests. Highly realistic immersive applications such as Haptic CAVE (Haptic Com-
puter Automated Virtual Environment [3]) combine human-scale haptics with
large projector screens, position tracking and 3D sound system.

Virtual hair modeling project

Virtual hair modeling (project Stubble) was a team software project at Charles
University in Prague where I have implemented support of haptic interaction.
The application helps the user to model hair with hair guides in Autodesk Maya
using a mouse or a haptic device (Figure 1.2).

Figure 1.2: Virtual hair modeling in Autodesk Maya

Other applications of computer haptics include scientific visualization, phys-
ical rehabilitation, virtual clay modeling and 3D painting, veterinary training,

4

advanced ultrasound training, dental training systems, flight simulators, comput-
er games, user interface enhancement or telerebotics. More information can be
found in [2].

1.3 Haptic devices

Haptic devices can be divided into two classes: impedance-type devices and
admittance-type devices. The purpose of an impedance type haptic device is
to generate force feedback of a given direction and magnitude in a specified
workspace and send the position information of a control part of the appara-
tus to the computer. Admittance type haptic devices measure applied forces and
generate a position change of a control part of the apparatus as haptic feedback.
This thesis will focus only on impedance type haptic devices. Various classifica-
tions of haptic devices exist. More detailed classification and analysis from the
engineering point of view can be found in [1].

1.3.1 Degrees of freedom

Haptic devices consist of several sensors and actuators. The number of sensors is
usually the same as the number of actuators. However, for reasons of simplicity
lower cost, less actuators than sensors may be present. Dimension of an orienta-
tion ability (or configuration space of the mechanical parts of a haptic device) is a
property of haptic devices known as the number of degrees of freedom. Typical 3-
DOF (three degrees of freedom) devices (e.g. Novint Falcon) have a movable grip
connected via three arms allowing translation of the grip within the workspace
and providing force feedback. 6-DOF devices provide positional sensing using a
pivoting stylus, force feedback and torque feedback in roll, pitch and yaw axes of
rotation. In this thesis, the focus will be on asymmetric 6/3-DOF devices (espe-
cially on a PHANToM Desktop device) that combine 6-DOF positional sensing
and 3-DOF force feedback, i.e. no torque feedback is present.

1.3.2 PHANToM Desktop

PHANToM Desktop (Figure 1.3) is a 6/3-DOF haptic device manufactured by
SensAble Technologies, Inc. Workspace of the device is 160 mm width x 120 mm

Figure 1.3: PHANToM Desktop 6/3-DOF haptic device

5

height x 120 mm depth. Positional sensing has resolution of more than 1100 DPI
(0.023 mm) and the maximum force that the actuators can exert is approximately
8 N. More detailed specification can be found in [4].

1.4 The goals of the thesis

The main goals of this thesis are:

• present several methods of haptic rendering for 3-DOF and 6-DOF haptic
devices

• propose a method of haptic rendering for 6/3-DOF haptic devices supported
by a theoretical analysis possibly including pseudo-haptics

• implement the proposed method with support for a PHANToM Desktop
haptic device

• prepare and perform a user study of the implemented algorithm and analyze
its results

6

2. Haptic rendering

Haptic device sensors measure movement of mechanical parts and transform it
to a signal which is transmitted to a computer. The computer receives the signal
and processes it using a driver of the device.

The driver layer converts the data from the sensor space to Cartesian space
using a forward kinematic algorithm. The position of an end-effector (stylus of the
device) is then sent to a haptic API. There are several types of haptic APIs that
provide different level of abstraction, from a low-level approach up to high-level
interaction often including a scene graph [5].

Figure 2.1: Haptic rendering illustration

Virtual objects with specific haptic properties are added to the scene graph
together with a representation of the end-effector called a haptic tool. The haptic
tool interacts with virtual objects and interaction forces in Cartesian space are
computed and sent back to the driver.

The driver performs force mapping between the Cartesian space and the ac-
tuator space so the user finally feels the force feedback proportional to the haptic
tool interaction. This process of generating forces from the haptic tool inter-
action in a virtual environment is called haptic rendering. Haptic rendering is
the integral component of haptic simulation which connects the real and virtual
environment as illustrated in Figure 2.1.

2.1 1-DOF haptic rendering and stability issues

A computer works as a discrete system, optical encoders often used as sensors
in haptic devices perform quantization of position information and the virtual
environment is frequently simulated by a discrete time system of dynamic states.
All these discretization processes may induce stability problems which can not
appear in a continuous space. For example, when bolting two steel beams, ap-
proximations of state variables may cause the entire assembly to exhibit sustained
or growing oscillations, as stated in Colgate et al. [6]. Colgate et al. also stress
that the human tactile sensory apparatus (shown in Figure 1.1) is extremely re-
ceptive to small amplitude mechanical vibrations in the 100 Hz - 1 kHz range
(while vision is not).

Another problem lies in the limited dynamic range of mechanical impedances
(also called Z-width) of the haptic device. The user should be able to move freely
without any resistance in one moment and then feel full resistance in the next
moment. Such a criterion can not be met with current devices and the problem
of instability has to be resolved by defining criterion for the system such as a
passivity criterion.

7

2.1.1 Passivity

One way to ensure stability of the system is to use a passivity design criterion.
Energy of the passive system must be greater than or equal to negation of the
initial energy during time t, i.e. it does not exceed negative initial energy:

E =

∫

t

0

P(t) dt =

∫

t

0

F(t)v(t) dt ≥ −Ei(0) (2.1)

for power P, force F, velocity v and initial energy Ei in time 0 with the
convention that energy absorption (e.g. resistance) is defined as positive energy.
For zero initial energy Ei(0) = 0 the equation can be simplified to:

∫

t

0

F(t)v(t) dt ≥ 0 (2.2)

There are many ways how to ensure passivity in a haptic system by mechanical
methods, electrical methods, psychophysical methods or control methods [7].

Virtual coupling

Virtual coupling is one of such control methods. It connects the virtual haptic tool
and the haptic device by an ideal spring defined by Hooke’s law, and a damper
(Figure 2.2). The method is analyzed for a 1-DOF model [8]: a virtual wall
that generates resisting force proportional to penetration depth of the haptic
tool. Colgate et al. proposed virtual coupling as an approach to guarantee
passivity of a sampled-data system by limiting maximum impedance. In other
words, the problem of mechanical stability is decoupled from the passive virtual
environment [9].

Figure 2.2: Virtual coupling spring-damper illustration

Results of the analysis showed that virtual stiffness K has to be inversely
proportional to the sampling period T of a simulation:

b >
KT

2
+ |B| ⇒ K < 2

|B| − b

T
(2.3)

where B is a virtual damping coefficient and b is inherent mechanical damping
of a haptic device.

A common standard is to run haptic simulation at a frequency of 1000 Hz to
achieve stable and realistic force feedback of a stiff virtual environment. Compar-
ing this to a frequency of real-time rendering in computer graphics (25 - 60 FPS)
makes the haptic rendering a great challenge because all computations have to
be done in 1 ms.

8

2.2 3-DOF haptic rendering

In 3-DOF haptic rendering, a haptic tool that interacts with virtual environment
is represented as a point or a sphere. The tool can interact with complex 3D
scenes usually represented by polygonal models or voxel models. The output of
the rendering is a force vector with a given magnitude and direction.

2.2.1 Direct rendering of vector fields

The virtual wall mentioned in the previous section was in fact a type of one-
dimensional vector field. A vector field method specifies a repulsive force vector
for every point in a scene. The force field vector is directed at the nearest resting
position of the haptic tool. If the haptic tool is outside the object, the resulting
force is zero, otherwise the force vector has a magnitude proportional to the pen-
etration distance and regulates the stiffness of an ideal spring attached between
the resting point and the haptic tool as shown in Figure 2.3. The force vector
which is precomputed or determined analytically is then directly rendered to the
haptic device.

Figure 2.3: Vector force field illustration

This technique, however, has many drawbacks which make it useless for at
least plausible simulations. As this method does not save a history of the haptic
tool movement, discrete-time position update may result in unnoticed penetration
through an object in one haptic loop step as shown in Figure 2.4 on the left.
Another pop-through problem may come up when penetration is too deep and
the desired nearest resting point is on the other side of the object as shown in
Figure 2.4 on the right.

Figure 2.4: Pop-through problems

9

2.2.2 God-object method

To solve pop-through problems mentioned in direct rendering of vector fields the
God-object method was proposed [10]. The god-object represents a virtual point
(a proxy point) in the scene that is not able to penetrate into rigid bodies and
thus behaves correctly. Zilles et al. use the term haptic interface point (HIP) to
describe the position of the haptic device end-effector so that it is not confused
with the god-object.

Position of the god-object is updated in every haptic loop step. When moving
in free space, the position of the god-object is the same as the position of the HIP.
If the HIP penetrates into an object, the movement of the god-object towards
the HIP is constrained by the surface of this object and the resulting force is
calculated by simulating an ideal mass-less spring (shown in Figure 2.5).

Figure 2.5: God-object method illustration

Geometric definition of proxy-based haptic rendering

The concept of the god-object can be also described as a geometric problem [11]:

q(k) = G(K,p(k),q(k − 1))

f(k) = K(q(k)− p(k))
(2.4)

where k is a discrete-time index, p ∈ R
n is the position of the haptic tool,

q ∈ R
n is the position of the god-object and K is the stiffness of the virtual

coupling. The function G : R × R
n × R

n → R
n is a geometric algorithm that

accepts the current tool position p(k) and the god-object position q(k− 1). The
force function f(k) ∈ R

n is determined by the position relation between the haptic
tool and the god-object.

This geometric formulation may help programmers to understand and develop
haptic rendering algorithms without notion of physical forces as stated in [11].

