
Univerzita Karlova v Praze

Matematicko-fyzikální fakulta

DIPLOMOVÁ PRÁCE

Petr Kmoch

Exteriéry a interiéry ve virtuálních m¥stech

Kabinet software a výuky informatiky

Vedoucí diplomové práce: Doc. Ing. Ji°í �ára, CSc.

Studijní program: Informatika, obor Softwarové systémy, plán Po£íta£ová gra�ka



2

Cht¥l bych pod¥kovat docentu �árovi za jeho vedení a rady, kterými m¥ sm¥roval b¥hem práce,

a za zap·j£ení digitálního fotoaparátu. Také bych cht¥l vyjád°it pod¥kování doktoru Lambertovi

z Univerzity Nového Jiºního Walesu za jeho voln¥ pouºitelný kód pro výpo£et Delaunayovy trian-

gulace.

I would hereby like to thank associate professor �ára for his supervision and counselling which

guided me throughout my work, and for lending me a digital camera. I would also like to express

my thanks to doctor Lambert from The University of New South Wales for his freely usable code

for Delaunay triangulation.

Prohla²uji, ºe jsem svou diplomovou práci napsal samostatn¥ a výhradn¥ s pouºitím citovaných

pramen·. Souhlasím se zap·j£ováním práce.

V Praze dne 8. srpna 2006 Petr Kmoch



CONTENTS 3

Contents

1 Introduction 6

1.1 Speci�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Virtual reality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Virtual Old Prague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Structure & philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Important implementation details . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Interiors 10

2.1 Interior properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Introducing interiors into the VOP . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Windows and doors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Ceilings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Entry/exit points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.6 Furniture and other objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.7 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Interior implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Changes to the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Changes to script sector.php . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Changes to script vrml.php . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Changes to script surround.php . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 New script: surround_impostor.php . . . . . . . . . . . . . . . . . . . . . 20

3 Impostors 21

3.1 Displaying impostors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Impostor�sector interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Impostor generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 Texture area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Border images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.5 Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 External impostors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Impostor implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Changes to the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2 Changes to script vrml.php . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3 Changes to script surround.php . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.4 Changes to script sector.php . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4.5 New script: saveimp.php . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



CONTENTS 4

4 The program 40

4.1 Why an applet and an application? . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Inside the applet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 External authoring interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Threads and the socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 The stand-alone application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.3 Impostor generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.4 Impostor placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.5 Changes to the database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Conclusion 59

5.1 Performance & test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A Added building interiors 65

A.1 Faculty of mathematics and physics . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.2 St. Nicholas church . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



5

Název práce: Exteriéry a interiéry ve virtuálních m¥stech

Autor: Petr Kmoch

Katedra: Kabinet software a výuky informatiky

Vedoucí diplomové práce: Doc. Ing. Ji°í �ára, CSc., Katedra po£íta£· FEL �VUT

e-mail vedoucího: zara@fel.cvut.cz

Abstrakt: Virtuální Stará Praha je webová aplikace umoº¬ující prohlíºení centra Prahy vymo-

delovaného ve VRML. Tato práce ji roz²i°uje o moºnost prezentace interiér· a o impostory, coº

jsou zjednodu²ené £ásti geometrie scény pouºívané místo vzdálených model·. Interiéry jsou za-

loºeny na existující struktu°e VSP. Je p°idáno automatické generování interiérových st¥n, podpora

pro stropy a osv¥tlení. Interiéry je moºné doplnit do existujícího modelu bez nutnosti upravovat

modely dom·. Zárove¬ jsou do systému zavedeny hloubkové impostory. Mají pln¥ trojrozm¥rný

tvar vycházející z geometrie £ásti scény, kterou zastupují. To umoº¬uje v¥rn¥j²í zobrazení rozdíl·

v hloubce v porovnání s klasickými plochými impostory. Kaºdý impostor kv·li omezení velikosti

pouºívá jedinou texturu, p°edem vykreslený pohled na £ást scény, kterou zastupuje. Pro auto-

matické generování impostor· je dodán program v jazyce Java. Pro zobrazování impostor· jsou

zavedeny dva reºimy, které se li²í vizuální kvalitou a výpo£etními nároky. Na záv¥r jsou uvedeny

výsledky test· výkonu porovnávajících zobrazování impostor· s p·vodním systémem.

Klí£ová slova: virtuální realita, VRML, impostory, m¥stské scény

Title: Exteriors and interiors in virtual cities

Author: Petr Kmoch

Department: Department of Software and Computer Science Education

Supervisor: Doc. Ing. Ji°í �ára, CSc., Dept. of Computer Science and Engineering FEE CTU

Supervisor's e-mail address: zara@fel.cvut.cz

Abstract: Virtual Old Prague is a web-based application for browsing Prague's centre modelled

in VRML. This thesis extends the project with support for interior areas and impostors, simpli�ed

pieces of geometry used in place of distant models. Interiors are based on existing VOP structure.

Automatic generation of interior walls is added, as well as ceilings and lighting. Interiors can

be added to the existing model without the need to remodel existing houses. Depth-augmented

impostors are introduced into the system. Their geometry is a fully 3D shape based on actual

geometry they replace. This allows for better displaying of depth discontinuities compared to a

traditional �at impostor. A single texture, a pre-rendered image of replaced geometry, is used for

the impostor, thus keeping its size small. A Java program is provided for automatic generation of

impostors from the model. Two regimes are introduced for using impostors during browsing, with

di�erent visual quality and performance requirements. Results of performance tests are presented,

comparing use of impostors to the original system.

Keywords: virtual reality, VRML, impostors, urban scenes



1 INTRODUCTION 6

1 Introduction

1.1 Speci�cation

This thesis presents an extension of the project Virtual Old Prague (VOP), which is a virtual

reality presentation of Prague's city centre. The task of the thesis is to add two new pieces of

functionality: presentation of interiors and using impostors for looking into the distance.

1.2 Virtual reality

Virtual reality is a term used for presenting data by trying to simulate reality in an electronic

environment. This can range from rendering simple 3D scenes on computer screen to immersive

applications fooling human senses with specialized hardware. Virtual reality can be used for

simulating real-life situations (a virtual tour through a city or museum), interactive presentations

(presenting an engine model or perhaps the structure of a molecule) or visualisation of abstract

data like computation results. It has applications in research, education, military, industry and

entertainment.

The key points of virtual reality are three-dimensionality, freedom of movement and interac-

tivity. The ultimate goal of virtual reality is presenting a system indistinguishable from the real

world. While this still remains the domain of �ction writers, extensive research continues in the

�eld. From the point of view of approaching this goal, virtual reality systems can be classi�ed into

the following kinds:

Immersive VR This refers to the most perfect VR systems which make use of special hardware

like head-mounted displays and 3D sound systems for presentation. User input is carried

out via special out�ts (gloves or whole suits equipped with sensors) or via external sensors

(position tracking).

Augmented VR Augmented virtual reality combines real world with additional information. A

typical example is a pilot's head-up display presented on their visor.

Projected VR QuickTime VR1 is a typical example of projected VR. The basic idea is projecting

panoramic images, allowing for a high-quality, all-around view. While rendering speed is high,

the scenes are not actually 3D and thus user movement is limited to a pre-established set of

points. Due to size of the panoramic images, �les used can grow very large.

Multi-user distributed VR This approach to virtual reality focuses on interaction between

users. It uses the concept of avatars, 3D objects (usually humanoid models) representing the

user in the virtual world. A client/server architecture is used to allow the users currently

present to see each other.

Low-end VR This refers to virtual reality systems which do not require any special hardware

and can be rendered using a standard desktop computer. VRML and its successor X3D are

typical examples of this approach.

Virtual Old Prague, the base of this thesis, is implemented in VRML. VRML stands for Virtual

Reality Modeling Language. It is a language for specifying 3D scenes (called �worlds�) in text

format [2]. Worlds are then displayed using VRML browsers, which render the 3D world and allow

1A commercial system by Apple Corporation



1 INTRODUCTION 7

the user to move about and interact with the scene. VRML is designed for easy usage on the

Internet, so most VRML browsers exist as plugins into web browsers.

Since its creation, VRML has evolved. A new standard, X3D, has been introduced. X3D is

based upon XML and o�ers a better mechanism for modularization and handling extensions. The

traditional text format of VRML has been retained as one possible form of X3D syntax.

Even though the new standard is preferable, VRML is used in this thesis. This is due to the

fact that the VOP project is written in VRML, as it dates to before X3D was introduced.

1.3 Virtual Old Prague

Virtual Old Prague was created as a student project on the Faculty of Mathematics and Physics of

Charles University in Prague, under supervision of Doc. Ing. Ji°í �ára, CSc. It is now maintained

by the Czech Technical University in Prague, Faculty of Electrical Engineering. Present version

can be viewed at http://www.cgg.cvut.cz/vsp/.

The original VOP allows the user just to move around the streets. It can be con�gured with

parameters like detail level and visibility distance to tailor model complexity to the user's hardware

capabilities. O�ering reasonable browsing speed at a wide range of client machines was the primary

goal of the project.

1.3.1 Structure & philosophy

VOP is built as a web-based application. While it contains a huge and complex model of Prague's

centre, it is not too demanding on rendering resources, as the model is not downloaded in its

entirety during browsing. The street network is divided into small areas called �sectors�. Abstract

visibility cost is de�ned between sectors and only those sectors visible from the one the user is

currently in are downloaded and displayed. The visibility cost threshold is a parameter that can

be speci�ed by the user as part of customizing their browsing session.

A sector is polygonal in shape, its sides are referred to as �borders�. A border can either contain

one or more houses or it can be a so-called �gate� connecting two adjacent sectors. A gate is a

complex mechanism which, when the user walks through it, initiates the process of discarding

sectors no longer visible and downloading new ones.

The city scene is divided into separate models for each house or important object, which are

stored in the server �le system. The street plan, referred to as city topology, is stored in a database

with references to these models, along with supplemental data.

Each house model can be supplied in multiple levels of detail (LODs). The system de�nes four

levels, with level 1 being full geometry and increasing levels being of worse visual quality, up to a

�at single-colour face at level 4. As part of session customization, the user can choose which level

of detail the entire scene should be rendered in. Alternatively, geometry nearest to the user can be

rendered at level 1, with higher levels being used with increasing distance of the model from the

user, where losing details matters less.

The system is designed for viewing from ground level only. The vast majority of house models

only contain their front sides and perhaps a part of roof visible from the street. This helps limit

the amount of data required for download.



1 INTRODUCTION 8

1.3.2 Important implementation details

Some implementation concepts of VOP are detailed here which are relied upon in the rest of this

thesis. For a complete documentation of VOP, refer to [1]. Getting familiar with the implemen-

tation innards of VOP is advised for understanding the implementation of the program written as

part of this thesis as well as changes made to the VOP itself.

Server structure The VOP server is a set of PHP scripts deployed on a web server. Models of

houses and objects present in the city are stored as �les in the server �lesystem, but VRML �les

for the scene itself (i. e. combining the models into a world) are generated on the �y by these PHP

scripts. These are the most important ones:

sector.php This script produces the VRML �le for one sector. Models of houses in the sector are

included in it via Inline nodes. The entire �le is encased in a Group node, whose �rst child

is a parameter node (instance of custom prototype PAR) which carries the sector's identi�er.

The world-controlling script (see below) relies on the fact that the sector �le is enclosed in a

single node and that the parameter node is its �rst child.

surround.php This script retrieves data related to sector switching from the database. Each pair

source sector�destination sector has its own parameters, which include sectors to be loaded

and discarded and gate positions in the destination sector. This data is encapsulated in

VRML to be usable by the world-controlling script.

vrml.php The VRML �le generated by this script represents the entire scene. It contains a root

node for all geometry and all sectors are added to the world as child nodes of this root. The

most important part of the generated �le is a Script node called SCR. This world-controlling

script implements all the logic behind sector switching and management. It is responsible for

downloading new sectors and discarding those no longer needed. It also operates the head-up

display.

Sector-switching mechanism The user can only walk from one sector to another through

a gate. Each gate is an instance of a prototype called PROXG. An important aspect of gates is

that they are not part of any sector. Instead, eight global instances of gates exist, and these are

positioned on the relevant borders of the active sector when the sector is entered. When the user

walks through a gate, the gate sends an event to SCR.

SCR knows which sectors to load and which to discard from the sector-switching parameters

obtained from surround.php. Sector loading is initiated via function load_sect. Upon receiving

sector data, it calls done_sect, which inserts the sector into the scene graph. Sectors are removed

from the scene via function del_sect. Rather than discard the sector altogether, it is inserted

into a sector cache. The cache is organized as LRU and its implementation is quite complicated.

load_sect �rst searches for the sector in the cache and only when it is not found there it asks the

server (sector.php) for its data.

Database City topology and geometry information is stored in the tables sector, border,

vertex, lnode and node. Table sector contains the sector's ID and information about its surface.

A sector is a polygon whose points are stored in table vertex. Borders are speci�ed in table

border. It contains a reference to the sector to which the border belongs and the two vertices



1 INTRODUCTION 9

which constitute the border. These are referred to as a and b. Note that borders are orientation-

sensitive � AB and BA represent two distinct borders. This notion is very important for the

impostor placement process introduced in this thesis. Borders on a sector's edge must appear

in counter-clockwise order (seen from above). That is, only a border's left-hand side is normally

designed for being viewed.

A border can be of type `wall' or `proxi'2. A `proxi' border represents a gate, as mentioned

above. A border of type `wall' denotes geometry � it can contain one or more �lnodes� (linked

nodes). Each lnode represents a building and has its own geometry �le.

A node, often referred to as �free-standing node�, is a piece of geometry not linked to a border.

Free-standing nodes include objects like trees, lamps, tram stops and fountains. Each node has its

own VRML �le.

1.4 Goals of this thesis

Two tasks were set in the speci�cation of this thesis � adding interior presentation and impostors

to the VOP system. Both of these tasks were accomplished. Interiors are dealt with in chapter 2,

implementation of impostors is detailed in chapters 3 and 4.

Throughout the implementation, it was attempted to conform to the existing structure and

conventions of VOP, to maintain consistency in code in terms of identi�er selection etc. Care was

taken to ensure the new system can be con�gured to behave exactly like the old one (i. e. to make it

possible to disable all functionality added). Changes to existing database structure were minimized

in favour of adding new tables, to prevent accidentally breaking the functionality of existing VOP

code.

VOP also comes with several tools for designers of models for the virtual city. These were

not updated to re�ect the additions made and likewise, no new user-oriented authoring tools

were created. For impostors, a simple program which o�ers design functionality was created (see

chapter 4). Interiors presently have to be entered into the database by hand. Creating complex

authoring tools in addition to implementing the presentation systems themselves would probably

require a team of programmers and was thus considered beyond the scope of this thesis.
2Other border types exist, but these are not relevant now



2 INTERIORS 10

2 Interiors

One part of the work to be accomplished by this thesis was to allow the user navigating the virtual

world to enter houses, courtyards and similar interiors. Two main steps were needed to facilitate

this: a mechanism to perform the transition between the exterior and an interior area, and means

to present the interior visually.

2.1 Interior properties

Since courtyards are in a way already present in the original VOP, the main focus was put on

building interiors. Common building interiors seem to share the following characteristics:

• They are partitioned into small blocks (rooms, corridors) with few and precisely-de�ned

points where moving from one block to another is possible. Also, usually only the immediately

adjacent blocks are visible from a given block.

• The blocks' boundaries are formed by vertical walls, either of �at colour or bearing repetitive

designs, such as wallpapers, ornaments or masonry.

• Blocks have ceilings, which share much of the characteristics of walls, though they sometimes

have more complex geometry.

• Actual objects found in interiors vary enormously, though some architectural features like

windows, stairways and doors are common.

• Windows and doors present a link between an interior and its surrounding exterior area.

Based on these observations, it became apparent that interiors share many of the properties of

exterior areas as they are handled by the VOP. The one thing most obviously missing is support

for ceilings.

2.2 Introducing interiors into the VOP

2.2.1 Blocks

When designing an interior, a block such as a room or corridor is represented as a sector. This

allows for VOP's visibility mechanism to be used. On the implementation side, it brings a major

saving, as the procedures already present for loading, displaying and caching sectors can be used

without modi�cation to manage interiors as well.

2.2.2 Walls

The system of lnodes as present in the VOP could also be used to represent interior walls3, but

it is obviously ill-suited for this. A typical lnode is a �at face representing the front side of a

house (possibly with indented windows) with an arbitrarily-shaped top. Depending on the LOD,

it is either textured with a single large texture (a photo of the house), or contains many additional

small faces, each displaying a texture (usually of a window).

Interior walls have di�erent requirements. As has been stated, they are usually �at-coloured or

could be easily textured by repeating a small texture. More importantly, their shape is very much
3Interior borders would then be of the existing type `wall'



2 INTERIORS 11

enforced by the �oor and ceiling, and it would thus be pointless to require modellers to model their

exact contours. Instead of using lnodes, a new type of border, `inwall', was introduced.

The geometry for an inwall border is generated dynamically when the sector is loaded (for de-

tails, see section 2.3.2). Each inwall can be assigned a colour and/or a `wallpaper'. A wallpaper

is an entity similar to a texture prototype. It represents a texture and two scaling parameters,

size_s and size_t. As default, the texture is repeated on the generated wall and these parame-

ters determine the size (in metres) of the texture's image. It can also be speci�ed that the texture

should not be repeated in one or both axes. In such a case, the texture is scaled to �t the generated

wall exactly.

inwalls are generated in such a way as to be compatible with the LOD system present in VOP.

An inwall with a wallpaper is treated as detail level 2, an inwall with colour as level 4. If both

are speci�ed, the system can generate both versions and use them as LODs as appropriate4.

While most interior walls conform quite well to the above scheme, some don't. Forcing all

interior walls into being �at and bearing either a texture or colour was considered as too restrictive.

Therefore, the system also allows VRML �les to be speci�ed for inwalls. These follow the standard

naming convention used in VOP. In practice, they are most useful for providing detail level 1 or 3

for an interior wall. However, if a �le for level 2 or 4 is speci�ed, it is used instead of the generated

geometry (i. e. �les take precedence). For example, an ornament-decorated wall with a small alcove

could be created by specifying a wallpaper for the ornaments, a colour and a level 1 �le containing

the entire wall with the alcove. The wall would then have three valid LOD levels; level 1 from the

�le and levels 2 and 4 generated by the system.

It is assumed that interior walls will be created by using inwall borders. However, nothing stops

the designer from assigning any other border type (like wall) to a border representing an interior

wall. Not imposing any limitations on this was arbitrary, to give designers more freedom when

creating exotic interiors. It is also possible to go the other way round and use an inwall border

for a non-interior setting. However, care has to be taken, as the inwall generation mechanism

relies on ceiling data being speci�ed. See section 2.2.4 for details.

2.2.3 Windows and doors

From a wall's point of view, windows and doors are very similar. They are openings, usually

rectangular in shape, which allow the user to see beyond the wall. For a border of type inwall,

it is possible to specify one or more windows or doors (collectively referred to as `holes' in the

inwall generation algorithm) contained in that border. The position of a hole is speci�ed as an

o�set from the border's starting point. Width and height are also speci�ed, as well as elevation

of the hole's bottom edge from the border's ground level. The elevation is primarily useful for

windows, but it can also be used for doors, for example when a door is located above a short �ight

of stairs.

Doors serve an additional function compared to windows � they allow the user to walk through

them and enter di�erent parts of the interior. This translates as entering a di�erent sector. The

existing system of gates was used to facilitate this. A gate (PROXG) is placed on the position of

each door speci�ed5. This approach allows the entire sector-switching mechanism to be used on

interiors without modi�cation. The destination sector is speci�ed as a parameter of the door.
4For details on the LOD system, see [1].
5Note that this limits the number of doors in one sector to the number of gates supported by the VOP system

(currently 8).



2 INTERIORS 12

For the sake of the wall generation algorithm, only rectangular windows and doors are allowed.

This is no serious limitation, as the vast majority of real-world windows and doors conform to it.

It is possible to design walls with arbitrarily shaped openings by hand, bypassing the generation

mechanism. It is also possible to create a wall with fancy-shaped windows as LOD level 1, and

have rectangular windows in worse quality levels generated automatically.

The same holds true for doors. However, in order to have the sector-switching mechanism work

properly, the door must be speci�ed in the system (in the database) even if it is not used in the

wall generation process (i. e. the wall is not generated automatically).

Windows and doors also allow the user to see through the wall they are in. This breaks into

two major cases: seeing into a di�erent part of the interior and seeing out of the interior altogether.

Looking into the same interior Openings which reveal another part of the same interior are

usually doors, as windows between two adjacent interior blocks are rare. This simpli�es the matter,

as it means the sector visible through the door must be already loaded. There is thus no problem

in letting it be seen.

It was considered whether impostors could be used in doorways, as they are on exterior gates.

However, the overall scale of interior areas is much smaller than that of exterior ones. Impostors

for such close-up use have to be of better quality than those used in exteriors, as was also shown in

[6]. Adding such an extra level of complexity would complicate and slow down the already time-

expensive impostor generation algorithm (see section 4.4.3). Also, the algorithm would have to

be modi�ed to include free-standing nodes into the impostor geometry, as they form a substantial

part of an interior's appearance. Rather than complicate matters that much, it was decided not

to use impostors in interiors.

Looking outside In contrast with seeing into the same interior, the surroundings of a building

are primarily visible through windows. They are thus inaccessible and therefore it is unnecessary

to keep their complete sector information in memory. Here, impostors were found to be the ideal

solution. They represent much simpler data than complete sector geometry and o�er a view

without distance limitations, which is just what the user expects. Surroundings seen through

windows are mainly perceived as background, just `at a glance'. Under these conditions, limited

visibility distance would hamper visual quality more than low detail level.

2.2.4 Ceilings

Ceilings are a major feature of interiors, and one not present in the original VOP at all. However,

in many ways, a ceiling is identical to a �oor. With this in mind, it was decided to implement

ceilings by adapting the current mechanism for rendering �oor. This mechanism constructs the

�oor as a surface from a series of points with optional triangulation and appearance information.

These points include all the vertices of the sector edge, plus any additional points speci�ed as part

of �oor de�nition by the designer. This mechanism clearly suits most ceilings as well. However,

one important piece of information missing is wall height.

In order to implement ceilings, several attributes were added to the database. It is possible

to specify whether a sector has ceiling, and to specify the ceiling in exactly the same format as

that used for �oors. Each vertex can also be assigned a wall height, representing the height of

the ceiling above this vertex. The scripts assume that if a sector is speci�ed to have ceiling, all

its vertices have wall heights speci�ed. This wall height information is then used to compute the



2 INTERIORS 13

points forming the basis of the ceiling (analogous to the vertices on sector edges for �oor) as well

as during inwall generation.

The surface rendering mechanism used can theoretically create arbitrarily complex ceilings,

but it does have downsides. All the geometrical data must be stored in the database, and, most

importantly, all textures to be used on the ceiling must be prototyped and de�ned as appearances.

This is OK for mostly �at ceilings of constant colour or bearing a repetitive texture. For really

complex ceilings, like a cathedral's, for example, this approach becomes too cumbersome. In such

cases, it would be more practical to specify the ceiling using a VRML �le.

The existing mechanism of free-standing nodes was used for this. To create a sector with a

complex ceiling, the designer marks it in the database as not having a ceiling6. Then the ceiling

is created and inserted into the model as any other node would be. This means that such ceilings

are subject to the LOD mechanism as normal. Note that even for such a sector, it is possible (and

probably desirable) to specify wall heights in vertices. These will be used for generating the shape

of inwalls.

2.2.5 Entry/exit points

In the real world, an interior is accessed by passing through a door, similar to one found in interiors.

However, in the VOP, it would be impractical to use the mechanism for interior doors (described

in section 2.2.3) to implement interior access doors as well. There are two main reasons for this.

First, it is desirable to clearly separate interiors from exteriors. Thus, when inside an interior,

there should be no exterior geometry loaded. The door mechanism uses gates, and would thus

require the �rst interior sector entered to be adjacent to an exterior sector, so both would have to

be in memory when passing through the door.

Second, using the door mechanism would require re-designing the lnode of a house when an

interior was created for the house, which is obviously unnecessary.

There would be other drawbacks to this approach, too. The system of doors would have to be

expanded to work on borders other than inwalls, and the door openings themselves would cause

unnatural-looking holes in the house when viewed from such a distance that the interior sector

would not be loaded.

Clearly, a separate mechanism for accessing interiors was needed. A VRML prototype named

�Doorway� was designed for this. It is an invisible, clickable piece of geometry coupled with a

proximity sensor. When the user is close enough to the doorway, they can click it and the system

will transport them into the associated interior (or vice versa). A doorway is rectangular in shape,

with its size freely speci�able in the database. Each doorway is linked to a border or an lnode,

with its position speci�ed as an o�set from its start. Elevation of the doorway's bottom edge from

the border's level can also be speci�ed. The intended use of a doorway is to place and size it so

that its clickable area lies over the image of the real-world door in the house's model7.

A doorway's destination is referred to as an entrance. An entrance consists simply of a point

in 3D space, camera orientation and sector number. It is basically identical to a VOP viewpoint

(a location), but it was decided to use a separate entity for entrances. It would seldom make

sense for the user to select an entrance as their starting point of browsing the city model, and the

number of entrances, two for each real-world doorway8, would clutter the list of viewpoints.
6Which actually means not having an automatically generated ceiling.
7Or in the model of an interior wall. Dooways are used for exiting interiors as well as entering them.
8One each for the interior and exterior side



2 INTERIORS 14

2.2.6 Furniture and other objects

The VOP already contains the mechanism of free-standing nodes, which can be used to add an

arbitrary object into the model. Due to the variability of potential objects found in interiors (as

pointed out in section 2.1), no specialized system for them could bring substantial bene�ts over

the generic one. Thus, it was decided to leave the entire support for furniture and architectural

phenomena like stairs or pillars on the node mechanism.

2.2.7 Lighting

The original VOP contains no lighting at all, as it doesn't require it. House exteriors are represented

by textures and thus aren't subject to lighting. Where textures are not available, colour faces are

de�ned with emissiveColor, and thus require no lighting either.

This is unsuitable for interiors, where large surfaces of �at colour are common. The absence

of lighting makes it impossible to discern face boundaries, e. g. tell the wall from the ceiling, when

they are of the same colour. Point lights and spotlights can be inserted into the scene via the node

mechanism. However, this does not hold for directional lights, which are probably best suited

for lighting interiors, as they can easily simulate sunlight coming in through windows. The node

system inserts each object into its own Transform VRML node, which renders directional lights

useless9. Thus, it was necessary to allow directional lights to be added into the system.