Constraint planes

One of the advantages of the God-object method is that the method works with
triangular meshes used in graphic rendering. When the HIP moves, a line is
traced from the position of the god-object to the HIP. Well known methods of
ray tracing collision detection are used to determine if the line passes trough a
triangular facet. Such a facet is called active when the HIP resides in a negative

10

distance and the god-object in a positive distance in the direction of the facet
surface normal. New position of the god-object is constrained by up to three
active facets described as constraint planes:

Pn(x, y, z) : Anx+Bnx+ Cnz −Dn = 0 (2.5)

Virtual spring as an energy function

Zilles et al. used an energy function minimization process to find the best location
for the new position of the god-object. The energy function is described as
potential energy of an ideal mass-less spring (Hooke’s law: F(x) = −kx) between
the HIP and the god-object:

Q = −
∫

F (x) dx = −
∫

−kx dx =
1

2
kx2 (2.6)

Applying the HIP position (xp, yp, zp) and the god-boject position (x, y, z)
with spring stiffness k = 1 to equation 2.6 gives:

Q =
1

2
(x− xp)

2 +
1

2
(y − yp)

2 +
1

2
(z − zp)

2 (2.7)

Minimizing energy function using Lagrange multipliers

The task of finding the new god-object position given the HIP can be formulated
as: minimize Q with subject to Pn (eq. 2.5, 2.7) which is a typical optimization
problem that can be solved with Lagrange multipliers [12] using the following
equation:

∇L(~x) = ∇(Q+

n
∑

i=1

λiPi)(~x) = 0 (2.8)

where λi is a Lagrange multiplier. Substituting Q and Pi gives:

L =
1

2
(x− xp)

2 +
1

2
(y − yp)

2 +
1

2
(z − zp)

2 +

n
∑

i=1

λi(Aix+Bix+ Ciz −Di) (2.9)

which in the case of a 3-DOF problem and 3 constraint planes gives 6 variables
(x, y, z, λ1, λ2, λ3). Partial derivatives can be easily derived to give a set of equa-
tions and the task of finding the new god-object position is simplified to finding
a solution to these equations. Concave surface intersections require to iterate the
whole process by using the new god-object position as the HIP position to find
other possible surface constraints.

2.2.3 Virtual proxy method

Polygonal meshes often contain small surface gaps because of low-quality digiti-
zation or non-precise modeling. When the god-object enters a mesh through a
small gap, the user gets stuck inside the mesh until they find the gap again. To
resolve the problem we either fill in small gaps in the process of loading the mesh

11

or we set a radius of the god-object in collision detection with constraint planes.
The Virtual proxy method [13] proposes to treat the representation of the haptic
tool in the virtual environment as a sphere (as shown in Figure 2.6).

The Virtual proxy method extends the God-object method also in rendering of
surface properties like static and viscous dynamic friction, haptic textures adopt-
ing an idea of bump mapping in computer graphics and force shading of polygonal
surfaces using interpolation of surface normals similar to Phong shading.

Figure 2.6: Virtual Proxy method illustration

2.3 6-DOF haptic rendering

Single-point interaction in the virtual environment may be sufficient for some
tasks. However, there are a lot of virtual scenarios which require interaction and
maneuvering with more a complex object. Imagine a virtual assembly task to
test whether a component can be installed on a particular place when pushing
it around different obstacles. The component may be long, thin, convex or non-
convex and generate various types of haptic interaction response including force
feedback and also torque feedback (a rotational force shown in Figure 2.7).

torque

Figure 2.7: Torque illustration for a 6-DOF haptic tool

2.3.1 Direct rendering

Direct rendering methods do not simulate a proxy tool that is constrained by
object boundaries as in the God-object method. Instead, the haptic tool position
is equal to the position of the haptic device end-effector. Reaction to a collision
response may not be sufficient and the tool may penetrate into an object which is

12

visually distracting as illustrated in Figure 2.8. The collision response is usually
proportional to the depth of the penetration as in 3-DOF direct haptic rendering
of vector fields. Same problems as in 3-DOF methods may occur in 6-DOF
rendering, e.g., a pop-through effect with thin objects.

Figure 2.8: Haptic tool penetration in 6-DOF direct rendering

6-DOF direct haptic rendering pipeline

A typical direct haptic rendering algorithm pipeline consists of the following
stages (as illustrated in Figure 2.9):

1. Retrieve information about position p and orientation q of the haptic device
end-effector

2. Apply workspace transformations and set new position and orientation of
the haptic tool

3. Perform collision detection between the tool and virtual environment

4. Generate an appropriate collision response including force F and torque
τ feedback

5. Stabilize the force feedback and torque feedback (optional) and send it to
the haptic device

Figure 2.9: 6-DOF direct haptic rendering pipeline illustraton

13

Performance issues

The first performance problem arises at the 3rd stage: collision detection. De-
tecting collisions for a point is far less computationally intensive than detecting
collisions for a complex object. The collision detection itself may take more than
1 ms to compute. Various hierarchical data structures optimized for sequential
and coherent queries have been researched and implemented [14].

Collision response is also a very difficult task involving generation of force
and torque feedback for multiple contacts. Discrete-time solvers often generate
unrealistic feedback with discontinuities and different methods of force smoothing
have to be applied.

Haptic rendering of polygonal models

Gregory et al. [15] proposed a method for 6-DOF haptic rendering of polygonal
models using a virtual proxy. A similar approach of constraining the proxy as in
the god-object method is used.

Figure 2.10: 6-DOF Virtual Proxy

However, the algorithm of finding the best proxy location can not be simply
adopted. The location of the proxy is constrained by the surface location so that
the actual position of an end-effector locally minimizes the penetration depth
(Figure 2.10). This is done by predicting the location of collision occurrence
using interpolation of the current and previous states of the proxy and end-
effector. Polygonal models are decomposed into convex pieces for which pairs of
closest features are tracked to estimate the penetration depth.

The method works well (i.e. maintains frequency of 1000 Hz) for tens of convex
pieces which might be insufficient for some applications. Another problem arose
for collision response which is computed using the penalty method with force pro-
portional to the magnitude of the estimated penetration depth which may vary,
thus generating distractive forces. Gregory et al. adopted the force shading tech-
nique from [13] by interpolating force normals; forces are also smoothed between
successive frames.

2.3.2 Simulation-based haptic rendering

The previous algorithm did not apply any control method to stabilize the force
and torque feedback. Direct rendering of force and torque computed using penal-
ty methods often causes mechanical instability, e.g. magnitude of the force is
greater than the maximum force exertable by the haptic device. Lower collision

14

response stiffness is set to maintain stability at the expense of a less realistic
haptic feedback. Moreover, deeper penetration of the tool may even cause an
undesirable pop-through effect.

Virtual coupling presented in section 2.1 solves stability issues by filtering arti-
ficial energy which is characterized by high frequency changes in force magnitude
and direction. The filtering, though, may be visually apparent and distracting.
Virtual coupling may also introduce an apparent damping force in free space as
a result of unbalanced dynamic simulation. Simulating dynamics of the virtual
coupling also involves application of numerical methods that increase computa-
tional load. On the other hand, the benefit of virtual coupling is in enhancement
of the penalty-based force feedback by setting a high stiffness of a contact force
field which minimizes penetration of the haptic tool.

Multi-rate methods

Otaduy et al. [16] presented a method capable of stable and responsive 6-DOF
haptic rendering of complex (tens of thousands of triangles) polygonal models
using virtual coupling. A dynamic proxy is simulated using rigid-body dynamics
based on an implicit integration of Newton-Euler equations where the rest of
the environment is considered to be static. The implicit integration ensures the
stability of penalty-based force feedback.

Collision detection is performed using “sensation preserving simplification al-
gorithm” that uses static LOD (level of detail) technique for collision queries be-
tween two polyhedral objects. A multiresolution hierarchy where tree nodes may
be used as approximate bounding volumes is generated to get faster processing of
collision detection. The query may return multiple collision contacts so K-means
clustering is applied to mitigate discontinuities. Nevertheless, analysis showed
that performance of the algorithm is still insufficient for stable haptic rendering
which lead to decoupling of the collision detection from the haptic thread.

Figure 2.11: Haptic rendering pipeline of [16] illustration

Otaduy et al. decided to linearize contact forces that are computed in a spe-

15

cial contact thread as shown in Figure 2.11. Algorithms that involve decoupling of
haptic rendering pipeline parts into separate threads that run at different frequen-
cies are called multi-rate algorithms. For the referred algorithm and a complex
testing scenario the contact thread frequency varied from 100 Hz to 700 Hz.

Collision response is computed using viscoelastic penalty-based force and
torque feedback. Stability of the response is very well managed by implicit inte-
gration and contact clustering. Nevertheless, discontinuities in torque can arise,
for example, when large flat parallel surfaces are in contact as stated in [16].

Constraint-based algorithms: 6-DOF God-object

Penalty methods can not guarantee that the haptic tool does not penetrate into
an object. Local force models also do not generate exact realistic force and
torque feedback. Ortega et al. [17] extended the 3-DOF God-object method to
6-DOF using a constraint-based quasi-static approach. The method completely
prevents interpenetrations and generates realistic and stable force feedback with
the correct direction. However, active constraints can be potentially updated at
low frequencies which might lead to filtering of high-frequency details.

Voxel sampling methods

All the algorithms presented above struggle with computational load of exact
contact determination and collision response of polygonal models. One way to
cope with this problem is to use different representation of virtual objects in the
scene.

McNeely et al. [18] proposed a scalable method that could achieve a relatively
stable 6-DOF haptic rendering on a 350 MHz processor. It was one of the first
6-DOF haptic rendering algorithms applicable to real commercial use. The main
idea of the method is to voxelize the static virtual environment and represent the
haptic tool by a set of surface points. When a point crosses an object surface voxel
boundary, a repulsive force is exerted and the collision response is computed. The
thesis will follow with a detailed explanation of this method in the next chapter.

16

3. 6/3-DOF Haptic rendering

The previous chapter described selected haptic rendering algorithms for symmet-
ric devices, i.e. devices with an equal number of sensors and actuators. The
complexity of 6-DOF haptic devices with support of force and torque feedback
makes such devices costly and a wide variety of under-actuated devices exist due
to the low cost of integrating additional sensors.

Barbagli et al. [19] formally defined the problem of sensor/actuator asymme-
try and provided a framework for under-actuated device analysis. Two 2-DOF
examples showed that it is possible to correctly perceive missing a degree of free-
dom to some extent which users marked with a level of realism ranging from
almost perfect to completely unrealistic. Despite concluding that asymmetric de-
vices have limited usability for certain situations demanding a hight realistic force
feedback, a proposition of future work in haptic rendering that would alleviate
limitations of asymmetric devices was mentioned mainly due to broad use of such
devices.

Verner et al. [20] examined 3-DOF force only feedback in a 6-DOF manip-
ulation experiment consisting of simple drawing and tracing tasks. Experiment
results showed that force and torque can be well approximated by force only feed-
back in simple tasks. A torque only feedback also did not completely fail in
experiment evaluation, but the overall impression was negative. Verner et al.
also pointed out that asymmetric haptic devices are not passive which makes it
even harder to achieve stability of the system that relies on the passivity criterion.

A lot of work has been done in investigating asymmetries in telemanipula-
tion. This thesis, however, focuses on developing a moderately stable haptic
rendering algorithm for non-trivial polygonal models interacting with
a 6-DOF haptic tool and providing 3-DOF force only feedback. The
key concept is to extend existing 6-DOF haptic rendering algorithms by applying
methods that restrain instability and provide other means of torque simulation.
These may include several types of additional visual information, mapping from
the torque space to the force space and other methods of haptic illusion or cog-
nitive interpretation of a visuo-haptic simulation both representing a concept of
pseudo-haptics [21].

This chapter will describe the main components of our 6/3-DOF haptic ren-
dering algorithm and decisions made during the analysis and development.

3.1 Trivial implementations

Choosing an appropriate haptic rendering algorithm without any previous expe-
rience of implementing 6-DOF haptic rendering was not an easy task. To the best
of my knowledge there is also no freely available open source implementation of a
6-DOF haptic rendering algorithm. Some authors publish haptic rendering demo
executables to make it possible to compare algorithms. Unfortunately, demos are
available only for specific platforms and device families which make the compar-
ison actually impossible. Because of this, it was desirable to implement a trivial
prototype that would provide necessary information and a testing environment
for missing torque feedback.

17

3.1.1 Mesh-mesh collision

The first intuitive approach was to detect collisions of two meshes represented by
a set of triangles. The simplest brute force collision detection algorithm iterates
through all triangles of the tool mesh and performs triangle vs. triangle collision
tests with all triangles of other meshes in the scene. The algorithm returns a set
of colliding triangles between two meshes.

This information is not sufficient for an explicit computation of collision re-
sponse. A new problem is to find exact contact points and a force response vector.
The trivial implementation did not save a position history of the tool mesh, nor
velocity or any other kinematic quantity for simplicity reasons. A different way
of determining contact points and force response directions and magnitudes had
to be employed.

Haptic tool

Figure 3.1: Mesh-Mesh collision response approximations

An assumption that a colliding triangle is moderately compact allowed to use
an approximate position of a contact point computed as the center of the collid-
ing triangle. Force direction is also approximated using a local force model that
computes the force response direction of every colliding triangle as a vector from
the approximated contact point to the center of mass of the haptic tool mesh.
The resulting direction is the sum of all force direction vectors from all colliding
triangles (as shown in Figure 3.1). Magnitude of the force is set constant which
eliminates expensive computation of penetration depth but introduces disconti-
nuities so the resulting force needed to be artificially smoothed.

There are many situations where these approximations generate unrealistic
force feedback. The local force model also assumes that the haptic tool mesh is
convex. However, this trivial prototype revealed that a lot of rotational move-
ments that should normally cause both the force and torque feedback can be, to
some extent, well approximated just with the force feedback.

3.1.2 Proxy point set collision

Another prototype approach was inspired by the God-object method described
in section 2.2 but in a rather simpler way than the 6-DOF God-object method
(mentioned on page 16). One of the main advantages of developing 3-DOF hap-
tic rendering over 6-DOF haptic rendering is the fact that computing a point
interaction is much simpler. It is, therefore, of no surprise that many reasearch-
es have chosen to trade accuracy for simplicity and increased performance by
approximating the surface of the haptic tool by a point set.

18

Figure 3.2: Point set collision

There are many ways how to perform point sampling of the mesh and these
will not be discussed here. One particular method using space subdivision will
be described later in this chapter.

The prototype algorithm has two initialization stages. The first step is to
generate a surface point set of the haptic tool mesh stored in mesh local coor-
dinates. The second step is to initialize a proxy point set corresponding to the
surface point set stored in global coordinates. The haptic rendering loop has the
following stages:

1. For each point in the surface point set: determine the current global position
of the surface point using a rotation matrix and position vector obtained
from the haptic device

2. For each proxy point: trace a line from the i-th proxy point to the current
global position of the i-th surface point

3. Detect line-mesh collisions (i.e. collisions of proxy points with the virtual
environment) and store a collision point and collided polygon normal vector
for each collision

4. If no collision occured, set all proxy points’ positions to current global
positions of surface points and jump to the start of the loop

5. If a collision occured, set the proxy point position to the collision point
(acutally a little above the collision point in the direction of the normal
vector to prevent pop-through of the proxy due to rounding errors) and
calculate a force contribution proportional to the penetration depth of the
current global position of the surface point as shown in Figure 3.2

6. The resulting force is the sum of all force contributions

Although rendering stability was much improved compared to the approxi-
mate local forcel model of the previous prototype, the resulting behaviour felt as
if the haptic tool surface was sticky. The reason for this is that the proxy point
remains at the colliding point unless the user moves the haptic tool away from
the object, which makes it impossible to slide the haptic tool along the surface
of the virtual object.

19

3.1.3 Rendering of surface properties

A straightforward solution to the sticking problem is to move the proxy point
along the surface in a direction obtained by projecting the penetration vector on
the colliding polygon plane. Various surface properties can be simulated now as
shown in Figure 3.3. A slippery surface effect would move the proxy point to the
endpoint of the penetration vector projection. A friction effect would move the
proxy point partially along the projected vector (e.g. to the midpoint).

sticking force friction force slippery surface

time n+1
time n

time n+1
time n

time n+1

time n
=

Figure 3.3: Surface

However, the slipping effect has one major drawback. When proxy points have
the ability to slide along the surface, compactness of the haptic tool representation
is lost. This means that for a specific case, the repulsive force is easily overcome
and proxy points tend to surround the colliding object (as shown in Figure 3.4).

proxy points slippering

Figure 3.4: Surface drawback

This problem just emphasizes the complexity of 6-DOF haptic rendering. A
configuration solver for each proxy point with compactness constraints would have
to be applied to solve the problem. On the other hand, this prototype provided
a lot of valuable information about user behaviour when interacting with force
only feedback.

3.2 Philosophy of the final approach

The previous chapter gave an overview of selected haptic rendering algorithms
mainly for interaction with polygonal models. The God-object method for the
3-DOF case is considered to be one of the best methods that is sufficient for a
wide variety of haptic applications. Unfortunately, this can not be said about a
6-DOF case which is still too computationally demanding and no 6-DOF haptic
rendering algorithm is considered to be widely usable. All of the algorithms

20

mentioned employ some kind of approximation or linearization which make them
unusable for certain applications.

The algorithm for 6/3-DOF haptic rendering used in this thesis is based on
the voxel sampling method proposed by McNeely et al. [18] for 6-DOF rendering.
The method is not perfectly accurate in a geometrical way and it may occasionally
suffer from pop-through effects because of the penalty based collision response
but the implementation is not excessively complex and the algorithm can achieve
sufficient haptic thread frequency.

Figure 3.5: Haptic rendering pipeline of the voxel sampling method proposed by
McNeely et al. [18]

The voxel sampling method is composed of the following parts used in the
haptic rendering pipeline as illustrated in Figure 3.5. All parts will be discussed
in detail in later sections:

1. Collision detection

2. Collision response

3. Rigid body dynamics

4. Virtual coupling

The chapter will then continue with a description of pseudo-haptics and tech-
niques used to preserve stability for a non-passive 6/3-DOF haptic device and
methods to improve artifical torque sensation using multimodal information.

At the end of this chapter, a tool simulating the behavior of a haptic device
will be introduced. This tool is called Virtual Phantom and it eases the process
of debugging haptic rendering.

Implementation details are described in Appendix A.

3.3 Collision detection

As mentioned before, this method represents the haptic tool and the virtual
environment in non-polygonal structures. Data preprocessing is therefore the
first step in the initialization process.

The virtual environment, which is considered to be static, is represented by
voxels, i.e. a regular 3D grid of values. Voxel size determines accuracy of the

21

representation. The accuracy rises with a smaller value of the voxel size (as
shown in Figure 3.6) but the performance of the algorithm decreases rapidly. It
should also be noted that haptic devices have limited sensing resolution which
inherently introduces a minimum limit on the voxel size. For example, Phantom
Desktop used during the creation of this thesis has sensing resolution of about
0.023 mm. However, current voxel sampling algorithms can not achieve sufficient
haptic thread frequency for such accuracy in non trivial scenes.

Figure 3.6: Voxel representation of a polygonal model with different voxel sizes

Another factor is the quality of the polygonal model. It can be easily ob-
served that the polygonal model used for generating the voxel representation in
Figure 3.6 is a low poly model (i.e. has a small number of polygons). A small-
er voxel size representation (i.e. rabbit on the right) reveals visible boundaries
between adjacent polygons which can not be observed on the left rabbit.

The haptic tool is represented by a point set (illustrated in Figure 3.7) in
the same way as described in the previous section about trivial implementations.
Properties similar to the voxel representation apply to the point set. Higher
density of the point set makes the haptic tool interaction more realistic but com-
putationally intensive.

Figure 3.7: Point set representation of a polygonal model

22

3.3.1 Voxel tree

Storing the voxel representation in a 3D array would be inefficient in terms of
memory usage. Let’s assume that we want to represent objects in a workspace of
1 cubic meter with an accuracy of 1 millimeter and that a voxel value is stored in
1 byte. The 3D array would consume approximately 1 gigabyte. Storing a 4-byte
float value in a voxel would consume almost 4 gigabytes.

Considering that a typical mesh representation stored in the 3D array is sparse,
it is convenient to create a hieararchical data structure that stores voxels in a more
efficient way. McNeely et al. proposed an octree-like subdivision of space and
pointed out that tree depth has to be limited in order to keep the frequency of
haptic thread as stable as possible (i.e. invariant to position and orientation of
the haptic tool). A subdivision of a cubical volume node into 8 x 8 x 8 subnodes
was empirically determined to be the most memory efficient for this purpose.

The term VoxMap is used by McNeely et al. for merged voxel trees of all
objects in the scene. The VoxMap approach makes it impossible to differentiate
between objects. This, however, is not a significant problem since the algorithm
does not utilize object-specific information anyway.

Generating a VoxMap

The voxel tree is composed of axis-aligned cubical volumes. A mesh representing
an object in the virtual environemnt is assumed to be a triangle mesh. The first
step is to create a voxel representation of the mesh surface.

The algorithm traverses the voxel tree and performs intersection tests between
cubical volumes and triangles of the mesh until it reaches a leaf node represented
by a voxel. A method of finding a separating axis [22] (from Hyperplane separa-
tion theorem) between AABB (axis-aligned bounding box) and triangle is used.
The triangle and the box is projected onto a potential separating axis and tested
for overlap as illustrated in Figure 3.8. The algorithm ends when a first sepa-
rating axis is found (i.e. triangle and the box do not overlap) or all 13 axes (3
AABB face normals, 1 triangle face normal, 9 edge cross products) have overlaps,
which means that the objects are intersecting.

separating axis

Figure 3.8: Separating axis illustration

The voxel tree is a sparse voxel representation of the polygonal mesh. A tree
node points deeper only at those child nodes that contain data at the leaf level.
The voxel tree structure for the rabbit polygonal mesh and a sagittal slice of the
tree middle level is shown in Figure 3.9 and 3.10.