It was decided to link directional lights to sectors. This makes it easy to place the light's

VRML node on the correct position in the scene graph. Also, each sector can thus have its own

light parameters, which is useful. The system allows for all of the light's attributes to be set,

namely colour, direction, intensity and ambient intensity. Each sector can only be assigned one

light, and of course can be left without a light altogether. Directional lighting is not limited to

interior sectors, though there it is most useful.

2.3 Interior implementation

This section describes the implementation details of the interior-related features described in sec-

tion 2.2.

2.3.1 Changes to the database

Support for interiors is the only part where changing the structure of existing database tables was

necessary. In the table border, a new value, `inwall', was added to the �eld type. All the other

changes were accomplished by adding new tables to the database. A list of these tables follows.

entrance (id, sector_id, x, y, z, orient)

This table contains information about entrances. For each entrance, it speci�es its position,

view direction and the sector it is in. Entries from the ldoorway table refer to entrances by

their id �eld. Entrances and doorways are discussed in section 2.2.5.

indoor (id, border_id, offset, elev, width, height, neighbour)

Each entry in this table represents a door connecting two interior sectors. The door is present

on the border border_id. It is a rectangle with the speci�ed width and height. offset

9See [2], section 6.18



2 INTERIORS 15

and elev specify the position of its lower right-hand corner (when looking at the border).

offset is the distance from the border's starting vertex, measured in the XZ plane. This is

similar to the offset �eld in table lnode. elev (and height) is only used for rendering the

door, that is, when the border speci�ed is of type inwall. It speci�es the elevation of the

door's lower edge above the border's starting vertex, measured along the Y axis.

A gate (PROXG) is placed on the position of each door, matching its width. neighbour speci�es

the destination sector. See section 2.3.2 on how door data is used for wall generation.

inwall (id, color, wallpaper_id, koef, filename)

This table holds additional information for borders of type inwall. id is a reference into

the table border. Both the �elds color and wallpaper_id are optional, though at least

one of them should be speci�ed. color contains the wall's colour, used for generating LOD

level 4. It is interpreted as a 3-byte number specifying the red, green and blue components,

with blue being the least signi�cant byte. wallpaper_id is a reference into table wallpaper

and is used to generate LOD level 2. koef has the same meaning as in table lnode, namely

the scaling factor of distance at which di�erent LODs are swapped. filename speci�es the

directory containing geometry �les for one or more LODs of this wall. It can be left blank.

Data from this table is used to generate interior walls, as outlined in section 2.2.2.

ldoorway (id, line_type, line_id, offset, width, height, elev, entrance_id)

This table speci�es doorways, which are used to transfer the user between interiors and

exteriors. Each doorway is linked with a `line', either an lnode or a border, as speci�ed

by the line_type �eld. line_id then references the appropriate table. offset, width,

height and elev have identical meaning as those in table indoor. Only for doorways linked

to an lnode, the position of the lower right-hand corner is relative to the lnode's starting

point, not the border's. entrance_id speci�es the destination entrance of this doorway as a

reference into table entrance. Use of doorways and entrances is described in section 2.2.5.

sector_flags (sector_id, flags)

This table is designed with future expansions in mind. It allows di�erent �ags to be speci�ed

for sectors, which are indeti�ed by sector_id, a reference into table sector. Currently, it

contains only one possible �ag, `interior'. Sectors marked with this �ag are considered

interior when such a distinction is called for. Currently, this only applies in the impostor

placement algorithm (see section 4.4.4).

sector_interior (id, has_ceil, ceil)

This table speci�es ceiling data for sectors. id is a reference into table sector. has_ceil

and ceil are analogous to �elds has_surf and surf in that table, but refer to the ceiling

rather than �oor. Ceiling generation is described in section 2.2.4.

sector_light (sector_id, color, intensity, ambient, x, y, z)

This table speci�es directional light present in a sector. sector_id identi�es the sector in ta-

ble sector. color speci�es the light's colour. It is interpreted as a 3-byte number specifying

the red, green and blue components, with blue being the least signi�cant byte. intensity

and ambient specify the values for the directional light's intensity and ambientIntensity



2 INTERIORS 16

VRML �elds, respectively. x, y and z are the components of the light's direction vector.

Sector lighting is discussed in section 2.2.7.

surround_impostor (sector_id, impostor_id)

This table speci�es which surround-type impostors are to be used in which sector. More than

one impostor can be speci�ed for a sector, and an impostor can be used in more than one

sector. sector_id references table sector and impostor_id table gener_impostor. Use of

surround-type impostors is discussed in section 2.2.3.

vertex_height (id, height)

This table contains additional data for some vertices. id identi�es the vertex in table vertex.

height gives the height of the ceiling in this vertex. Heights are used for ceiling and interior

wall generation; refer to sections 2.2.4 and 2.2.2 for details.

wallpaper (id, texture_name, size_s, size_t)

Each entry speci�es a wallpaper. texture_name is the name of the wallpaper's �le, which

must be present in folder vsp/wallpapers. size_s and size_t determine the scale of the

texture along the S and T axis, respectively. A size of 1.0 means the texture image is

considered to be of size 1 metre. Specifying a size of 0.0 for an axis prevents the texture from

being repeated along that axis. Instead, it will be stretched or shrunk to �t the wall exactly.

Wallpapers are used for interior wall generation, as outlined in section 2.2.2.

2.3.2 Changes to script sector.php

Several changes were necessary in the sector-generation script. Support for generating ceilings and

interior walls was added. Placement of doorways is also governed by this script, as well as sector

lighting.

Ceiling generation The process already present for generating sector �oor was re-used with

minimal modi�cations to generate the ceiling as well. Some changes had to be made to the classes

in surface.php to accommodate for the fact that more than one default appearance can exist,

namely one for the �oor and one for the ceiling. The default appearance for the ceiling is not a

texture, but a �at light grey colour.

Interior wall generation For a border of type inwall, the system can use �les or generate

geometry as necessary. Files for any LOD can be present. Generated geometry with a wallpaper is

treated as LOD 2, geometry with �at colour as LOD 4. inwalls are subject to the LOD mechanism

just like lnodes, so one or more LODs can be inserted into the scene as required. If LOD of level 2

or 4 is required for the scene and no �le is speci�ed for it, the system will generate it if a wallpaper

or colour is speci�ed, respectively.

If both levels 2 and 4 are being generated, they share their geometry data via a DEF/USE

construct. The geometry is generated by algorithm 1.

The goal is to divide the wall up into quads so that all windows and doors, collectively referred

to as �holes�, are at their right positions. First, all holes in the border are retrieved from the

database and sorted according to their position in right-to-left, bottom-to-top order. The wall is

then divided into vertical stripes, a dividing line placed on both vertical edges of each hole. Each

stripe is then processed separately.



2 INTERIORS 17

Algorithm 1 Interior wall generation
holes =getHolesFromDatabase(borderId );

sort(holes,"offset, elev");

stripes =splitByVerticalEdges(holes );

for each stripe in stripes {

strata =splitByHorizontalEdges(stripe );

for each stratum in strata {

if nonHole(stratum ) geomery. addQuad(stratum );

}

}

return geometry ;

The stripe is divided into horizontal �strata�. Dividing lines between strata are placed at

horizontal edges of holes present in the stripe. Unless holes intersect, this yields alternating `wall'

and `hole' strata. `Wall' strata are then added to the generated geometry as quads.

This algorithm ensures that the wall is properly divided into quads, which leads to a simple

triangulation. The wall is then rendered as an IndexedFaceSet. An example of dividing a wall

into stripes and strata is given in �gure 1.

Figure 1: Quads generated for an interior wall

For common walls, algorithm 1 would actually produce less quads if the wall was divided �rst

into horizontal strata and these into vertical stripes. However, this would complicate the algorithm

considerably. While a wall's left and right edges are always vertical, its top and bottom edges can

be angled. This happens when the sector's �oor or ceiling is sloped, as is common for stairways.

Having the edge corresponding to the major axis angled could cause some quads to degenerate into

triangles (see �gure 2) and would require many extra checks in the algorithm. Overall, simplicity

of the generation algorithm was preferred.

Sector lighting The addition of the per-sector directional light was pretty straightforward. If a

light is speci�ed for the sector, a DirectionalLight VRML node is inserted into the sector scene

graph's topmost Group node, the one containing the sector's PAR node as well as all its geometry.

This ensures that all objects present in the sector are a�ected by the light. All parameters of the



2 INTERIORS 18

Figure 2: Quad degenerated into a triangle under horizontal-major approach

light are taken from the database.

Doorways For doorways, a new VRML prototype called �Doorway� has been added to the gen-

erated sector �le. The prototype encapsulates a transparent, non-collidable box, a touch sensor, a

proximity sensor and a short controlling script. When the user enters the proximity sensor's area,

the touch sensor is enabled and the doorway becomes clickable. The proximity sensor is included

so that the user doesn't enter a distant doorway by accidentally clicking on it. Also, being able to

enter a door tens of metres distant could disturb the browsing experience.

Clicking the doorway generates an eventOut MFFloat set_location event on the Doorway

instance. Several pieces of information have to be transmitted at the same time, so MFFloat

was chosen as the event type. The content of the generated array is: [ sector_id, x, y, z,

orientation ]. It represents the destination entrance. The data for it is retrieved from the

database and stored in the Doorway's �elds when the sector is being loaded.

This event has to be routed to the entire world's main SCR script somehow. To facilitate this, an

exposedField MFFloat new_location10 was added to the sector's PAR prototype. Each doorway

in the sector then routes its set_location event to this new_location. The main SCR script node

can access the sector's MY_PAR node and read the new_location event. See also the changes in

vrml.php.

2.3.3 Changes to script vrml.php

Two changes in vrml.php were necessary to support interiors, moving the user when they click a

doorway and facilitating the display of surround-type impostors. All other interior-related features

are either handled in sector.php or use the standard mechanisms present in VOP.

Doorways When the user clicks a doorway, the sector containing the doorway generates a

new_location event on its MY_PAR node. To process this event, eventIn MFFloat set_entered_

location was added to the script SCR. When a sector is loaded (in function done_sect), a route

is dynamically established from its new_location to SCR's set_entered_location.

At �rst, set_entered_location was implemented simply as a wrapper for calling the already

present viewpoint-switching mechanism, as a viewpoint and an entrance have identical parameters.

However, a problem arose, as the process of switching to a new viewpoint includes removing all

currently loaded geometry from the scene. Most of the time this would be desirable, as interior
10The exposedField is used as a �pipe� to receive data from within the sector and pass it onward. The stored

value is not used for anything.



2 INTERIORS 19

and exterior sectors are not displayed at the same time. However, when the session is con�gured

to show the whole model (visibility is set to `all'), entering an interior caused the entire

world to reload. This was of course unacceptable and so set_entered_location was altered.

It is still based on the viewpoint-switching mechanism, but it bypasses the geometry sweeping.

Also, when the sector being entered is already loaded, it also bypasses the blackout/blackin e�ect.

However, the core of the sector-switching mechanism, function set_new_sector, is still used in

set_entered_location.

Surround-type impostors Each sector can de�ne any number of surround-type impostors to

be displayed together with the sector. Each surround-type impostor is placed on a border. Unlike

proxi-impostors, surround-type impostors do not participate in the sector imposting mechanism

(see section 3.1.2 for details), so their management is considerably more simple.

The mechanism for dealing with surround-type impostors is very similar to the one for dealing

with sectors. Which surround-type impostors are to be added or removed is governed by the script

surround.php. The actual addition and removal is performed by the SCR script node.

The management of loaded surround-type impostors is similar to that of loaded sectors11 and

is contained in the �elds a_surrimp_loaded, i_surrimp_loaded and surrimp_req. When a

surround-type impostor is added to the scene, it is also added to the end of the a_surrimp_loaded

array. Its index is remembered in the associative array i_surrimp_loaded. Deletion is handled

di�erently than for sectors. Rather than keep a list of holes in the a_surrimp_loaded array, the

array is shortened by one upon removing an element. The element to be deleted is replaced by the

last element in the array, whose entry in i_surrimp_loaded is updated to re�ect its new position.

Loading of surround-type impostors is initiated in the function done_par, according to the

sector-switching parameters, in a manner similar to loading sectors. Surround-type impostors are

generated by a new script, surround_impostor.php, which is described in section 2.3.5.

There is also a cache for surround-type impostors, where they are placed when removed from the

scene. To avoid the complexity of a true LRU cache as present for sectors, the cache for surround-

type impostors is simply FIFO, implemented as a cyclic array. In order to allow this, impostors are

not removed from the cache when added to the scene. At the core of the cache is an associative array

formed by a a_surrimp_cached, i_surrimp_cached pair. An integer �eld, surrimp_cache_start

is used to point at the oldest element in the cache (i. e. the one to be removed next). When a

surround-type impostor imp is removed from the scene, it is added to the cache. If the cache is

already full, the oldest element is replaced by imp and surrimp_cache_start is increased by one,

looping back to 0 if the array's end is reached. The cache can hold 8 surround-type impostors.