23

Figure 3.9: Voxel tree structure (left) and a sagittal slice of the tree level (right)

Voxel data types

The interface of the tree is completely transparent and provides at and set meth-
ods as if the structure was a 3D array. A bit array storage would be completely
sufficient to determine the free space and interior of the scene. However, for the
purpose of haptic rendering and especially for the collision response part described
in the next section, there are more auxiliary voxel types:

1. Undefined - set in the process of Voxel tree initialization

2. Free space - an empty voxel, i.e. does not correspond to any object

3. Surface - the surface of the mesh, generated by separating axes interpene-
tration test

4. Interior - interior of the object

5. Proximity - an object proximity layer surrounding the surface

When a tree node contains all children of the same voxel data type, aggrega-
tion of the voxel data can be applied. An aggregate node behaves in the same
way as a normal node but it does not point to children. Instead, it stores the
voxel data type only once.

Figure 3.10: A rendered polygonal mesh with a Voxel tree visualization

24

Interior voxelization

The voxel tree still contains only mesh surface voxels. The next step is to voxelize
the interior of the mesh and set other voxels that our outside the mesh to the
free space type. A common approach is to use a flood fill algorithm. The first
problem may be determining a starting point of the flood fill. For example, there
is absolutely no guarantee that a voxel at the center of mass is in the interior
of the object. The second problem might be that if a mesh was not watertight
because of low-quality digitization, the process would fail.

A simple approach that works very well for convex objects is bounding box
wall propagation. Six bounding walls propagate free space one by one towards the
center until a surface voxel is reached. Problem arises for non convex objects with
“bays”. A bay is a spot missed by all propagating bounding walls. Iterative wall
propagation solves the problem. The number of iterations depends on complexity
of the mesh which can sometimes be unbearable (e.g. for a hole in the object of
a spiral tube shape). However, accuracy of voxelization for such shapes is not
essential for the purpose of this thesis and the number of iterations is therefore
limited. An illustration of interior voxelization is shown in Figure 3.11.

Figure 3.11: Voxelization by iterative wall propagation

Haptic tool vs VoxMap

Collision detection between the haptic tool and the virtual environment is done
by checking collisions for every point of the point set representing the haptic tool
against the VoxMap. This involves a simple collision test between a box with
center c and extent e vs. point p. Point p is translated by −c and tested against
an interval (−e,+e) in each dimension as illustrated in Figure 3.12.

e

p - c

0

c

p

Figure 3.12: A simple Point vs. Box collision detection

25

3.4 Collision response

The goal of the collision response is to generate a force F and torque τ using
the output of collision detection which is a list of {colliding point, colliding voxel}
pairs. The haptic rendering algorithm uses a partially extended local force model
called tangent-plane force model presented by McNeely et al. The force model
does not compute an exact contact normal. Instead, it uses precomputed vectors
stored in a PointShell representation.

3.4.1 PointShell representation

Firstly, generating a point set representing the haptic tool is not a trivial task.
Places with higher curvature should ideally be covered with more points to pre-
serve details of the haptic tool mesh where necessary. Also, there shouldn’t be
holes in the representation as this could cause partial interpenetration of polygon
meshes still used for visual rendering. The easiest approach is to use a regular
grid point sampling of the surface which is in fact the surface voxelization where
all generated voxel centers define the surface point set.

The point set representation is extended into a PointShell representation by
adding inward-directed vectors at positions of points from the point set. The
PointShell is therefore composed of surface points and corresponding surface nor-
mals of the mesh representing the haptic tool. Unfortunately, usage of surface
normals from the mesh representation does not create a good PointShell as shown
in Figure 3.13 on the left (surface normals are directed outwards for the sake of
visualization). It can be observed that normals at the tip of the rabbit’s ears,
especially on the top edge, are not directed inwards, which causes problems for
the tangent-plane force model.

A simple, yet effective way to generate normals that are directed inwards
even on edges is to use the voxel representation itself and compute normals from
neighboring voxel occupancy. The result can be seen in Figure 3.13 on the right.
The method can easily be enhanced by extending the neighborhood from which
the normal vector is computed.

Figure 3.13: PointShell normals generated from polygon normals (left) and from
voxel representation (right)

26

3.4.2 Tangent-plane force model

A voxel tangent plane T is a plane defined by a voxel center c and an inward-
directed surface normal vector n that is associated with a point p from the
PointShell representation:

T (x) : n · (x− c) = 0 (3.1)

Penetration depth d is computed as the distance between the tangent plane
and the point p from the PointShell. A force contribution Fp is an ideal spring
force defined as:

Fp = −ksd = −ks(n · (p− c)) (3.2)

where · is the dot product operator and ks is force field stiffness. An illustra-
tion of the tangent-plane force model is shown in Figure 3.14.

PointShell

VoxMap

n

np
p

d
F

P

c

T

Figure 3.14: Tangent-plane force model

Computing force contributions in surface type voxels may cause distracting
interpenetrations of the haptic tool mesh with the virtual environment. The
proximity voxel layer mentioned in the previous section is therefore used in the
force model. If a point from the PointShell crosses the proximity voxel boundary
deeper to a surface voxel layer, the force contribution is computed as:

Fp = −ks
sv
2

(3.3)

where sv is a voxel size. Also the maximal penetration depth d in the proximity
layer is clamped to an interval 〈0; sv

2
〉 to eliminate discontinuities. If the user

overcomes the force reaction and the point p penetrates into the interior, the
force contribution Fp is zero.

The total force F generated from the PointShell penetration is the sum of all
force contributions Fp and the total torque τ is the sum of all torque contributions
τp:

F =
∑

p∈P

Fp

τ =
∑

p∈P

τp =
∑

p∈P

(p− pcom)× Fp

(3.4)

27

where P is the set of points of the PointShell, pcom is the center of mass of
the haptic tool and × is the cross product operator.

3.4.3 Force filtering

A great advantage of the tangent-plane force model is its computational simplicity
and efficiency. However, the approximation of the contact normal vector by the
PointShell surface normal n may cause force response discontinuities, e.g. when
sliding along the surface and crossing voxel boundaries with the tangent plane
tilted as illustrated in Figure 3.15. This problem is mitigated by the virtual
coupling which filters high frequency changes in force magnitudes.

n n
F

P

F
P

c c

Figure 3.15: Voxel boundary crossing force discontinuity

Clustering and averaging force contributors

When too many PointShell points penetrate into proximity voxels, the total force
F might exceed the maximum force that can be exerted by the haptic device.
Some algorithms solve this problem by clustering force contributions (e.g. using
K-means clustering). Another method is to average force contributions for a
certain number of contributors. McNeely et al. proposed to average the total
force if the number of contributors is more or equal than 10. The algorithm used
in the thesis responded best when averaging for more than 50 contributors:

Fa = F forN < 50

Fa =
F

N/50
for N ≥ 50

(3.5)

where Fa is the averaged total force and N is the number of force contributors.

Direct force rendering

This collision response part of the haptic rendering algorithm can be directly
tested with a haptic device as it is a separate unit producing force F which is
an input of the haptic device. However, direct rendering of the total force F
with discontinuities causes the haptic device to produce unpleasent vibrations
and overall impression is negative. A common way to stabilize the force response
is to use virtual coupling as described in the previous chapter. Virtual coupling
is implemented using a simulation of rigid body dynamics.

28

3.5 Rigid body dynamics

A virtual dynamic object is an object representing the haptic tool in the virtual
environment that is coupled with the haptic device motion. This object interacts
with the virtual environment and its dynamic behaviour is simulated using rigid
body dynamics. The simulation is required to compute the position and orien-
tation of the dynamic object in time with regard to applied force and torque.
Derivation of equations 3.6 and 3.9 can be found in [23]. The following notation
is used:

• F - total force acting on a rigid body in time t

• τ - total torque acting on a rigid body in time t

• x(t) - position of a rigid body in time t defined by a vector

• q(t) - orientation of a rigid body in time t defined by a quaternion

• m - constant mass of a rigid body

• I - constant moment of inertia of a rigid body

• v(t) - linear velocity of a rigid body in time t

• ω(t) - angular velocity of a rigid body in time t

• p(t) = mv(t) - linear momentum of a rigid body in time t

• L(t) = Iω(t) - angular momentum of a rigid body in time t

Newton-Euler equations

The motion of a rigid body can be described using Newton-Euler equations of
motion:

F =
dp

dt
=

d

dt
(mv) = m

dv

dt
= ma

τ =
dL

dt
=

d

dt
(Iω) = I

dω

dt
= Iα

(3.6)

where a is acceleration of the rigid body and α is angular acceleration. A general
equation for describing rotational dynamics (τ = ω× (Iω)+ Idω

dt
) could be simpli-

fied because of a constant moment of inertia I in time. This is due to a limitation
of virtual coupling formalism of torsional spring described in the next section.
The dynamic object is therefore represented in the simulation as a sphere with
radius r of a uniform density defined by an inertia mass tensor:

I =





2

5
mr2 0 0
0 2

5
mr2 0

0 0 2

5
mr2



 (3.7)

29

3.5.1 Explicit integration of Newton-Euler equations

Let X(t) represent a state of a rigid body in time t. The simulation is computed
at a minimal frequency of 1000 Hz and begins at t = 0 with a given state X(0).
Simulation time t is advanced by a time step ∆t. One simulation cycle is defined
as:

S : (F, τ,X(t)) → X(t +∆t) (3.8)

One method to compute X(t+∆t) is to use explicit numerical integration of
Newton-Euler equations 3.6. The state vector of a rigid body contains position
x(t), orientation q(t) and another two variables describing the dynamic state.
Although using velocity variables in the state of the rigid body may be intuitive
for the linear case (as shown in equation 3.11), momentum variables are used for
simplicity reasons and better numerical stability [23]. The state vector of a rigid
body and its corresponding time derivative is defined as:

X(t) =









x(t)
q(t)
p(t)
L(t)









d

dt
X(t) =









v(t)
1

2
ω(t)q(t)
F (t)
τ(t)









(3.9)

The time derivative of the state vector is used to approximate the state of the
rigid body in the next step. By applying Euler’s method we compute the current
state (denoted with subscript 1) and auxiliary variables from the previous time
step (denoted with subscript 0) as follows:

Euler integration of translational variables

p1 = p0 + F∆t (3.10)

v1 = v0 + a∆t = v0 +
F

m
∆t =

p0
m

+
F∆t

m
=

p0 + F∆t

m
=

p1
m

(3.11)

x1 = x0 + v0∆t (3.12)

Euler integration of rotational variables

L1 = L0 + τ∆t (3.13)

ω1 = I−1

1
L1 (3.14)

q1 = q0 +
1

2
ω0q0∆t (3.15)

30

3.5.2 Stability of integration and semi-implicit integration

Explicit integration equations 3.10 - 3.15 can be summarized as:

X(t+∆t) = X(t) +
d

dt
X(t)∆t (3.16)

The problem of an explicit integration solution is a high approximation error
caused by linearization of the derivative term. The explicit method generates ar-
itifial energy which leads to instability. The problem may be reduced by lowering
the time step (i.e. increasing frequency). However, this is often not possible due
to collision detection and collision response computational performance. Colgate
et al. [8] stated that it is essentially impossible to guarantee stability of the system
when using an explicit method together with a penalty-based collision response.

Implicit integration

An implicit integration method can be defined as:

X(t +∆t) = X(t) +
d

dt
X(t+∆t)∆t (3.17)

The derivative term here conserves the energy, thus implicit integration pro-
vides more stable behavior. However, the derivative term can not be directly
evaluated as in the explicit case and the integration leads to solving a set of
implicit algebraic equations which can be time consuming.

Example of an implementation using a linear approximation of 3.17 is pro-
vided by Otaduy et al. [16] who implemented the implicit integration involving
linearization of virtual coupling force and torque.

Semi-implicit integration

Semi-implicit integration is a method that is not as accurate as the implicit
method, but provides very good results and stable behavior with minimal effort.
From an implementation point of view, the only difference between the explicit
and semi-implicit method is just the order of performing computations. The
velocity v1 is computed the same way as in the explicit case. However, the
position of the rigid body x1 is not computed from the previous velocity v0, but
from the currently computed velocity v1:

v1 =
p1
m

x1 = x0 + v1∆t
(3.18)

The orientation q1 is computed accordingly:

ω1 = I−1

1
L1

q1 = q0 +
1

2
ω1q0∆t

(3.19)

31

Comparison of explicit and semi-implicit integration

An experiment was conducted to illustrate the difference between the explicit
and semi-implicit method. A testing scene was prepared and an unconstrained
motion in the virtual environment (i.e. without exerting force) of the haptic
device was recorded using the Virtual Phantom tool. The recorded motion was
then used for playback and tested for two haptic rendering setups. The first setup
applied explicit integration of Newtons-Euler equations and the second setup
applied semi-implicit integration. Force response magnitudes were recorded for
both setups. The data was then split into subsets of size 20 and for each subset
the average value avg (blue line) and a shifted variance value var (green line)
was computed using the following equations:

avg =
1

20

20
∑

i=1

|Fi|

var = avg +
20
∑

i=1

(|Fi| − avg)2

(3.20)

The variance corresponds to noise in the force magnitude. If the variance is
high, the haptic device produces unpleasant vibrations. The graph of avg and
var values for the recording is shown in Figure 3.16.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Time [1/50 s]

F
o

rc
e

 [
N

]

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Time [1/50 s]

F
o

rc
e

 [
N

]

Figure 3.16: Explicit integration force magnitudes (left) and semi-implicit inte-
gration force magnitudes (right)

Average values for both rendering setups are similar, however it can be ob-
served that the haptic rendering setup with semi-implicit integration (graph on
the right) produces much better results and that the explicit integration generates
a lot of artificial noise.

3.6 Virtual coupling

The concept of virtual coupling as a stabilization component was described in
the previous chapter. The previous section described how forces acting on the
dynamic object change its translational and rotational motion. This section will

32

clarify how exactly virtual coupling is integrated into the haptic rendering algo-
rithm and how it behaves.

Virtual tool as a dynamic object

In a virtual coupling scheme, the haptic tool is represented by a dynamic object.
The object interacts with the (in this case static) virtual environment by pene-
trating into the proximity layer and the repulsive force is applied. The goal of
the repulsive force is to prevent interpenetration of the haptic tool with the static
environment.

The dynamic object is also connected to the haptic device with a spring-
damper system. This connection controls the movement of the dynamic object.
The advantage of using the dynamic object as a haptic tool proxy is that the
magnitude of the repulsive force can be much larger than the one used for direct
force rendering. A consequence of the large repulsive force is that the proxy is
constrained by the proximity layer and remains outside the surface layer, while
the actual position (i.e. the haptic device end-effector position) of the haptic tool
may be inside a static object. This emulates the concept of analytically computed
constrained proxy. Unfortunately, the stability of the discete dynamic simulation
at a low haptic thread frequency is a limiting factor of the repulsive force stiffness
value so it does not fully address the pop-through effect.

Integration scheme of Virtual coupling

To summarize information above, there are two types of forces acting on the
dynamic object representing the virtual tool:

• Fc, τc - the contact force and torque resulting from interaction with the
virtual environemt

• Fv, τv - the virtual coupling spring-damper system connecting the haptic
device with the dynamic object

Firstly, position pd and orientation qd of the dynamic object is computed
from applying these forces using the rigid body dynamics. Next, position ph and
orientation qh of the haptic device end-effector is obtained and the new spring-
damper force Fv and torque τv can be calculated and sent again to the dynamic
simulation. Finally, as a consequence of Newton’s third law, the opposite of
spring-damper force Fh = −Fv and torque τh = −τv is sent as force feedback to
the haptic device. The scheme is shown in Figure 3.17.

Figure 3.17: Virtual coupling integration scheme

33

Spring-damper system

As mentioned above, the haptic device and the dynamic object is coupled with a
system composed of a linear spring, torsional spring, linear damper and torsional
damper.

The translational part of the system (i.e. linear spring and linear damper)
is parametrized by the following constants:

• kt - translational stiffness of the virtual coupling

• bt - translational damping coefficient of the virtual coupling

And by the following variables:

• dv = pd−ph - distance between the position of the haptic device end-effector
and the dynamic object

• vr =
d

dt
dv - relative velocity of the dynamic object

The rotational part of the system (i.e. torsional spring and torsional damper)
is parametrized by the following constants:

• kr - rotational stiffness of the virtual coupling

• br - rotational damping coefficient of the virtual coupling

And by the following variables:

• θ = axisAngle(qd ∗ q−1

h) - axis-angle representation of angular displacement
where ∗ is the Grassman product operator and axisAngle is a function
converting quaternion to axis-angle representation

• ωr =
d

dt
θ - relative angular velocity of the dynamic object

The whole spring-damper system is therefore described by the following equa-
tions:

Fv = ktdv − btvr

τv = krθ − brωr

(3.21)

Critical damping

The spring system part of virtual coupling produces oscillations that are mitigated
by the damping part. The whole system can be either under-damped which means
that the system will still oscillate but at a gradually diminishing frequency, over-
damped which would result in high viscous resistance, or critically damped which
results in a non-oscillating system with the lowest possible viscous resistance,
which is the desired behavior.

The translational part of the spring-damper system is critically damped if the
damping ratio ζt = 1:

ζt =
bt

2
√
mkt

= 1 ⇒ bt = 2
√

mkt (3.22)

where m is constant mass of the dynamic object. The rotational part is
critically damped accordingly.

34

Sufficient condition for passivity

We can use the derivation of the critical damping to compute maximal transla-
tional stiffness constant kr. If we analyze virtual coupling spring-damper system
in the same way as a virtual wall system described in the previous chapter, we
may compute a stiffness constant that comply with the passivity criterion for a
virtual wall:

b >
KT

2
+ |B| ⇒ b >

KT

2
+ 2

√
mK (3.23)

An example of derivation of stiffnes constant K for following constants

• T = 0.001 s - a simulation period corresponding to frequency 1000 Hz

• b = 8Ns/m - inherent mechanical damping of a haptic device

• m = 0.025 kg - a mass of the dynamic object

Solving the equation above will give:

8 >
0.001K

2
+ 2

√
0.025K ⇒ K ∈ < 0; 594 > N/m (3.24)

The maximal translation stiffness of the virtual coupling is 594N/m.

3.7 Pseudo-haptics

Pseudo-haptic systems can be defined as “systems providing haptic information
generated, augmented or modified, by the influence of another sensory modali-
ty” [24]. In other words, pseudo-haptics creates an illusion of haptic interaction
using, for example, visual feedback. The following example will illustrate the use
of pseudo-haptics in a common situation without the need for any special device.

Mouse cursor viscous effect example

Let’s say we want to simulate a viscous effect using a computer mouse and its
cursor. The computer mouse itself cannot exert any force and the only thing
that can be controlled is the position of the cursor. We split the screen where
the cursor is moving into two areas. The first area represents a normal freespace
behavior without any alteration of the position of the cursor. The second area
will display a viscous effect by decreasing the relative cursor position change
proportionally to its speed, i.e. when the mouse moves slowly, the viscous effect
is small and when the mouse moves quicky, the viscous effect is large. Even
though the mouse does not exert any forces, users moving in the viscous area
intuitively react as if they feel the viscous effect, i.e. they push harder against
the mouse, thus actually experiencing force. The visual feedback acts here as a
pseudo-haptic system emulating viscosity.

35

Section overview

In this thesis, torque feedback is emulated by applying a pseudo-haptic system
which utilizes force feedback and visual feedback. This section will describe one
particular solution that is subsequently tested in a user study presented in chap-
ter 4. First of all, behavior of a 6-DOF haptic rendering algorithm tested on
a 6/3-DOF haptic device is analyzed and its problems are stated. Secondly, a
solution to the stated problems is proposed. Next, three types of torque feed-
back emulation are introduced. Finally, the integration to the haptic rendering
algorithm is described.

3.7.1 6/3-DOF interaction

The problem of missing torque feedback in a 6-DOF haptic rendering algorithm
can be illustrated on the problem of missing force feedback in a 3-DOF haptic
rendering algorithm.

Zero force response

Imagine that the haptic rendering algorithm operates normally but the generated
force response is not sent to the haptic device. Tha haptic tool can move in
the virtual environment without any constraints, penetrate into an object, move
freely within the object and get to the other side. This behavior was previously
defined as a pop-through effect that resulted either from incorrectly computed
force response, instabilities or discrete collision detection. The pop-through effect
makes haptic rendering nonrealistic and is undesirable.

Missing torque feedback

A similar problem, though more complex, applies for the case of missing torque
feedback. The orientation of the haptic tool can be changed by rotating the
end-effector of the haptic device. However, no force generated in the virtual
environment will ever change the orientation of the end-effector. Consequences
of this behaviour can be generalized into two types of interaction.

The first type of interaction (called good torque interaction) happens when
the haptic tool is rotating in some direction and partially penetrates an object.
The penalty-based haptic rendering algorithm computes the repulsive force at the
location of penetration. The torque corresponding to the repulsive force would
normally cause the haptic tool to rotate in direction opposite to the original
rotation. However, as no torque can be applied, the haptic tool only changes
its position as a reaction to the repulsive force. This kind of interaction has
often no side effects causing instability of the system or pop-through effects. The
response feels realistic depending on the distance of the penetration location from
the center of mass of the haptic tool. The interaction is illustrated in Figure 3.18.