This number was chosen to allow for four views out of the building and perhaps four views into a

courtyard or similar area, and should thus be su�cient for most interiors whilst still keeping the

cache's memory footprint small. The cache is designed to speed up loading when walking around

one interior; keeping surround-type impostors for separate interiors is not its purpose.

2.3.4 Changes to script surround.php

surround.php speci�es the parameters of switching from one sector to another. Two changes were

necessary, determining surround-type impostors to add/remove and allowing for gates to be placed

on interior doors.
11See [1] for details of sector management.



2 INTERIORS 20

Surround-type impostors Two MFNode �elds were added to the PAR prototype, addSurrImp

and removeSurrImp. These contain the numbers of impostors to be added to the scene or removed

from it, respectively. They are computed as set di�erences between surround-type impostors visible

from the sector being entered and the one being left.

Doors The standard mechanism of determining gate positions was used to place gates on doors.

Relevant door data is retrieved from the database and gate positions are calculated accordingly.

They are then added to the arrays already used for gates on proxi borders. This means that the

sum of proxi borders and interior doors present in a sector is limited by the number of PROXGs

available in the system, which is currently 8.

2.3.5 New script: surround_impostor.php

This script is responsible for generating a VRML �le for a surround-type impostor. Its function is

similar to that of sector.php, but it is considerably less complex.

The generated VRML �le is fairly simple. It contains only a PAR node identifying the impostor

and an inline of the impostor �le as speci�ed in the database. The structure of the generated �le

is as follows:

PROTO PAR [

exposedField SFString my_id ""

] {

Group {}

}

Transform {

place_impostor_on_border

children [

PAR { my_id "impostor_database_id " }

Inline { impostor_file }

]

}

Note that surround-type impostors are not subject to any further Transforms. They are inserted

into the scene just as this script sends them. Therefore, this script retrieves the position of

the impostor's border from the database tables border and vertex and translates & rotates the

impostor accordingly.



3 IMPOSTORS 21

3 Impostors

An impostor is a simpli�ed representation of a part of the scene, used in place of the part's actual

geometry when visual quality is not too important. Unlike a model with lower level of detail,

an impostor usually replaces more than one object and its geometry need not correspond to the

geometry of the replaced objects at all. The simplest and perhaps most typical impostor is a �at

face or �billboard� with a texture which holds a pre-rendered image of the objects replaced. In

common use, the word �impostor� usually refers to such a billboard.

As discussed in [5, 6], such impostors o�er very poor visual quality. In practice, they can only

be used for views from points very close to the point their texture was rendered from, otherwise

their nature becomes immediately obvious and detracts from the overall visual quality of the scene.

As an upside, though, they o�er the simplest solution, both in terms of geometry complexity and

texture size.

A better approach is suggested in [5]. An impostor's texture stays the same, a pre-rendered

image of the part of the scene to be replaced. But the geometry is augmented by depth information

obtained from the Z-bu�er during the texture's rendering. Thus, the impostor is no longer a �at

face, but a fully 3D mesh. This improves the overall visual quality of the impostor and allows for

self-occlusion and parallax e�ects, making the impostor usable under a greater range of viewing

angles and distances. Points on depth disparity lines are included in the mesh, ampli�ed by a

rectangular grid to achieve �ner triangulation. Constrained Delaunay triangulation is used to

construct the mesh. The example application given is an urban scene.

This method seemed intriguing and it was decided to try to implement a similar approach for

the VOP. A Java program was created to perform impostor generation and other design-time

tasks, which is described in chapter 4. The rest of this chapter is devoted to changes made to the

VOP to enable impostor displaying and generation.

3.1 Displaying impostors

3.1.1 Position

The �rst consideration to be made was how to connect impostors into the current scene structure.

Impostors are used in places where the user can see into the distance. Such places naturally corre-

spond to gates between sectors. Thus, it was decided to place impostors on borders representing

gates.

3.1.2 Impostor�sector interaction

Each impostor represents the geometry of one or more sectors. The impostor is said to �impost�

those sectors. Clearly, it must be ensured that an impostor imp and a sector imposted by imp

are never displayed at the same time. At the very least, it would be a waste of resources. More

importantly, their geometries are present at the same position in the scene, so they would clip or

permeate each other.

Two simple solutions would be to either always prefer the impostor or always prefer the actual

sector when both are potentially displayable. Neither of these is optimal, however.

The �rst one, to always prefer the impostor, is obviously wrong. Impostors are view-dependent

and even though the depth-augmented impostors used o�er a greater range of viewing angles, they

certainly cannot be viewed from the side, let alone from opposite the intended viewing direction.



3 IMPOSTORS 22

Yet this is precisely what could happen if the impostor was always preferred, as illustrated in

�gure 3.

Figure 3: User reaching an impostor's side

The other approach, only displaying the impostor if the sector is not available, doesn't have

this problem. However, it decreases the overall usefulness of impostors, as they are only displayed

on the boundaries of the currently visible part of the scene, even though there might be impostors

available for nearer parts of the scene.

The trouble is that in the general case, an optimal solution would require complex data struc-

tures and procedures for evaluating the user's current position in relation to all sectors loaded. It

would be even more di�cult to implement such an algorithm with the limited options available

inside VRML Script nodes.

Impostors are good for replacing distant geometry, but their low visual quality becomes obvious

when viewed close-up. This means that they have to be hidden and the imposted sectors restored

when the user comes close enough. This would further complicate the general algorithm for de-

termining impostor/sector preference. An example of a complicating situation is given in �gure 4.

The user has approached the hatched impostor, meaning it has to be hidden. The algorithm would

have to �nd some means of discerning the di�erence between sectors A and C, as A has to be

visible, while C can safely be imposted. Sector-to-sector visibility cannot be relied on, as these

numbers are chosen arbitrarily and are not subject to any constraints.

Figure 4: A di�cult situation for determining which impostors to show

Rather than introduce a complicated general algorithm that could possibly slow browsing down,

it was decided to impose restrictions on impostor displaying. Using impostors was split into two

regimes, one that uses an optimal algorithm with extra constraints speci�ed on visibility and

another one which uses the �always prefer the sector� approach.



3 IMPOSTORS 23

The �rst regime, called �limited visibility regime�, tries to use impostors to their full potential,

using them instead of actual geometry whenever possible. However, to bypass the complexity

of the general case as outlined above, sector-to-sector visibility is limited to immediately neigh-

bouring sectors. The algorithm used for determining which impostors to show or hide is detailed

in section 3.4.2. This regime is good when there are plentiful impostors available, that is, when

almost all gates have an impostor. If this condition is met, the limited visibility matters little,

as geometry beyond the immediately neighbouring sectors is included in the impostors displayed.

Figure 5 demonstrates this regime. Imposted sectors are greyed, impostor area is hatched. Dashed

sectors are not loaded. Scene (a) is a situation with plentiful impostors, where visual quality is not

hampered. This regime is less suited for the scene (b), where a lot of the gates have no impostors

and thus the limited visibility shows.

The other impostor usage regime allows for any visibility setting. All sectors visible are always

rendered in full geometry and impostors are only displayed for sectors beyond the visibility range,

that is, only on the edge of the loaded part of the world. While this regime can be con�gured to

o�er good visual quality even in parts where impostors are not present, it is more expensive in

terms of rendering resources. This regime is demonstrated in �gure 6. The same scenes are shown

as in �gure 5, to allow for easy comparison of the two regimes.

3.2 Impostor generation

Impostors are pre-rendered, that is, they are generated at world-design time and stored in the

database and server �lesystem. For reasons discussed in section 4.1, impostors are generated so

that rendered images are obtained by capturing the screen output of a VRML browser. These are

combined with topology data retrieved from the database.

An impostor is generated as a view from a �xed point in the scene, the �generation point�.

This point is determined by a separate process called �impostor placement�, which is described in

section 4.4.4. Impostor placement determines several other parameters of the impostor, which are

then used during the generation process. Each impostor is bound to a border, which is referred

to as the �imposted border�. It is the same border on which the impostor is later placed during

browsing.

3.2.1 Texture area

The �rst point of the generation process is to determine which area of the browser window displays

geometry relevant to the impostor. This area will form the texture of the impostor, so it is always

rectangular. The bottom edge is placed touching the imposted border.

Left-hand and right-hand edges are determined by an impostor parameter called side_cutoff.

This parameter can specify none, one or both edges. Edges which are part of side_cutoff are

truncated so that they touch the corresponding endpoint of the imposted border (see �gure 7).

Edges not thus speci�ed are placed on edge of the entire browser window. Geometry which is in

the view frustum but falls outside the texture area upon projection is not included in the impostor.

For impostors representing a view down a street, side_cutoff contains both edges, to minimize

impostor size. Geometry present beyond these edges would be invisible anyway because of the

houses constituting the street. Sometimes, however, an impostor represents a view which opens up

on one or both sides (see �gure 8, imposted border is highlighted). In such a case, even geometry



3 IMPOSTORS 24

(a)

(b)

Figure 5: Limited visibility impostor regime



3 IMPOSTORS 25

(a)

(b)

Figure 6: Edge-only impostor regime

Figure 7: side_cutoff and texture area



3 IMPOSTORS 26

beyond the imposted border (in �gure 8, to the right) needs to be present in the impostor. Not

including it would result in a wall present in the impostor where none is in the scene.

3.2.2 Border images

Due to reasons described in section 4.1, the generation process has no access to the Z-bu�er or

loaded geometry data. Thus, determining the original depth of a pixel in the texture is impossible.

Yet this depth information is necessary for the creation of a depth-augmented impostor.

Fortunately, the structure of VOP allows for a simpli�cation to be made which makes it possible

to re-project a point in the texture back into 3D. From the point of view of VOP, a house is a �at

vertical plane placed on a border12. Exceptions to this rule will be dealt with later. If a pixel is

known to be part of the geometry of house h, it can be reprojected by assuming its original 3D

position lies in house h's plane.

The problem remains of determining which house the pixel belongs to. VOP models can contain

arbitrary geometry, so trying to retrieve geometry information from the �les used would equal

writing a new VRML browser (or at least VRML scene loader). A solution was found in displaying

the scene in separate parts. Each house would be rendered separately and data about its image

stored. In reality, it is not even necessary to do this on a per-house basis, as all houses (lnodes)

on one border share the same plane. Therefore, pixels in the texture are assigned to borders. This

is accomplished by capturing and processing the image of each border of each sector imposted by

the impostor being generated. Which sectors these are is another parameter determined during

impostor placement.

Not all borders in the imposted sectors are visible from the generation point. Some of them

can fall outside the browser window, some are occluded by other geometry or viewed from the

wrong direction and thus backface-culled (such borders are referred to as �inverted�). Borders in

imposted sectors to be excluded from the generation process are also identi�ed during impostor

placement.

The entire captured image of a border is not necessary for the generation process. Instead, only

the top and bottom contour are needed. The top contour is extracted from the image, while the

bottom one is computed so that it lies directly on the line speci�ed by the border's starting and

ending vertices. This contour is used to anchor the impostor on the ground, and retrieving it from

the image would make ledges or other above-ground features extruding beyond the actual border

line compromise its usability for this purpose.

There are exception to the rule which states that a house is a �at plane. The most common of

these are house roofs. In the VOP, houses do not have proper roofs, but the front part of a roof,

the one visible from the street, is usually part of the house model. Other exceptions exist too,

though these are model-speci�c.

Shapes extruding out of the border plane present a serious problem. Figure 9 demonstrates

what happens when a roof is incorrectly determined to lie within the plane. There is no solution

to this problem that could preserve the o�ending shape's 3D position without knowing something

about the actual geometry. Fortunately, the most common case of such a shape are roofs, and these

can safely be omitted from the impostor altogether, as their impact on visual quality is small. It

can thus be sacri�ced as part of the overall visual quality reduction brought by an impostor. This

is achieved by truncating the sides of the border's contour so that it cannot extrude past the border
12For the present purpose, indented windows and similar small extrusions can safely be ignored.



3 IMPOSTORS 27

line itself (see �gure 10).

The problem still persists for shapes which cannot be simply discarded, however. Several

attempts were made to identify and correct such occurrences automatically, but none of them

was successful. In the end, it was deemed necessary to obtain additional information about the

geometry. If a designer wants an extruding part of a house to be preserved, they must provide

information about the plane the extrusion lies in (or seems to lie in when viewed from the side),

which is stored in the database. Such a shape is then treated as a fake border (i. e. having its own

plane) in the generation process.

3.2.3 Vertices

Now that the planes and contours of all participating borders are known, the impostor geometry

can be computed. All imposted sectors are displayed and the image stored to be used as a texture

map for all faces of the impostor. The next task is to determine which pixels belong to which

border.

A pixel can only belong to a border which includes it within the area de�ned by its contours.

A border is assumed to contain no holes, that is, to occupy the entire space between its top and

bottom contour. For each of these candidate borders, the pixel is reprojected into the border's

plane. It is assumed to belong to the border for which the reprojected point is nearest to the

camera13.

With the information on the depth-ordering of borders, it is possible to establish positions of

vertices comprising the impostor mesh. Vertices are placed on �points of interest�. These are points

which correspond to pixels on depth disparity lines. Points of interest are searched for on contours

only, using the following criteria:

• A pixel where the border starts or stops being occluded

• A pixel where the border begins or ends

• A pixel where the border starts or stops occluding another border

The vertex mesh is then regularized to consist of quads. A vertex's texture coordinates are simply

the screen coordinates of its corresponding pixel.