The second type of generalized interaction (called bad torque interaction) can
be described as a lever-type or prying interaction. This happens when the haptic
tool is rotating about the center of mass and encounters an obstacle at two op-
posite sides of the tool in a given direction. The tool partially penetrates objects
at both locations and repulsive forces are generated. The sum of these forces is

36

Torque

Force Force

force feedback and torque feedback force only feedback

rotating haptic tool rotating haptic tool

Figure 3.18: Response to the interaction with and without applied torque

zero because of their opposite directions. However, the torque corresponding to
these forces is two times larger in magnitude. The torque would normally pre-
vent the tool from penetrating the object, but again as no torque can be applied
and this time even no force is generated, the haptic tool penetrates the object as
illustrated in Figure 3.19.

Torque

Force

Force

Force

Force

unconstrained

rotating

haptic tool
constrained

rotating

haptic tool

pop-through effect

force feedback and torque feedback

F = 0

force only feedback

Figure 3.19: Pop-through problem of missing torque feedback

When the haptic tool penetrated an object in the 3-DOF case of missing force
feedback mentioned above, the repulsive force magnitudes were enormously large
causing instability of the simulation system. But as the force was not sent to the
haptic device, the user could not feel it. However, for the case of missing torque,
the problem of large torue magnitude may result in unpredictable behavior.

3.7.2 Simulation-based solution to pop-through effect

The pop-through effect caused by missing torque feedback makes penalty-based
6-DOF haptic rendering algorithms unsuitable for 6/3-DOF haptic devices. A
desirable effect would be to ignore the rotational movement of the haptic device
end-effector and prevent the haptic tool from penetrating the object. Such an
effect will make use of pseudo-haptics in that the visual feedback will inform the
user that the haptic tool is constrained and that it cannot rotate anymore.

Lowering the stiffness of the torsional spring

The first idea to create the constraining effect was to utilize the virtual coupling.
In the virtual coupling scheme, the dynamic object representing the haptic tool

37

is coupled with the haptic device end-effector by a torsional spring as described
in the previous section. If the rotational stiffness of the torsional spring kr is
set to a reasonably small value, the torque generated from repulsive forces will
be stronger than the torque generated by the torsional coupling spring and the
haptic tool will be constrained as shown in Figure 3.20 on the left.

direction of motion

strong repulsive torque

actual orientation of

the end-effector

bad torque solution good torque problem

Figure 3.20: A low torsional spring stiffness

The low stiffness of the coupling solves the problem of the pop-through effect
caused by the lever-type (a bad torque) interaction, but the problem of this ap-
proach is that the low stiffness of the coupling breaks the first type (good torque)
interaction. When the torsional spring stiffness is low, the haptic tool tends to
rotate around the object instead of generating a repulsive force as illustrated in
Figure 3.20 on the right. An ideal solution would let the good torque work and
limit only the bad torque.

Torque/force correlation

The problem is how to differentiate between the good torque and the bad torque.
A characteristic property of the bad torque is the small magnitude of the total
force acting on the haptic tool and the large magnitude of the torque. This can
be used for a heuristic that would compare the applied torque and force and limit
coupling torque stiffness only if the force magnitude is not proportional to the
torque magnitude.

If we look at the problem from the good torque point of view, the good torque
magnitude is actually proportional to the force magnitude which is exactly the
opposite of the bad torque characteristics.

Torque vector

Figure 3.21: Torque vector illustration

The heuristic can be improved by a simple observation that all forces gen-
erating the bad torque are perpendicular to the torque vector as illustrated in

38

Figure 3.21. Thus, the heuristic compares only the magnitude of the sum of
all forces that are perpendicular to the torque vector. Also, torque magnitude
filtering by moving average is applied to mitigate discontinuities in the torque
response caused by inaccurate dynamic simulation.

Vibration feedback

The visual emulation of the torque feedback by constraining the haptic tool in
a bad torque interaction may be improved by applying another form of pseudo-
haptic feedback. The visual feedback does not provide information about the
magnitude of the torque that can not be haptically rendered. Therefore, the
pseudo-haptic part of the 6/3-DOF haptic rendering algorithm is extended by
a vibration effect that corresponds to the mentioned magnitude of the torque.
This vibration effect largerly improves the overall cognitive intepretation of the
missing torque feedback.

3.7.3 Integration of pseudo-haptics

To summarize this, there are actually three pseudo-haptic systems emulating the
torque.

• The first system is the good torque interaction which utilizes the force feed-
back and is part of the collision response.

• The second system is visual feedback constraining the haptic tool from
interpenetration and pop-through effect using the information from collision
response and virtual coupling.

• The third system is a vibration force that uses the information from the
second system. The vibration force is not added to the virtual coupling
force as this would lead to instabilities; instead, it is directly rendered to
the haptic device.

The final pipeline of the 6/3-DOF haptic rendering algorithm is shown in
Figure 3.22.

Figure 3.22: Pipeline of the 6/3-DOF haptic rendering algorithm

39

3.8 Virtual Phantom

Virtual Phantom si a tool specifically developed as part of this thesis to debug
haptic rendering algorithms. The idea of a virtual device originates from 3-DOF
CHAI 3D Virtual Haptic Device (also called dhdVirtual). The virtual device
makes it possible to test haptic applications developed using CHAI 3D without
having a real haptic device. Virtual Haptic Device is a separate application that
communicates with CHAI 3D and acts like a real haptic device that does not
exert forces. The application is started automatically when no real devices are
available.

Figure 3.23: 3-DOF CHAI 3D Virtual Haptic Device workspace

It provides a graphical representation of workspace, the 3-DOF haptic tool
(a small sphere) and generated force as a vector as shown in Figure 3.23. The
applicaton allows the user to move the virtual haptic tool using computer mouse
and keyboard. Virtual Phantom extends the concept to 6 degrees of freedom and
adds several functionalities.

Translational and rotational motion

The 6-DOF Virtual Phantom haptic tool is represented by a drill object that is
a part of CHAI 3D SDK shown in Figure 3.24. A visual aid represented by a
line connecting the tool and the center of the workspace is also presented to help
locate the haptic tool.

Figure 3.24: 6-DOF Virtual Phantom haptic tool

The 6-DOF haptic tool can be translated and rotated using computer mouse
and the position and rotation data is then sent to CHAI 3D library at a frequency
of 1000 Hz.

The position and orientation of the tool is changed by relative distances trav-
elled when dragging over the workspace, i.e. the user holds down the mouse
button and moves the cursor. Holding the left mouse button causes the trans-
lation in YZ-plane, right mouse button causes the translation in XY-plane. The
rotation about Z-axis and Y-axis of the tool is changed by holding down the
middle mouse button.

40

Another way of changing the position and orientation of the virtual haptic tool
is by attaching a real haptic device. The position and orientation of the Virtual
Phantom then corresponds to the position and orientation of the attached real
haptic device.

Force and Torque visualization

The force and torque is visualized in two ways. Firstly, a red line visualizing
the force sent to the device is placed at the tip of the tool. The length of the
line is proportional to the force magnitude. Analogously, a green line visualizing
the torque sent to the device is also placed at the tip of the tool as shown in
Figure 3.25.

Figure 3.25: 6-DOF Virtual Phantom workspace

The second type of force and torque visualization is a floating graph repre-
senting magnitudes of force and torque. The graph contains average value of the
magnitude and the shifted variance as described in the comparison of explicit and
semi-implicit integration (i.e. equation 3.20).

Haptic recording and playback

Motion of the haptic tool can be recorded along with the forces sent to the device.
The data is saved to a file containing the time, position and force. The recording
can be later played back which makes it possible to compare different setups
of the haptic rendering algorithm as shown in the comparison of explicit and
semi-implicit integration (Figure 3.16).

The recording can be also used for evaluation and verification of diffent haptic
rendering algorithms providing the same input data. Need for ways of haptic ren-
dering evaluation is generally recognized and several other approaches have been
proposed, such as: physical scanning of real-world objects [25] or an empirical
approach for the evaluation of haptic rendering algorithms presented by [26].

41

Pseudo-haptic force feedback simulation

A trivial pseudo-haptic force feedback simulation was implemented to improve
debugging possibilities. When a force is sent to the Virtual Phantom device, the
haptic tool is moved proportianally to the magnitude and in the direction of the
force, thus trivially simulating dynamics of the resistance of a hand holding the
haptic device end-effector. This behaviour helps with a lot of situations when
the interaction of the virtual haptic tool is actually needed to debug the haptic
rendering setup.

42

4. User study

The main goal of the user study is to evaluate performance and realism of the
developed 6/3-DOF haptic rendering algorithm. The user study consists of 4
applications simulating different scenarios of haptic interaction, with an emphasis
on missing torque feedback. Different combinations of pseudo-haptic feedback
were tested. All testing applications provided a possibility to turn on and off
the vibration pseudo-haptic feedback. It was also possible to show or hide a
wireframe model of the actual position and orientation of the haptic device end-
effector. More details about user controls can be found in Appendix B.

A total of 6 users participated in the study. Most of the users did not have
any previous experience with computer haptics.

Testing environment

Applications were tested on the PHANToM Desktop haptic device with 6-DOF
positional sensing and 3-DOF force feedback connected via parallel port (IEEE
1284). The computer running user study testing applications was equipped with
a Quad-Core Intel Core-i7 2.4 GHz CPU and 8 GB RAM. This configuration was
sufficient to produce realistic force feedback at a minimal haptic thread frequency
of 1000 Hz.

Questions asked during the user study

The following questions were asked during the user study for all testing applica-
tions:

1. Does the force feedback correspond with objects in the virtual environment
which is displayed on the monitor?

2. How would you describe the environment interaction from the haptic point
of view?

3. Does the force feedback feel realistic?

4. Does the vibration pseudo-haptic feedback help you interpret the missing
torque?

5. Do you prefer to see the actual position and orientation of the haptic device
end-effector using a wireframe model or not?

6. In which type of applications would you use the 6/3-DOF haptic rendering
if you could choose whether to buy an expensive full 6-DOF haptic device
or a considerably cheaper 6/3-DOF haptic device?

4.1 Testing applications

4.1.1 Rabbit and hammer

The first testing application is called Rabbit and hammer. The goal of this appli-
cation was to present participants with the behavior of force feedback generated

43

by the 6/3-DOF haptic rendering algorithm and exerted by the haptic device.
The presentation of the scene is shown in Figure 4.1.

Figure 4.1: Rabbit and hammer

In the first phase, the participant was asked to explore the environment and
get used to the interaction phenomenon. Next, the participant was asked to utilize
the proportions of the haptic tool and interact with parts of the tool distant from
the center of mass.

4.1.2 Pipe and torus

The second testing application is called Pipe and torus. The goal of this applica-
tion was to present a different type of the haptic tool and increase requirements
on end-effector manipulation skills. The presentation of the scene is shown in
Figure 4.2.

Figure 4.2: Pipe and torus

44

Firstly, the participant was asked to move the torus along the pipe from one
side to the other. This scenario demanded a greater manipulation skills. Secondly,
the participant was asked to try prying the pipe with the torus and describe the
sensation.