Unlike the method used in [5], there is no additional augmenting regular grid involved. Instead,

the vertex mesh is re�ned locally as necessary. First, boundaries of the mesh are compared to the

border's actual contour. If discrepancies above a certain threshold are encountered, the mesh is

re�ned with more points to eliminate them.

For borders perpendicular to the viewing direction, this is su�cient. However, borders more

or less parallel to the viewing direction require further re�nement, as they are most a�ected by

perspective distortion. For such borders, the mesh can be re�ned by specifying an extra vertex

in each quad's centre or subdividing the quad into four quads and re�ning these recursively. The

criterion for the scale of this re�nement is based on the border's angle to the view direction and

its width in the texture. These together measure the border's impact on impostor visual quality

and its susceptibility to perspective distortion.
13The process is not actually carried out for each pixel. See �Assigning pixels� in section 4.4.3 for details of the

algorithm used.



3 IMPOSTORS 28

Figure 8: A view which warrants non-full side_cutoff

Problematic roof Generated impostor Impostor from the side
(assumed plane highlighted) (imposted border highlighted)

Figure 9: Roof wrongly assumed to lie in house's plane

Roof truncated Generated impostor Impostor from the side
(clipping region highlighted) (imposted border highlighted)

Figure 10: Truncating the roof



3 IMPOSTORS 29

3.2.4 Faces

In the previous step, vertex positions were computed so that each border consists entirely of quads,

some of them possibly enhanced with a centre point. Thus, specifying faces for borders is trivial.

More faces are needed, however. A partially occluded border b needs to be connected by a face

to the border which occludes b. Otherwise, there would be holes in the impostor (see �gure 11).

Such faces are called �connector faces�.

If connector faces are textured like regular border faces, they appear like long horizontal stripes,

seriously damaging visual quality. To avoid this, they are rendered as �at colour faces instead.

3.2.5 Floor

The most common �oor texture in VOP is cobbling. It is a regular pattern, highly susceptible

to aliasing. Other �oor textures also lose detail rapidly with increased viewing distance. Using

impostor texture on �oor would result in an obvious visual di�erence between full-geometry �oor

and impostor �oor. To avoid this, �oor is not textured like the rest of the impostor. Instead, a

single �oor texture from the imposted sectors is chosen and used in full quality to texture impostor

�oor. As �oor appearance is usually consistent in neighbouring sectors, the texture is likely to be

already loaded, or will be needed anyway once the impostor is replaced by actual geometry. Thus,

this approach does not present extra overhead.

Border vertices which are part of the bottom contour are included in the �oor. Delaunay

triangulation is then used to construct a triangle mesh for the �oor.

3.3 External impostors

While the system is designed with automatically-generated impostors in mind, it does not rely on

that fact. Any VRML �le can be used as an impostor, as long as it is in the proper place in the

�lesystem and entered in the database correctly. This means hand-made impostors, possibly with

real-world photography textures, can easily be added. This is useful for views of areas which are

not part of the model, for instance. These would probably be included as surround-type impostors

for sectors which contain the view. Note that surround-type impostors can be placed on any type

of border.

The system assumes the following about the impostor �le:

• It is located in the directory impostors/<street_dir>/

• Its name (without extension) is stored in the gener_impostor table, and its extension is

`.wrl'.

• The origin of its coordinate system is the imposted border's right-hand vertex when looking at

the impostor. If the imposted border is inverted (as is the case for surround-type impostors),

this is its endpoint (B vertex). Otherwise (as normal for impostors placed on gates), it is the

border's starting point (A vertex).

The coordinate system is a rotation of the standard one around the Y axis. The X axis is

parallel to the border's vector (when projected into the XZ plane) so that the vector (−1, 0, 0)
points from the origin to the border's other vertex.

The Z axis is perpendicular to the X axis as normal for the basic VRML coordinate system.

The Y axis points upwards. Figure 12 shows the coordinate system.



3 IMPOSTORS 30

The scale of the impostor �le is the same as that of the world. The impostor geometry is not

scaled in any way before being inserted into the scene.

• To display the impostor, it must be entered either into the surround_impostor or proxi_

impostor table. For impostors placed on gates, sectors imposted by the impostor must be

entered into the imposted_sectors table.

• If the imposted border is inverted, it must be listed as such in the gener_impostor table.

3.4 Impostor implementation

This section describes the implementation details of impostor displaying, as it was outlined in

section 3.1. Parts of the impostor generation process which a�ect the existing VOP are also

described here. For implementation details of the generation program itself, refer to section 4.4.3.

3.4.1 Changes to the database

All information needed for impostor generation and display was added as new tables into the

database. These tables are described below.

gener_impostor (border_id, imp_name, place_type, x, y, z, orient, pitch, fov,

inverted_borders, hidden_borders, side_cutoff, surface_appearance)

This table is primarily used during impostor generation. The only �eld used during displaying

is imp_name, which contains the �lename of the impostor's �le, without extension (`.wrl' is

assumed).

The rest of the table contains data for generating the impostor. place_type determines

whether the position was generated by the impostor placement algorithm or entered by hand.

x, y and z determine the generation point. orient speci�es camera rotation around the Y axis

in radians, with 0 pointing due north and positive values rotating counter-clockwise. pitch

is rotation around the X axis, where 0 means level and positive numbers rotate towards the

�oor. side_cutoff speci�es which edges of the impostor can be truncated to align with the

imposted border. surface_appearance is a reference into table appearance and identi�es

the appearance to use for the impostor's �oor. A value of -1 indicates the impostor has no

�oor.

inverted_borders is a list of border IDs (references to table border), which are seen from

their right-hand side. hidden_borders contains a list of IDs of borders which should not be

used during the impostor generation at all. Both of these �elds are given as a sequence of

numbers separated by arbitrary amounts of whitespace and/or commas.

imposted_sectors (impostor_id, sector_id)

This table stores which sectors are imposted by each impostor. It contains references into

tables gener_impostor and sector.

proxi_impostor (border_id, impostor_id, koef)

This table de�nes impostors present in the world. border_id is a reference into table border.

impostor_id (a reference into gener_impostor) speci�es the impostor present on this border.



3 IMPOSTORS 31

koef14 de�nes a scaling factor to be applied to the distance at which this impostor is hidden

and replaced by actual geometry in the limited visibility impostor regime (see section 3.1.2).

3.4.2 Changes to script vrml.php

The entire algorithm managing impostors is implemented in the main SCR script. It introduces two

states for a loaded sector: it can be either �revealed� (visible) or �imposted� (not visible). Similarly,

an impostor can be either �shown� or �hidden�.

The goal of the algorithm is to ensure an impostor and a sector it imposts are never visible at

the same time. This is accomplished by the following rule: always display an impostor in preference

to the sector, unless the sector is marked as not impostable. Both impostor management regimes

(see section 3.1.2) are achieved using this rule. The di�erence lies in which sectors are marked as

not impostable. This information was added to the parameters of sector switching, which is dealt

with in the script surround.php (see section 3.4.3). There are a few other di�erences between the

two regimes; these will be discussed as necessary.

Several associative arrays had to be added to SCR. For arrays which are never iterated over,

these were implemented simply using stringi�ed keys in the appropriate MF* type. Where this

didn't su�ce, an approach similar to that already present in VOP was taken15. The associative

array (the variable pre�xed with `i_') contains indices into the linear array, incremented by 1. The

linear array is then pre�xed with `a_' and contains actual data.

The following arrays were added:

MFInt32 isNotImpostable This is actually a boolean array, as it only ever holds values of 0 or 1.

It is associative, indexed by sector ID. A value of 1 for sector sect means that sect is currently

marked as not impostable. A value of 0 or no value at all means sect can be imposted.

MFInt32 isImposted This array is also actually boolean. It is associative, indexed by sector ID.

A value of 1 indicates the given sector is currently imposted. This array can contain values

even for sectors which are currently neither loaded nor being loaded. In such a case, the

sector would be loaded as imposted.

MFInt32 impostorShown Another associative boolean array. It is indexed by impostor ID. A value

of 1 indicates the impostor is currently shown, 0 or no value mean it is either hidden or not

part of the currently loaded scene at all.

MFInt32 visibleImpostors This linear array holds IDs of all impostors which are currently

shown.

MFInt32 i_impostor and MFInt32 a_impostor These constitute a linear/associative array pair.

i_impostor is an associative array indexed by impostor ID and contains indices into the

linear array a_impostor. a_impostor holds data about all loaded impostors. Each impostor

occupies three elements in the array. If the record for impostor impId starts at index idx,

the following holds:

• a_impostor[idx] contains impId

• a_impostor[idx +1] contains ID of the sector which contains impostor impId

14This stands for `coe�cient'. However, `k' was used for consistency with original VOP tables lnode and node.
15See [1], section 3.2.3, for details of this system.



3 IMPOSTORS 32

• a_impostor[idx +2] contains ID of the sector to which the gate holding impostor impId

leads, the impostor's �destination sector�

• i_impostor[cnv(impId)] contains idx+1

Use of these arrays will be discussed in the relevant parts below.

The basic structure of sector management (load, done, del) has been left the same, but some

of these steps were diversi�ed to work di�erently for revealed and imposted sectors. The new

control �ow of sector management is illustrated in �gure 13.

load_sect now calls done_loading_sect once the sector is loaded or retrieved from cache.

done_loading_sect inserts all of the sector's impostors into i/a_impostor and calls either done_

imposted_sect or done_revealed_sect as per the sector's current state. Finally, the function

signalRevelation is called (see below).

done_imposted_sect calls the original done_sect and then sets the sector's set_imposted to

true, which makes the sector invisible but doesn't remove it from the world.

done_revealed_sect also calls the original done_sect. Then, it marks the sector as re-

vealed by calling done_revealing_sect. Here, all impostors of the added sector are processed

by try_adding_impostor. A set of candidate sectors is established for the impostor. For the

limited visibility regime, this set contains only the impostor's destination sector. For the edge-

only regime, it contains all sectors imposted by the impostor; this information is retrieved from

the full_impostors �eld of the sector being added. If any sector of this set is marked as not

impostable, the impostor is hidden. Otherwise, the impostor's destination sector is imposted16.

Finally, the system hides all impostors which have this sector as their destination.

del_sect has also been modi�ed. It �rst clears the sector's not impostable mark (if any) and

then hides all its impostors and removes them from the relevant arrays. The sector is then removed

from the world and is restored into its original state (i. e. not imposted, all impostors shown) before

being inserted into the cache.

done_par had to be modi�ed too. Two new arrays were added to the sector-switching param-

eters � `visible', a list of sectors to be marked as not impostable, and `impostable', a list of

sectors to have that mark removed. Before sectors are loaded or deleted, isNotImpostable is

updated using information from these arrays. After loading and deleting sectors, these arrays are

used to alter sector visibility. All sectors in visible are revealed and all sectors in impostable

are imposted. Finally, visibility is updated by calling signalRevelation.

The code for showing or hiding an impostor and imposting or revealing a sector is rather

complex, as these operations can result in a cascade of other impostors being shown or hidden and

sectors being imposted or revealed. For example, assume impostors i1 and i2 both impost sector

sec. Hiding i1 then results in revealing sec, which in turn means i2 has to be hidden.

Impostor and sector visibility changes when an impostor is added to the scene (it is shown or

part of a sector being added or revealed) or removed from it (it is hidden or part of a sector being

removed or imposted). When an impostor is thus added, it is processed by try_adding_impostor

(detailed above) which results in either hiding the impostor or imposting its destination sector.

When an impostor is removed, its destination sector is revealed.

Imposting a sector removes all its impostors from the scene and shows all impostors imposting

it. Revealing a sector calls done_revealing_sect, described above.

16In the edge-only regime, this can only happen if none of the candidate sectors is actually loaded, including the
destination sector.



3 IMPOSTORS 33

View from near generation point Di�erent angle reveals holes Connector faces added

Figure 11: Connector faces

(imposted border is highlighted)

Figure 12: Coordinate system of impostor �le

Figure 13: Sector management function dependencies



3 IMPOSTORS 34

In the limited visibility regime, an impostor can also be removed or added when the user comes

close enough to it or walks away from it, respectively.

Dependencies of all the functions managing impostor and sector visibility are shown in �gure 14.

Bold arrows indicate functions callable from outside the graph.

Figure 14: Impostor management function dependencies

Matters are complicated further by VRML's constraint of one event value sent per time-

stamp. This led to the necessity of creating the array visibleImpostors and adding the function

signalRevelation. Basically, all sector and impostor visibility changes are only carried out in

the data structures of SCR. When the current cascade processing is �nished, signalRevelation is

called. This traverses all loaded sectors and sends each of them the current contents of the array

visibleImpostors as a set_visibleImpostors event. This causes the sectors to actually show

or hide their impostors as required.

Originally, impostors were hidden immediately when a sector was revealed. However, this led

to occurrence of the following situations: Sector sec is to be loaded and revealed, due to the user

walking to a new sector (perhaps one adjacent to sec). Impostors imposting sec are hidden, but

sec is not loaded yet. This means that the impostors vanish, leaving a hole in the model until sec

is loaded.



3 IMPOSTORS 35

This behaviour was the result of trying to prevent the user from coming too close to an impostor,

as an impostor's visual quality at close-up is poor. However, it is still better than nothing at all.

The mechanism was therefore modi�ed so that impostors imposting a sector are only hidden when

the sector is added to the world (i. e. as part of done_loading_sect). The algorithm description

above already describes this �nal state.