4.1.3 Pipe and tube

The third testing application is called Pipe and tube. The goal of this application
was to evaluate a task that normally involves high torque feedback. The presen-
tation of the scene is shown in Figure 4.3. The wireframe model of the actual
position of the haptic device end-effector is displayed and marked in the figure.

Figure 4.3: Pipe and tube

The participant was asked to move the tube along the pipe from one side to
the other as in the previous test. However, the tube is highly constrained by the
pipe. Thus, the system generates high torque feedback when the haptic tool is
not finely manipulated.

4.1.4 Piping and tube tool

The last testing application is called Piping and tube tool. The goal of this
application was to evaluate spatial orientation when the the haptic tool was not
fully visible. The presentation of the scene is shown in Figure 4.4.

Firstly, the participant was asked to move the tube tool through the piping
without colliding. Next, the participant was asked to move the tube tool with
their eyes closed and describe whether the force feedback alone guides them.

45

Figure 4.4: Piping and tube tool

4.2 Results

The results of the user study are summarized in the following list of answers to
questions 1-6 above:

1. Does the force feedback correspond with objects in the virtual environment
which is displayed on the monitor?

All participants have confirmed that in every testing application the force
feedback corresponds to the virtual environment which is displayed on the
monitor. This shows that the collision detection part of the haptic render-
ing algorithm developed in the thesis works correctly and that the collision
response generates appropriate force feedback.

2. How would you describe the environment interaction from the haptic point
of view?

One participant described the material of the rabbit in the first testing
application as metallic. However, after a longer exploration, the partici-
pant agreed with other participants that the material of the rabbit feels
like slipping rubber. This behavior is a consequence of zero surface friction
and the lower stiffness of the virtual coupling which, on the other hand,
preserves stability.

3. Does the force feedback feel realistic?

All participants agreed that the force feedback feels realistic. No partic-
ipant complained about the force feedback even when interacting in parts
of the tool distant from the center of mass. This proves that the problem
of missing torque feedback was well addressed by the pseudo-haptic system
used in the force feedback.

4. Does the vibration pseudo-haptic feedback help you interpret the missing
torque?

46

The first reaction to the vibration effect was rather unpleasant. Howev-
er, every participant intuitively stopped rotating the haptic tool and ro-
tated the tool back into the orientation that does not produce vibrations.
Also, the magnitude of vibration force helped participants with finding a
non-vibrating orientation.

After a longer exploration, participants got used to the concept of vibrating
force and agreed that the vibration effect largely improves the information
about the missing torque feedback and that they have subconsciously con-
nected the non-realistic vibrating force with the torque.

5. Do you prefer to see the actual position and orientation of the haptic device
end-effector using a wireframe model or not?

In most situations, the wireframe model was distracting and interfered with
the visual pseudo-haptic feedback. However, in the third testing applica-
tion (Pipe and tube), participants often lost sense of orientation because
of pipe constraints as shown in Figure 4.3. Therofore in this situation, the
wireframe model helped with completion of the task.

6. In which type of applications would you use the 6/3-DOF haptic rendering
if you could choose whether to buy an expensive 6/6-DOF haptic device or
a considerably cheaper 6/3-DOF haptic device?

All participants agreed that a 6/6-DOF haptic device is needed for highly
realistic haptic feedback such as high accuracy virtual assembly involving
wrenching. However, the 6/3-DOF haptic rendering algorithm developed in
this thesis makes a competitive alternative for simpler tasks such as touch-
ing and exploring objects with tools. An example of such usage may be
haptic exploration of scanned archaeological objects in museums or exhi-
bitions. Most participants stated that the 6/3-DOF haptic rendering al-
gorithm highly improves overall impression and realism of haptic feedback
over single-point 3-DOF interaction.

47

5. Conclusion

5.1 Summary

The thesis has introduced haptic modality of the human-computer interaction
and provided basic information about sources of haptic stimuli.

The definition of haptic rendering for impedance type devices was stated.
Various haptic rendering algorithms were analyzed beginning with the 1-DOF
haptic rendering where the problem of stability was introduced and a passivity
criterion of virtual coupling scheme was presented as a solution to instabilities.

Direct rendering methods for 3-DOF haptic rendering were described and their
problems illustrated. The God-object method was then analyzed and described
in detail together with geometric definition of proxy-based haptic rendering. A
solution to rendering of low-quality digitization polygonal meshes was also pre-
sented.

Performance issues of 6-DOF haptic rendering were stated and several meth-
ods with different drawbacks were analyzed. A simulation based multi-rate
method that decoupled part of the haptic rendering pipeline from the haptic
rendering thread was described and illustrated.

A problem of haptic rendering for underactuated devices was introduced and
pseudo-haptics solution to the problem proposed. Trivial implementations of 6/3-
DOF haptic rendering and their outcomes were described and a final approach
for 6/3-DOF haptic rendering based on the voxel sampling method was chosen.

The developed 6/3-DOF haptic rendering algorithm was then analyzed in de-
tail for every part of the algorithm including: collision detection of the PointShell
representation and the voxel tree data structure, collision response from a tangent
plane force model, rigid body dynamics and the virtual coupling.

Psuedo-haptics systems were then described and a heuristic for determining
lever-type interaction was analyzed and implemented. Different types of pseudo-
haptic feedback were combined and tested in the user study.

The user study showed that proposed pseudo-haptic systems greatly improves
the overall impression for underactuated devices and that the 6/3-DOF haptic
rendering algorithm developed as a part of the thesis can be used in several
applications that do not demand highly realistic torque feedback.

5.2 Future work

The developed haptic rendering algorithm can be improved in many ways. First,
a stability of the dynamic object simulation can be improved by using a multi-rate
approach. Problem of the instable behavior can be observed when holding the
end-effector far from the rotating tip. However, Colgate et al. [8] stated that even
if a non-passive virtual environment may be stable, interaction with a human via
a haptic interface may cause instability.

Secondly, haptic rendering of a surface material would also improve the per-
formance of pseudo-haptic systems. The lever-type interaction could cause high
friction which would constrain the haptic tool from moving away freely as it is
possible now.

48

Next, implementation of pseudo-haptic systems to constraint-based haptic
rendering algorithm would improve the stability and maybe bring new possibilities
of pseudo-haptic feedback.

Virtual Phantom device can be improved in many ways: the simple simulation
of pseudo-haptic feedback can be extended to a simulation of a moving hand,
haptic recording and playback performance can be improved, mouse control can
be also enhanced.

49

Bibliography

[1] Thorsten A. Kern, editor. Engineering Haptic Devices: A Beginner’s Guide
for Engineers. Springer, 2009 edition, 7 2009.

[2] Ming C. Lin and Miguel Otaduy, editors. Haptic Rendering: Foundations,
Algorithms and Applications. A K Peters/CRC Press, 7 2008.

[3] Bern University of Applied Sciences. Haptic computer automated virtual
environment. url: http://www.cpvrlab.ti.bfh.ch/research/projects/cave, 2012.

[4] SensAble Technologies Inc. Phantom desktop. url:
http://www.sensable.com/haptic-phantom-desktop.htm, 2013.

[5] Kadleček Petr. A Practical Survey of Haptic APIs, Bachelor’s thesis, Charles
University in Prague, Czech Republic, 2010.

[6] J Edward Colgate and J Michael Brown. Factors affecting the z-width of a
haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE
International Conference on, pages 3205–3210. IEEE, 1994.

[7] DW Weir and JE Colgate. Stability of haptic displays.

[8] J Edward Colgate, Michael C Stanley, and J Michael Brown. Issues in
the haptic display of tool use. In Intelligent Robots and Systems 95.’Human
Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ In-
ternational Conference on, volume 3, pages 140–145. IEEE, 1995.

[9] Richard J Adams and Blake Hannaford. A two-port framework for the design
of unconditionally stable haptic interfaces. In Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on, volume 2,
pages 1254–1259. IEEE, 1998.

[10] C. B. Zilles and J. K. Salisbury. A constraint-based god-object method for
haptic display. IEEE Computer Society, 1995.

[11] Ryo Kikuuwe and Hideo Fujimoto. Incorporating geometric algorithms in
impedance-and admittance-type haptic rendering. In EuroHaptics Confer-
ence, 2007 and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems. World Haptics 2007. Second Joint, pages 249–
254. IEEE, 2007.

[12] Pultr Aleš. Skripta z matematické analýzy pro I. ročńık, 1994.

[13] Diego C. Ruspini, Krasimir Kolarov, and Oussama Khatib. The haptic dis-
play of complex graphical environments. SIGGRAPH ’97, pages 345–352,
1997.

[14] M Sagardia, T Hulin, C Preusche, and G Hirzinger. Improvements of
the voxmap-pointshell algorithm-fast generation of haptic data-structures.
In 53rd IWK-Internationales Wissenschaftliches Kolloquium, Ilmenau, Ger-
many, 2008.

50

[15] Arthur Gregory, Ajith Mascarenhas, Stephen Ehmann, Ming Lin, and Di-
nesh Manocha. Six degree-of-freedom haptic display of polygonal models.
In Proceedings of the conference on Visualization’00, pages 139–146. IEEE
Computer Society Press, 2000.

[16] Miguel A Otaduy and Ming C Lin. Stable and responsive six-degree-of-
freedom haptic manipulation using implicit integration. In Eurohaptics Con-
ference, 2005 and Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 247–
256. IEEE, 2005.

[17] Michael Ortega, Stephane Redon, and Sabine Coquillart. A six degree-of-
freedom god-object method for haptic display of rigid bodies. In Virtual
Reality Conference, 2006, pages 191–198. IEEE, 2006.

[18] William A McNeely, Kevin D Puterbaugh, and James J Troy. Six degree-
of-freedom haptic rendering using voxel sampling. In Computer graphics
proceedings, annual conference series, pages 401–408. Association for Com-
puting Machinery SIGGRAPH, 1999.

[19] Federico Barbagli and Kenneth Salisbury. The effect of sensor/actuator
asymmetries in haptic interfaces. In Haptic Interfaces for Virtual Environ-
ment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th
Symposium on, pages 140–147. IEEE, 2003.

[20] Lawton N Verner and Allison M Okamura. Force & torque feedback vs force
only feedback. In EuroHaptics conference, 2009 and Symposium on Haptic
Interfaces for Virtual Environment and Teleoperator Systems. World Haptics
2009. Third Joint, pages 406–410. IEEE, 2009.

[21] Andreas Pusch and Anatole Lécuyer. Pseudo-haptics: from the theoretical
foundations to practical system design guidelines. In Proceedings of the 13th
international conference on multimodal interfaces, pages 57–64. ACM, 2011.

[22] Christer Ericson. Real-Time Collision Detection (The Morgan Kaufmann
Series in Interactive 3-D Technology). CRC Press, 12 2004.