Changes to gates The limited visibility impostor regime requires support in the PROXG proto-

type. In this regime, an impostor is hidden when the user comes within a certain distance of it

(this distance can be speci�ed in session con�guration). The idea of the implementation is the fol-

lowing: a proximity sensor, IMP_NEAR, of the speci�ed size is added to the gate. The gate also holds

information which impostor it contains. When the user enters or leaves IMP_NEAR, the gate sends

an appropriate event (hide_impostor and show_impostor, respectively) containing its impostor

ID. These events are routed to SCR (to its nearing_impostor and leaving_impostor events),

which removes or adds the impostor. This follows the general scheme of gate�SCR communication

as already present in VOP.

Implementing the idea exactly as presented above didn't work. The problem is that gates are

actually re-used when the user enters a new sector. That is, a sector doesn't have its own instances

of gates, but there are several global instances and these are just repositioned onto the new sector's

proxi borders. This had the following unfortunate consequence: when passing through a gate, the

user could remain in the area of its IMP_NEAR, as the PROXG was just spun around to represent the

new sector's gate. Thus, no relevant events were sent by the proximity sensor and the mechanism

would malfunction.

To prevent this, two such proximity sensors were added to PROXG. They are encapsulated in a

Switch node and each time the gate is re-used, it switches from one of these sensors to the other,

so that at most one of them is active at any one time17.

The distance to which an impostor can be approached is scaled by a scaling factor `koef' on

a per-impostor basis. This factor is transmitted to the gate as part of the par event, the type of

which was changed from SFVec2f to SFVec3f to accommodate this.

Calibration scene The program requires a calibration scene for estimating projection pa-

rameters (see section 4.4.2). The scene consists of a cube of two metres a side, centred at

(0, 0,−11). It is included in the scene only under the impgen layout and is encapsulated in a

DEF CALIBRATOR Switch to only be shown when needed. CALIBRATOR is controlled by an event

set_calibrationScene in SCR.

Background The screen capturing process relies on changing the background colour to separate

geometry from the background (see section 4.4.3 for details). Two contrasting background colours

are alternated: bright green (RGB 0,1,0) and purple (RGB 1,0,1). Background of such colour is

used in the impgen layout.

eventIn SFBool switchBgrColor has been added to SCR, which just routes it to the same event

added to the GLOOM node. If false is sent to the event, the background colour is swapped from

green to purple or vice versa. Sending true causes the colour to revert to green.
17None of them is active if the gate doesn't contain an impostor, or the edge-only regime is used.



3 IMPOSTORS 36

Avatar position eventIn MFFloat jump_avatar was added to SCR to allow the applet to set

the camera position. It packs several pieces of information into one event, so an array type was

chosen. The array always has 9 elements.

The �rst three elements are the new position and the next four specify camera orientation (in

normal VRML axis-angle format). The next element speci�es �eld of view, while the last one

holds ID of the destination sector. Either of these two can have the value 0, meaning present value

should be used.

Blackouts and guidance lines Several events were added to SCR which the applet uses to

modify visibility of parts of the scene. SCR processes them simply by forwarding them to the

relevant sectors.

3.4.3 Changes to script surround.php

Two MFInt32 �elds were added to the sector-switching parameters18. visible contains a list of

sectors which must be displayed (i. e. they must not be imposted) when dest is entered. impostable

is a list of sectors which can safely be imposted. Which sectors go where depends on the impostor

management regime used. Either way, it is ensured these arrays only contain the sectors which are

visible (as per the visibility table) from dest.

For the edge-only regime, all sectors go into the visible �eld and impostable is empty. This

means that no loaded sector can be imposted. Thus, impostors can only be displayed for sectors

which are not in the loaded part of the world � precisely what this regime needs.

The computation for the limited visibility regime is slightly more complicated. A set of all

sectors imposted by all impostors in dest is retrieved from the database. Any of the sectors visible

from dest which fall into this set are put into the impostable array. The rest of the sectors visible

from dest goes into visible. This means that in this regime, no sector is prevented from being

imposted if an impostor exists for it.

3.4.4 Changes to script sector.php

There are two kinds of changes to sector.php: displaying impostors and support for impostor

generation. However, both of these require events to be transmitted from the world-controlling

SCR script to sectors. This communication is routed through the sector's MY_PAR node, which has

been enhanced for this purpose by many event handlers.

To accommodate for all the changes necessary, a sector's VRML structure was modi�ed as

shown in �gure 15.

A disadvantage of MY_PAR is that it has to be the �rst child of the sector's top-level Group node

(this is relied upon in the main SCR script). This means it cannot have direct access to any nodes

in the sector, as it comes before they have a chance of being DEFed. Thus, another script node,

called �GUIDANCE_SCRIPT�, was added to the very end of the �le, and it performs operations where

direct access to nodes is necessary. MY_PAR's script and GUIDANCE_SCRIPT communicate with each

other via VRML routes.

Two arrays were also added to MY_PAR. The �rst one, MFInt32 impostors, is always present.

It contains two elements for each impostor present in the sector. The �rst element is impostor ID,

the second is ID of the impostor's destination sector. The other array, MFInt32 full_impostors,

18This section assumes parameters for switching from src to dest are being established.



3 IMPOSTORS 37

Group {

DEF MY_PAR PAR { ... }

DirectionalLight { ... } #if sector has light specified

DEF GEOMETRY_ROOT Switch {

Group {} #empty

Group {

DEF BORDERid Switch { #one for each border

Group{} #empty

Transform {

DEF IMPOSTORid Impostor { ... } #if border contains impostor

#nodes for border's geometry

}

}

DEF SECTOR_CONTENTS Switch {

Group {} #empty

Group {

#nodes for free-standing node's geometry

#nodes for floor and/or ceiling

}

}

}

}

DEF BORDER_GLid GuidanceLine { ... } #one for each border; only if enabled

DEF LNODE_GLid GuidanceLine { ... } #one for each lnode; only if enabled

DEF GUIDANCE_SCRIPT Script { ... }

}

Figure 15: Structure of sector VRML �le



3 IMPOSTORS 38

is only present in the edge-only impostor regime. It too contains a record for each impostor in the

sector, but these records have a variable number of elements. The �rst element of each record is

impostor ID and subsequent elements are IDs of all sectors imposted by the impostor. The last

element of each record is −1. Basically, it is a two-dimensional array linearized into one dimension.

SCR uses this array when checking whether a sector imposted by an impostor is marked as not

impostable.

Displaying impostors A new prototype, `Impostor', was created for adding impostors to the

scene. It is basically an Inline node wrapped in a Switch which allows it to be removed from

view. It supports some additional debugging functionality.

When a sector is imposted, it has to be removed from view while still part of the scene

graph. To facilitate this, the entire geometry of the sector has been enclosed in a Switch node

called GEOMETRY_ROOT, with an empty Group as an alternative. This is controlled by MY_PAR's

set_imposted event handler.

When an impostor should be shown or hidden, each sector is informed by receiving a set_

visibleImpostors event containing an array of all currently visible impostors. MY_PAR delegates

this event to GUIDANCE_SCRIPT. GUIDANCE_SCRIPT has a list of impostor nodes in this sector

and their IDs in arrays MFNode impostors and MFInt32 impostorIds respectively. Using this

information, it alters the visibility state of all the sector's impostors accordingly.

Impostor generation The impostor generation process places special requirements on the sector

geometry. Here, their VRML implementation is described. For details of when and how they are

used, refer to chapter 4.

Complete blackout of the sector is performed by the set_blackout event, which is delegated

to GUIDANCE_SCRIPT. It is implemented using SECTOR_CONTENTS and the BORDERid nodes of all

borders. Using these rather than the all-encompassing GEOMETRY_ROOT allows blacking in of indi-

vidual borders in a blacked out sector. This is controlled by the given border's BORDERid node

from within GUIDANCE_SCRIPT's set_border event handler.

Displaying of a border's guidance line is controlled by the set_borderGuidanceLine event,

again delegated to GUIDANCE_SCRIPT. It is implemented using the line's BORDER_GLid node, an in-

stance of the GuidanceLine prototype. This prototype is a simple wrapper for an IndexedLineSet

tailored for displaying a single line and properties to set its visibility and colour.

Parameters of both set_border and set_borderGuidanceLine are identical. It is an integer

array of two elements. The �rst element is the ID of the border, and the second one is either 1

(for visible) or 0 (for hidden). These events are implemented using the arrays MFNode borders,

MFNode borderGLs and MFInt32 borderIds.

Note that guidance lines (both for borders and lnodes) are only present in the scene graph

during impostor generation (as determined by page layout) and not during normal browsing.

Legacy code At one time during development, each lnode had its own guidance line. This

concept was later abandoned, but the code for displaying these guidance lines was left in place

for potential future use. The controlling event, set_lnodeGuidanceLine, expects a four-element

array as its parameter. The �rst element is lnode ID and the other three elements correspond to

red, green and blue values (in a range of 0�255). Setting all three to 0 hides the guidance line,

while any other value makes it visible and sets its colour accordingly.



3 IMPOSTORS 39

3.4.5 New script: saveimp.php

When an impostor is generated, the program uploads it to the server by connecting to this script.

The script takes two parameters, id and what. id is the database ID of the impostor to be

uploaded. what is a string, containing either `image' or `geometry'.

The script retrieves the correct �lesystem position for the impostor from the database. It then

reads data from its standard input and saves it in that position. Impostors are placed in the sub-

directory impostors/<street_dir>/. An impostor's �lename is stored in table gener_impostor.

The script's parameter what determines the content of the data being uploaded. `image' speci-

�es the texture, which is saved with the extension `.png'. `geometry' means the data contains the

impostor's VRML �le, which will be saved with the extension `.wrl'. No other values of what are

valid.

If the script executes successfully, it writes the value 0 (as a byte) to its standard output. If its

what parameter was invalid, it writes 1. Inability to save the data is signalled by 2.



4 THE PROGRAM 40

4 The program

This chapter describes the Java program which performs impostor generation and impostor place-

ment.

4.1 Why an applet and an application?

The program consists of two parts � an applet and a stand-alone application. This rather un-

orthodox state is a result of a combination of several unfavourable circumstances.

The chosen method of impostor generation, based on [5], requires access to the Z-bu�er and

the ability to render the scene into a texture. This is of course not possible with a VRML browser

plugin of a web browser, as from a programmer's point of view, this functions as a `black box',

with no means of accessing its internal data.

An attempt to use an open-source VRML browser, Xj3D19, was made. Considerable time

was spent con�guring Xj3D and modifying VOP for display in it. In the end, a bug in Xj3D's

ECMAScript interpreter was found which renders it utterly incapable of running the scripts needed

for displaying VOP, so Xj3D had to be abandoned. Other open-source browsers were brie�y

considered, but none of them seemed as complete as Xj3D, so it was unlikely any of them would

be capable of displaying VOP in its complexity. Thus, a di�erent approach was chosen.

It was decided to create a Java applet that would communicate with the VRML browser display-

ing VOP using the external authoring interface, EAI. Image data would be acquired by capturing

the rendered scene directly from screen. The applet would process the data and communicate with

the database as necessary.

Available VRML browser plugins were analyzed. Of those available for free, supported and

EAI-capable, only Cortona VRML Client from ParallelGraphics20 was capable of reliably display-

ing VOP. However, Cortona's EAI only works on Microsoft implementation of the Java virtual

machine, which is only available in Microsoft Internet Explorer. Cortona itself works in other in-

ternet browsers as well, but other Java virtual machines cannot display EAI applets due to missing

libraries21.

This complicated matters further as the Microsoft virtual machine only supports Java version

1.1, which does not include the screen-capturing capability. Thus, it was decided to split the

program into two parts, an applet that would run in the browser on Microsoft Java, and a stand-

alone application that would run on an up-to-date virtual machine. It was expected to use RMI22

for communication between them. However, Microsoft Java doesn't support RMI, so it was settled

on the applet and application communicating via a TCP socket.

It requires a signed applet to be able to open a TCP socket to a host other than the one which

the applet comes from (this includes localhost). Unfortunately, Microsoft Internet Explorer does

not honour signing policies of Sun Java (signed JAR �les) and requires its own version, signed CAB

�les. These can no longer be created, as Microsoft has dropped support for its Java SDK which

included the necessary tools.

The only solution left was to have the applet loaded locally. This requires running a PHP-

capable HTTP server on the machine running the program. VOP con�guration menu has been
19Available from http://www.xj3d.org/
20Available at http://www.parallelgraphics.com
21This is true for both the old and new version of EAI.
22Remote Method Invocation, a native Java way of communication between two programs running in di�erent

virtual machines [7].



4 THE PROGRAM 41

modi�ed to include an option to load the applet frame from a user-speci�ed path on http://

localhost instead of from the VOP server. The applet frame �le, impgen.php, is provided, it just

needs to be placed somewhere in the local server's document directory, along with impgen.jar.

This results in the applet originating from the local machine and thus able to open sockets to it

normally.

While inconvenient, the requirement for running an HTTP server locally is not crippling, as the

program is only run during world-design time by the designers, never by users just browsing the

town. An alternative to installing an HTTP server is to run the program directly on the machine

running the VOP server, if such an option is available.

Note that these restrictions are only imposed by Cortona being the only usable VRML plugin.

Neither the applet, nor the application relies on Microsoft Java or the speci�cs of Cortona in any

way. Thus, if a VRML plugin was found which can display VOP and works on Sun Java, the

applet could easily be modi�ed and deployed in a signed JAR, thereby allowing it to communicate

with the application even if running on a remote server. This would remove the above mentioned

requirement of local server installation altogether.

4.2 User interface

The program is controlled entirely by the applet. The application window only displays progress

information, so it can safely be minimized while running. Note that for the program to function

correctly, the VRML browser window must not be obscured by anything, as it is processed by

screen capturing.

Figure 16: Applet interface



4 THE PROGRAM 42

The applet's interface is shown in �gure 16. Error messages and work progress messages are

displayed in area (12). The status bar (13) displays the applet's current state. If the applet is

currently performing an operation, the text �Busy. . . � is displayed and all controls are disabled.

Buttons (1) & (2) control scene visibility. Pressing button (1) causes complete blackout � all

sectors are hidden from view. Button (2) is the reverse � it displays all sectors. These are seldom

needed, as blacking out is carried out automatically whenever necessary.

The main tasks of the applet � impostor generation and placement � are carried out using

the buttons (5), (6) & (7). These initiate the appropriate operation on any impostors listed in �eld

(3). One or more impostor IDs (database IDs of borders) can be entered, separated by whitespace,

commas or periods. Pressing button (8) �lls in the �eld with all impostors currently existing in

the database.

Button (5) starts the impostor generation process. Impostors entered are processed sequentially,

any invalid IDs are skipped. Each impostor generated is uploaded to the VOP server.

Button (6) initiates impostor placement on the borders speci�ed. If (4) is checked, the borders

are treated as inverted. Use this option when placing a surround-type impostor which will be

looked at from outside the border's sector (see �gure 17). The placement process �rst determines

the generation point and side_cutoff and then computes imposted sectors, inverted and hidden

borders.

Figure 17: Inverted border for surround-type impostor

Determining the generation point well relies on understanding the world topology and requires

a degree of aesthetic feeling. Therefore, the automated placement system can sometimes fail at this

task, choosing a clearly unsuitable location for the generation point. At other times, the designer

can want the impostor seen from a particular point because of its interaction with the rest of the

scene, for example. In such a case, it is possible to enter the generation point into the database

by hand. Then, button (7) can be used to perform only the second half of the placement process.

It starts from the generation point in the database and only computes the imposted sectors and

inverted/hidden borders. It is also a�ected by the checkbox (4).

Both the generation and placement process rely on knowing the projection parameters of the

VRML browser. These are computed automatically when necessary by a process called �calibration�

and stored in a �le. It is also possible to start calibration by hand, using button (10). This starts

the calibration process for the �eld of view speci�ed in (9). The number entered is the arc of view,

in radians. The parameters determined by the calibration are then saved into the �le as normal

(see section 4.4.2 for details).



4 THE PROGRAM 43

Button (11) is used to re-establish the TCP socket used for communicating with the stand-alone

application. Pressing it closes an existing socket, if any, and tries to open a new one. It can be

used if the applet is started before the application and is thus unable to connect at startup, or if

the application had to be restarted for whatever reason.

4.3 Inside the applet

This section brie�y describes important implementation details of the applet.

4.3.1 External authoring interface

The core of the applet is the EAI access to the VRML browser. It is implemented using the

�new� EAI [3]. Presently, the applet only sends data into the VRML scene, but at earlier stages of

development, it relied on reading data from the scene, too, so the new EAI was used.

The applet only accesses the node SCR, namely its following events:

switchBgrColor, set_blackout, jump_avatar, set_borderGuidanceLine,

set_lnodeGuidanceLine23, set_border, blackinSectors, blackoutSectors,

set_calibrationScene.

There are many occasions when the algorithm has to wait for a rendering operation to complete

before proceeding (usually before capturing the rendered image). Unfortunately, there is no way

of programmatically telling when the VRML browser has �nished rendering. Thus, this was solved

by waiting for a �xed timeout after such an operation is requested. The length of this timeout is

speci�ed as an applet parameter.

4.3.2 Parameters

The applet uses the following applet parameters (speci�ed by the <param> tag in HTML). If any

of these is missing, the applet will use a default value and output a warning.

impgenport This parameter speci�es the port number for the socket for communicating with the

application. The default value is 2404.

socketretries Speci�es the number of attempts to open the socket before failure is reported.

Default is 1.

eairetries Speci�es the number of attempts to connect to the VRML browser before failure is

reported and the applet stopped. Default is 5. For similarity to the existing VOP applet,

BMapEAI, this parameter can also be named maxtrials.

vrmlframe Name of the HTML frame in which the VRML browser resides. Default value is an

empty string, which means the applet and the browser are in the same frame.

vrmlxoffset, vrmlyoffset These parameters specify the position of the VRML browser window's

top left-hand corner. It is given in pixels, relative to the top left-hand corner of the applet.

Together with its dimensions, below, these parameters determine the area on screen to be

captured as VRML output. Default values are 0.
23This event is presently unused.



4 THE PROGRAM 44

vrmlwidth, vrmlheight These parameters specify the dimensions of the VRML browser's window.

Default values are the width and height of the applet itself, respectively.

avatarheight This speci�es the height of the avatar used in the VRML scene (as given in a

NavigationInfo VRML node). It is used for placing the generation point. Default value is

1.75.

vrmldelay This parameter speci�es the timeout for waiting for a VRML operation, in milliseconds.

It depends on computer speed and rendering capabilities, and can be �ne-tuned experimen-

tally. The default value is 500, which is acceptable for a high-speed machine.

4.3.3 Threads and the socket

The applet runs in two threads. One is the AWT thread managing user interface. To prevent

the applet from locking up while an operation is in progress (as this can take minutes if multiple

impostors are being generated), the EAI calls and socket communication are processed in a di�erent

thread.

The threads communicate via a mechanism called TaskHolder. It represents a conditional

variable on which the working thread waits until the AWT thread inserts a task (corresponding to

the user clicking a button). The task is then retrieved by the working thread and the user interface

is disabled to prevent the user from interrupting the task in progress24. Once all operations are

�nished, the interface is restored.

The applet is always the one initiating communication across the socket, so it does not have to

listen on it permanently, only when expecting data from the application.

4.4 The stand-alone application

The application works like a reactive server. It listens on the socket and when the applet sends

a request, it processes it. During such a processing, control can be transferred back and forth

between the applet and the application, but they seldom work simultaneously. Basically, the entire

program performs a sequential processing, with parts being executed in the applet and parts in the

application. Still, it has been endeavoured to utilise time the applet spends waiting in a VRML

timeout for computations in the application.

4.4.1 Parameters

The application requires a number of arguments to be speci�ed, like the URL of the VOP server,

database access information etc. The processes it computes contain a number of parameters

(threshold values and the like) which can also be speci�ed by the user. There are two ways of

supplying arguments to the application.

The �rst is to list them on the command line when starting the application. A full list of argu-

ments which can be speci�ed in this way is obtained by invoking the application with an argument

�-help�. For arguments which take a value, the value must follow the argument, separated by a

space (or as normal for a command-line argument).

Another way is to specify parameters in a property �le. A property �le has the normal syntax

of Java property �les; that is, each line contains a key�value pair separated by an equals sign `=',
24If, for whatever reason, the user needs to abort an operation, they can do it by terminating the stand-alone

application.



4 THE PROGRAM 45

a colon sign `:', or whitespace. Some parameters can only be speci�ed via property �les, not on

the command line.

The application always looks for a property �le called �ImpostorProgram.properties� in

the current directory. Additional property �les can be speci�ed via the command line argument

�-properties file_name�. If a property is de�ned in multiple �les, the last de�nition encountered

is used. Note that command-line arguments, if speci�ed, take precedence over values from property

�les.

A sample property �le is supplied with the application. It contains a description of all properties

together with their default values.

4.4.2 Calibration

Impostor generation and placement require computing projections of world points into the texture

plane and re-projecting texture points back into 3D. For this, the projection matrix needs to be

known. For VRML browsers, this information is not available, so it has to be estimated.

An assumption was made that the projection matrix is of the following format:
a 0 0 0
0 b 0 0
c d e 1
0 0 f 0


After transformation by the matrix and perspective division, a 3D point (x, y, z, 1) is transformed

into (s, t, z′) like this:
(

a
f

x
z , b

f
y
z , c

f
x
z + d

f
y
z + e+1

f

)
. s and t are pixel coordinates in the texture

plane. z′, Z bu�er depth, is never required, as re-projection relies on knowing the depth from other

sources. Thus, only the following formulae are needed:

x = zs
f

a

y = zt
f

b

s =
x

z

a

f

t =
y

z

b

f

These contain only two parameters dependant on the projection matrix, namely a
f and b

f . These

are referred to as projectionX and projectionY in the program.

These parameters are computed from a special calibration scene. This consists of a two-metre

cube at a known position. Its image is captured and pixel coordinates of its vertices are retrieved.

From them and from the known position of the vertices, the projection parameters are computed.

Projection parameters are stored in a �le so that they need not be computed each time the

application is run. They depend on the browser used, the size of the browser window and the

�eld of view. Of these, the �rst two remain the same for an entire run of the application, while

each impostor can potentially be rendered with a di�erent �eld of view. Thus, there is a �le for

each browser�window size pair, which contains records for all �elds of view already needed. It is a

simple text �le, with lines of the following format: �fov=projectionX,projectionY �.

If the application needs projection parameters and they are not available in the �le, it instructs



4 THE PROGRAM 46

the applet to display the appropriate calibration scene and computes the projection. The original

task is then resumed.

4.4.3 Impostor generation

The algorithm for generating an impostor is outlined in section 3.2. It is repeated here as algo-

rithm 2, along with implementation notes.

Algorithm 2 Impostor generation
generateImpostor(impId ) {

data =retrieveDatabaseData();

impostor =new Impostor(impId,data );

applet.setPosition(data.generationPoint );

if projectionDataAvailable(data.fov ) {

projection =getProjectionData(data.fov );

} else {

projection =applet.calibrate(data.fov );

}

applet.showBorderGuidanceLine(data.impostedBorder );

findTextureArea(screenCapture());

applet.hideBorderGuidanceLine(data.impostedBorder );

for each brd in impostor.borders {

applet.blackinBorder(brd );

findBorderContours(brd,screenCapture());

applet.blackoutBorder(brd );

}

impostor.assignPixelsToBorders();

applet.blackinSectors(impostor.impostedSectors );

createTexture(screenCapture());

applet.blackoutSectors(impostor.impostedSectors );

impostor.computeGeometry();

upload(impostor );

}

At the start of the algorithm, the entire scene is blacked out (hidden). As the application needs

to capture parts of the scene, it instructs the applet to black them in (show them) and after they

are captured, to black them out again.

Whenever actual geometry is displayed for capture, a way is needed of separating it from the

background. As nothing is known about the models, using a pre-de�ned colour for background

could lead to problems if the colour was also used in a model. Thus, it was decided to capture each

required view twice, changing the background colour between the snaps. This allows the geometry

to be extracted from the background easily.

Note that all computations in the impostor generation process are carried out in a coordinate

system with axes parallel to those of the coordinate system of the camera.

Texture area Texture area is computed by displaying a guidance line on the imposted border.

A guidance line is a 1-pixel line between the border's vertices exactly as they are speci�ed in the

database. Using this line, the position of the imposted border in the texture is computed.

The texture's bottom edge is placed so that the texture doesn't extend below the lower point

of the guidance line. The left-hand and right-hand edges are placed either on the guidance line's



4 THE PROGRAM 47

corresponding endpoints, or on the edges of the VRML window, as per the value of side_cutoff.

Any future screen captures only capture the texture area, to minimize handled image size.

Border �anks As described in section 3.2.2, there are serious problems with geometry extruding

out of the border plane. These were solved by truncating the border at the projection of its

endpoints. However, the designer can specify an alternate solution if the extruding geometry is

important (it can be an entire tower, for instance).

The alternate solution lies in specifying a ��ank vector� for one or both endpoints of the border.

When the border is viewed from the side of the endpoint, the corresponding �ank vector is used.

A fake border (i. e. one not present in the database) is added to the list of borders, placed on the

�ank vector. The contour of the original border is then truncated to the endpoint, but the rest of

it is not discarded, but used as the contour of the fake border instead. See �gure 18; the original

border and contour is shown in red, the �ank in blue.

A zero �ank border can be speci�ed to simply prevent truncation without introducing a �ank

border. This is useful for situations when a piece of geometry extrudes beyond the border's

endpoints but does lie in the border's plane.

Assigning pixels In order to reproject texture pixels correctly, border depth ordering has to be

determined. For each column of pixels in the texture (that is, for each value of the s coordinate),

the application maintains an array of all borders whose projected image includes the coordinate,

sorted by distance from the camera. Note that for each value of s, the ordering can be di�erent.

Calculating the distance involves computing reprojections, so comparison results are memoized to

speed up the sorting process. A description of the comparison for coordinate s0 follows.

First, points on the borders' bottoms with coordinate s0 are reprojected and their Z coordinates

compared. If not equal, the border with higher Z coordinate is nearer.

Equal Z means the borders' planes intersect in s0. This can only happen on border endpoints.

The border which ends in s0 is then traversed towards its other endpoint (along the s axis) and

Z is compared repeatedly. This ensures consistency between adjacent pixels, the absence of which

would confuse the occlusion algorithm and could result in misplaced connector faces ruining the

impostor. If no di�erence is found after 3 steps, the borders are assumed to lie in the same plane.