[23] David Baraff. Physically based modeling: Rigid body simulation. SIG-
GRAPH Course Notes, ACM SIGGRAPH, 2(1):2–1, 2001.

[24] Alexis Paljic, J-M Burkhardtt, and Sabine Coquillart. Evaluation of pseudo-
haptic feedback for simulating torque: a comparison between isometric and
elastic input devices. In Haptic Interfaces for Virtual Environment and Tele-
operator Systems, 2004. HAPTICS’04. Proceedings. 12th International Sym-
posium on, pages 216–223. IEEE, 2004.

[25] Emanuele Ruffaldi, Dan Morris, Timothy Edmunds, Federico Barbagli, and
Dinesh K Pai. Standardized evaluation of haptic rendering systems. In
Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006
14th Symposium on, pages 225–232. IEEE, 2006.

51

[26] Chris Raymaekers, Joan De Boeck, and Karin Coninx. An empirical ap-
proach for the evaluation of haptic algorithms. In Eurohaptics Conference,
2005 and Symposium on Haptic Interfaces for Virtual Environment and Tele-
operator Systems, 2005. World Haptics 2005. First Joint, pages 567–568.
IEEE, 2005.

[27] Conti Francois et al. CHAI 3D set of libraries, 2009.
http://www.chai3d.org/.

52

http://www.chai3d.org/

Attachments

53

A. Programmer’s guide

This appendix provides information about implementation details of 6/3-DOF
haptic rendering algorithm and the Virtual Phantom tool. Firstly, a structure
and integration of 6/3-DOF haptic rendering algorithm in a CHAI 3D library
will be described. Next section will explain the implementation of VoxMap colli-
sion detection algorithm. A class that connects all parts of the haptic rendering
pipeline will be described in the third section. The fourth section will briefly
describe why and how shadow rendering was implemented. Finally, a Virtual
Phantom solution and project files will be described.

A.1 Integration into CHAI 3D

The 6/3-DOF haptic rendering algorithm is implemented as an extension to a
CHAI 3D SDK [27]. CHAI 3D is a scene graph API written in the C++ pro-
gramming language with aim to create a modular, open source and cross platform
haptic API with a wide support of different haptic devices.

Modules and groups

The CHAI 3D library is split into several modules and class groups that provide
specific tasks. The 6/3-DOF haptic rendering algorithm extends and utilizes
mainly these groups: Devices, Graphics, Math, Haptic Tools, Haptic Effects,
Force Rendering, Collision Detection, Timers.

Scene graph

The main unit of all objects in the scene graph is a cGenericObject class which
inherits from a general abstract type cGenericType. The generic object creates a
tree structure of objects using a standard template vector class of children objects
in a m children member.

A.1.1 Generic tool

The scene graph representation of a haptic device is called a tool. An abstract
class defining all tools in the scene graph is cGenericTool. The generic tool
contains a m device member of type cGenericHapticDevice which serves as a
wrapper for the communication with a haptic device driver.

There are three main methods called successively in a haptic loop running in
the haptic thread:

1. updatePose() - updates the position and rotation of the tool using the data
from the haptic device

2. computeInteractionForces() - compute interaction forces between the tool
and the virtual environment

3. applyForces() - apply computed forces to the haptic device

54

The only specific tool that CHAI 3D officially provides at this time is a 3-DOF
tool identified as a cGeneric3dofPointer. This thesis extends the CHAI 3D library
by adding a 6/3-DOF tool identified as a cGeneric63dofPointer and described
later in this chapter.

A class representing a force model is needed in order to compute forces in the
tool. The cGeneric3dofPointer class uses a cProxyPointForceAlgo class which is
an implementation of the God-object method described in section 2.2. This thesis
extends the CHAI 3D library by adding cGenericPointShellForceAlgo class which
represents all PointShell algorithms. The 6/3-DOF haptic rendering integration
structure is shown in Figure A.1. More detailed information about CHAI 3D can
be found in [5].

A.1.2 Application flow

A typical haptic application starts with loading the 3D data (e.g. mesh models,
volume data) and initialization. The process then uses two separate threads:
a haptic thread and a graphic thread. The graphic thread renders the virtual
environment at approximate frequency of 60 Hz. The haptic thread updates at
approximate frequency of 1000 Hz and runs the three main methods of the haptic
tool class mentioned above. Figure A.2 illustrates a typical flow of the application
using 6/3-DOF haptic rendering in CHAI 3D.

A.2 VoxMap

A class cVoxMap is a wrapper for the voxel tree defined by a root node member
m rootNode. It provides methods for adding a new mesh to the VoxMap, voxeliz-
ing the interior of the VoxMap, creating a proximity layer and rendering a voxel
tree visualization.

A.2.1 cVoxMapTreeNode

A cVoxMapTreeNode class represents a voxel tree node. The class has two tem-
plate arguments specifying its behavior.

The first template argument is sVoxMapTreeNodeConfig which is a structure
defining:

• voxelSize - size of the voxel in metres

• nodeDim - a number of subdivisions of the space in one dimension

• maxLevel - maximal depth of the tree

The second template argument is sVoxMapTreeNodeTraits which specifies a
behavior of voxel data manipulation. The programmer can use its own voxel
data structure in the voxel tree provided that he defines a specialization of the
sVoxMapTreeNodeTraits class.

55

cVoxMapTreeNode visitors

A cVoxMapTreeNode class accepts several visitor classes:

• cVoxelVisitor - visits voxel data in the current node

• cTraversalVisitor - traverses the tree depth-first

• cScanLineVisitor - visits voxels in a scan-line manner

Specified visitors are used for testing collision in the node, rendering the node
(cRenderVoxelVisitor) or voxelizing an interior.

A.3 6/3-DOF Pointer

A cGeneric63dofPointer class defines the 6/3-DOF haptic tool. It contains meth-
ods for computing virtual coupling and rigid body dynamics. It also stores cor-
responding constants and variables needed for computing the simulation based
force. The pseudo-haptic torque/force correlation system is applied by applyPseu-
doHapticsCouplingTorque method.

A.3.1 Point-shell force algorithms

PointShell force algorithms are derived from a cGenericPointShellForceAlgo class
parametrized by the template argument tPointShellVoxMapTreeNodeConfig. The
cGenericPointShellForceAlgo class contains PointShell data, properties and method
to compute the PointShell from the mesh using the VoxMap with the tPointShel-
lVoxMapTreeNodeConfig configuration.

cVoxelSamplingForceAlgo

A cVoxelSamplingForceAlgo class implements voxel sampling tangent plane force
model described in previous chapter. The class contains the VoxMap tree node
definition and the VoxMap itself. It provides method to compute the tangent
plane force and method to add the mesh to the VoxMap.

cProxyPointsForceAlgo

A cProxyPointsForceAlgo is an implementation of the trivial force rendering
method described in previous chapter as Proxy point set collision. It contains
method for computing the force response, updating the proxy position and set-
ting the surface friction.

56

Figure A.1: 6/3-DOF haptic rendering integration structure in CHAI 3D

57

Figure A.2: A typical flow of the haptic application

58

A.4 Shadow map light

A cShadowMapLight class implements support of casting shadows which greatly
improves spatial orientation as shown in Figure A.3. Shadows are rendered using
a basic shadow mapping technique utilizing FrameBuffer object, Pixel and Vertex
Shaders which are stored in a cShadowMapLight source file.

Figure A.3: Shadow

A.5 Virtual Phantom

Virtual Phantom application solution consists of two projects.

• The first project is a library called hdPhantomVirtual, which serves as a
wrapper and communication library with CHAI 3D. The communication is
made through named file mapping object (a memory-mapped system file).

• The second project is called Virtual Phantom which is a GUI application
using QT library to show the workspace of the Virtual Tool and menu bar.

59

B. User Documentation

B.1 System requirements

Hardware requirements

• PHANToM Desktop haptic device

• Quad-Core Intel Core-i7 2.4 GHz CPU with 4 GB RAM or better

Software requirements

• PHANToM Desktop 64-bit drivers

• Microsoft Windows Vista 64-bit operating system or Microsoft Windows 7
64-bit operating system

• Microsoft Visual C++ 2010 Redistributable Package or Microsoft Visual
Studio 2010

B.2 User study keyboard shortcuts

All user study testing applications have following keyboard shortcuts:

• S - turn on/off shadows

• D - show/hide wireframe model of the haptic device end-effector

• T - enable/disable vibrating pseudo-haptic effect

B.3 Running Virtual Phantom

Following steps are required in order to run the Virtual Phantom application
correctly:

• Copy VirtualPhantom.exe to the bin/ directory of the CHAI 3D SDK

• Backup hdPhantom.dll file in the bin/ directory of the CHAI 3D SDK

• Copy hdPhantomVirtual.dll to the bin/ directory of the CHAI 3D SDK

• Rename hdPhantomVirtual.dll to hdPhantom.dll

60

C. Contents of the accompanying
CD

The structure of accompanying CD is as follows:

• /bin - contains CHAI 3D SDK and compiled binaries of user study testing
applications for Microsft Windows 7 64-bit operating system along with
application data files

• /doc - contains the master thesis in PDF format, reference manual and
programmer’s guide

• /src - contains source code together with a Microsoft Visual Studio 2010
solution and project files

61

	Introduction
	What is haptics?
	Tactile sensing
	Kinesthetic sensing

	Applications of computer haptics
	Haptic devices
	Degrees of freedom
	PHANToM Desktop

	The goals of the thesis

	Haptic rendering
	1-DOF haptic rendering and stability issues
	Passivity

	3-DOF haptic rendering
	Direct rendering of vector fields
	God-object method
	Virtual proxy method

	6-DOF haptic rendering
	Direct rendering
	Simulation-based haptic rendering

	6/3-DOF Haptic rendering
	Trivial implementations
	Mesh-mesh collision
	Proxy point set collision
	Rendering of surface properties

	Philosophy of the final approach
	Collision detection
	Voxel tree

	Collision response
	PointShell representation
	Tangent-plane force model
	Force filtering

	Rigid body dynamics
	Explicit integration of Newton-Euler equations
	Stability of integration and semi-implicit integration

	Virtual coupling
	Pseudo-haptics
	6/3-DOF interaction
	Simulation-based solution to pop-through effect
	Integration of pseudo-haptics

	Virtual Phantom

	User study
	Testing applications
	Rabbit and hammer
	Pipe and torus
	Pipe and tube
	Piping and tube tool

	Results

	Conclusion
	Summary
	Future work

	Attachments
	Programmer's guide
	Integration into CHAI 3D
	Generic tool
	Application flow

	VoxMap
	cVoxMapTreeNode

	6/3-DOF Pointer
	Point-shell force algorithms

	Shadow map light
	Virtual Phantom

	User Documentation
	System requirements
	User study keyboard shortcuts
	Running Virtual Phantom

	Contents of the accompanying CD