Once border depth ordering is determined, computing their relative occlusion is easy. Borders

are assumed to contain no holes � they occlude everything between the top and bottom contour.

It is also assumed that ground is never transparent. These assumptions together imply that for

each s, the list of borders at least partially visible resembles a card layout (see �gure 19).

Fully occluded borders are then removed from further processing. For the rest, points of interest

(POIs) are identi�ed. These are placed on the contour, exactly as presented in section 3.2.3. For

the front-most borders, POIs are also placed on their bottom edge. These will be used for �oor

vertices.

Texture creation All imposted sectors are blacked in and the image captured to be used as

impostor texture. Any blank space on the top of the texture is clipped o�. Then, the texture is

reduced from the original quality to 256 colours.

The task of palette reduction has been implemented so that it is possible to use a Java class as

a `plug-in' for this purpose. Interface ColorReducer has been de�ned and any class implementing

it can be speci�ed as a parameter to the application. It will then be used in the generation process.



4 THE PROGRAM 48

This was done to enable a better implementation to be used without need to modify the program's

code.

The default implementation is a class named ScaledPalette. It reduces the number of colours

by iteratively reducing the scale of values available, as described in algorithm 3.

Algorithm 3 Scaled palette
histogram =new Histogram;

scale =1;

for each pixel in image {

pixel.rgb /=scale ;

if pixel.rgb not in histogram {

histogram.add(pixel );

if histogram.size >8*256 { //optimization 1
scale *=2;

for each color in histogram {

color.rgb /=2;

}

}

}

}

colorsLeft =histogram.size ;

newHistogram =new Histogram;

while histogram.size >256 {

for each color in histogram {

colorsLeft -=1;

newHistogram.add(color.rgb /2);

if newHistogram.size +colorsLeft ==256 { //optimization 2
goto doneScale;

}

}

scale *=2;

histogram =newHistogram ;

colorsLeft =histogram.size ;

newHistogram =new Histogram;

}

doneScale:

for each color in histogram not yet processed {

palette.add(color.rgb *scale );

}

for each color in newHistogram {

palette.add(color.rgb *2*scale );

}

return palette ;

The basic idea of the algorithm is to �rst construct a histogram of the image25. Then, all colour

values are divided by 2 (rounding down). This is repeated until the number of distinct colours falls

below 256. Then, colours are scaled back up and the image resampled with the new palette.

There are two optimizations introduced in the algorithm. Each scaling (division by 2) can

combine at most 8 colours into a single one26. Thus, once more than 8*256 distinct colours are

found during histogram construction, the histogram created so far can be scaled immediately, as it
25A hashtable is used for the histogram to ensure fast access.
26The colours (r, g, b), (r + 1, g, b), (r, g + 1, b), . . . (r + 1, g + 1, b + 1) merge into one, if present (for

even values of r, g, b).



4 THE PROGRAM 49

is certain the number of colours will not fall below 256. This is done to limit memory space required

by the algorithm. Applying the scale sooner could result in obtaining fewer than 256 colours in

the end (if no new distinct colours are encountered, for instance), which would mean some colours

were merged needlessly. Naturally, after the histogram is thus scaled, all further pixels processed

must be scaled the same before being inserted into the histogram.

The second optimization alters the �nal steps of the algorithm. Once the histogram is complete

and is being scaled iteratively, the scaling is carried out one colour after another. Once the number

of distinct colours falls so that when added to the colours still unscaled they total 256, the scaling

is ended and the remaining colours are left in one-step-better quality. It does make the algorithm

dependent on the order of colours in the image, though.

Connector faces Vertices for the impostor are placed according to POIs. The mesh is then

re�ned so that vertices are arranged in quads, making border face creation trivial.

Finding where to place connector faces is a more di�cult task. A connector face must be

anchored in vertices already present in the mesh. The texture is processed in columns. A connector

face should be present at coordinate s0 where a border b loses visibility (it becomes occluded or

ends altogether). First, all borders in s0 + 1 are considered as partners for b for anchoring the

connector face. Figure 20 shows all possible con�gurations of POIs in b and a candidate border

bc. Cases (b) and (c) are not usable for anchoring a connector face. In case (a), which is the most

common one, the connector face is anchored in b and bc. If no candidate border is applicable, the

border bt, immediately occluded by b, is chosen (if it exists).

If an anchor b, ba is found, the connector face is created. It is a quad with vertices in b's top

and bottom contour points in s0 and ba's top and bottom contour points in s0 + 1.
Horizontal connector faces are also added in situations like those in �gure 21. A border keeps

a list of all borders which it occludes partially and the horizontal connector face simply connects

all relevant POIs of these borders to the occluding border.

Floor Vertices forming the �oor are already computed, they just have to be triangulated. As

with colour reduction, the triangulation has been delegated to an external class implementing the

interface Triangulator. Thus, a better algorithm than the default one can easily be supplied.

The default implementation is class DaCDelaunay, which performs a divide-and-conquer im-

plementation of Delaunay triangulation. The Java code for this was obtained from [4]. The

Triangulator interface allows for specifying which edges should be part of the triangulation (edges

representing the borders), but the default implementation disregards this constraint. Using code

for constrained Delaunay triangulation was also considered, but all available samples were licensed

under GPL27 and it was decided to avoid the necessity of placing the entire program under GPL.

4.4.4 Impostor placement

Impostor placement is a process which takes a border ID as input and determines the generation

point and camera orientation for generating an impostor for this border. The camera orientation

should be close to the direction from which the impostor is most likely to be viewed. The generation

point's position relative to the border a�ects texture quality of the resulting impostor.

The entire aim of the placement process is to �nd the best-looking impostor for the border.

Thus, it is a di�cult task for automation. An attempt was made to establish some optimization
27GNU General Public License; available from http://www.gnu.org/licenses/licenses.html#GPL



4 THE PROGRAM 50

Figure 18: Splitting a �ank

Figure 19: Border occlusion

(a) (b) (c)

Figure 20: Connector face anchoring con�gurations

Figure 21: Horizontal connector face



4 THE PROGRAM 51

criteria and base an algorithm on them. However, it is not fail-proof. Thus, for some complicated

situations, better results are obtained placing the impostor by hand. Most of the time, though,

the automated process produces su�cient results.

The second important part of the placement process is determining which sectors the impostor

imposts and which borders are not visible. This can be carried out automatically even for impostors

placed by hand.

The �rst part, �nding the generation point, is outlined as algorithm 4, with implementation

notes detailed below. The algorithm di�ers in several places according to whether a normal impos-

tor is being placed or a surround-type one (which is denoted by the fact that the imposted border

is marked as inverted).

Algorithm 4 Impostor placement, part I: Finding the generation point
// camera orientation
computeCameraOrientation();

// side cuto�
for each wing in mainBorder.wings {

if wing.isBlocking and angle(mainBorder,wing )<90+tolerance {

side_cutoff.add(sideOf(wing ));

}

}

// generation point position
// y
generationPoint.y =max(mainSector.vertices.y )+avatarHeight ;

// z
generationPoint.xz =point in distance dist from mainBorder ;

applet.blackinSector(mainSector );

applet.setPosition(generationPoint )

while geometryTopsAreClipped(screenCapture()) {

generationPoint.z +=step ;

applet.setPosition(generationPoint );

}

// x
minX =limit on S coordinate of mainBorder.b ;

maxX =limit on S coordinate of mainBorder.a ;

if minX >maxX {

adjust(generationPoint.x,minX,maxX );

}

for each x in [minX,maxX ] {

fitness [x ]=0;

for each brd in mainSector.borders {

fitness [x ]+=crit(brd,x );

}

}

generationPoint.x =argmax(fitness [x ]);

De�nitions Several terms have to be de�ned to make the algorithm description easier.

Imposted border The border speci�ed as parameter to the placement process � the one for

which an impostor is being calculated.

Main border For a surround-type impostor, it's the imposted border. For a normal impostor, it



4 THE PROGRAM 52

is the other orientation of this border (see �gure 22). In other words, the main border is the

version of the imposted border classed as inverted (i. e. seen from outside).

Normal impostor Surround-type impostor
(generation point marked as a dot)

Figure 22: Main border

Main sector The sector to which the main border belongs.

Generation border This is only de�ned for normal impostors, as identical to the imposted bor-

der. Basically, it is the border opposite to the main border, which does not exist for surround-

type impostors.

Generation sector The sector to which the generation border belongs.

Wing A wing of border b is a border immediately preceding or following b in its position on sector

edge.

Camera orientation For a surround-type impostor, the view direction is simply perpendicular

to the imposted border. For a normal impostor, camera orientation is based on the direction of

borders adjacent to the imposted border.

First, wings of the generation border are considered, as they naturally correspond to directions

from which the impostor is likely to be looked upon. Each wing within a threshold angle of being

perpendicular to the generation border is used for the view direction (if both satisfy this condition,

they are averaged). If none of them is applicable, the same test is repeated for the main border's

wings. If this does not yield a direction either, a look perpendicular to the imposted border is

chosen.

Figure 23 shows some typical topologies, with wings used for determining the view direction

highlighted.

All further computations are carried in out in a coordinate system with axes parallel to those

of the coordinate system of the camera.

Side cuto� side_cutoff determines which edges of the impostor can be truncated. The cal-

culation depends on the main border's wings, as these can potentially limit visibility to the sides,

which warrants a cuto�. First, the wing has to be capable of blocking view. This means it's a

border of type wall which has not been marked as non-blocking in the database (borders whose

geometry is too low would probably be marked as such). Second, the wing must not open up the



4 THE PROGRAM 53

Figure 23: Determining camera orientation



4 THE PROGRAM 54

view too much. This is measured by comparing the angle between the wing and camera orientation

to a threshold. An illustration of side_cutoff is given in �gure 8 on page 28.

Generation point position

Camera Y The Y coordinate of the generation point is obtained simply by placing the

avatar on the highest-positioned vertex in the main sector. This was chosen on the grounds of

being simple. In most cases, it also helps to prevent the impostor being viewed from above, for

which the impostors are not designed.

Camera Z The Z coordinate determines the distance of the camera from the imposted border.

The camera should be placed as close to it as possible, to preserve maximum detail in the impostor

texture. However, it must be ensured the geometry of the main sector does not extrude above the

browser window28. Otherwise, it would appear clipped in the impostor, which is an immediately

visible visual defect.

Unfortunately, computing the Z coordinate precisely would require knowledge of the geometry

data. As this data is stored in arbitrary VRML �les, however, this knowledge cannot be obtained.

Attempts were made to use bounding box information as stored in the database for estimating

geometry heights, but it was found the values given are too inaccurate for this purpose, resulting

in placing the generation point too far and thus in needlessly poor quality of the impostor texture.

A di�erent approach was chosen, namely approximating the distance from rendering the ge-

ometry. First, the camera is positioned a set distance from the border, and image of the main

sector rendered from this point is captured. If there is geometry on the top edge of the browser

window, it is assumed to be clipped and the camera is moved back by a set distance. This process

is repeated until all geometry �ts beneath the top edge of the browser window.

In the actual program, the process is split into two parts to speed it up. When the camera

is being moved back, it is moved by quite a large distance (default 10 metres). When a point is

reached where the geometry �ts, an attempt is made to move the camera forward again, this time in

smaller increments (default 2 metres). This is repeated until the geometry becomes clipped again,

resulting in approximating the ideal distance within a tolerance equal to the smaller increment.

Camera X The most important e�ect of the X coordinate of the generation point is the

angle under which borders are viewed. This matters especially for borders nearly parallel to the

viewing direction (referred to as �longitudinal borders�), which are highly susceptible to perspective

distortion. It is desirable to ensure they are viewed under the maximum possible angle.

The angle under which a longitudinal border is seen translates directly into the width of its

projection, which can be computed more easily than the actual angle. Thus, the task transforms

into �nding an X position for which the widths of visible borders are maximal. This should

only consider longitudinal borders, as borders more or less perpendicular to the viewing direction

preserve good quality of the texture even when viewed under a small angle. Rather than classify the

main sector's borders as being longitudinal or not, the criterion has been modi�ed to maximizing

a sum of logarithms of the projection widths. The more longitudinal a border is, the shorter its

projection width is and thus a one-pixel increment in width translates to a larger increment in the
28Theoretically, all imposted sectors should be checked, not just the main one. In practice, however, the projection

of their geometry is so much shorter because of distance that it cannot be clipped.



4 THE PROGRAM 55

logarithm, precisely what is needed. From some positions, some borders can be inverted (i. e. not

visible at all), which should be avoided if possible. Thus, a penalty is awarded for each inverted

border. This combines into the following criterion:

xcam = arg max
x∈ [xmin,xmax]

{ ∑
B∈borders

crit(B, x)

}
,

where

crit(B, x) =


log (width(B projected fromx)) . . . B is not inverted

− log (width(VRML window)) . . . B is inverted or 1 pixel wide

No simple way of computing the optimal xcam was found, so it is searched for by brute force

� the criterion is calculated for each point in the range [xmin, xmax] (in 0.1 metre increments).

Whether a border B is inverted or not is determined by pre-computing intersections of the straight

line containing the border with the X axis. This point divides the axis into two segments; in exactly

one of them, B is seen as inverted.

The values of xmin and xmax are chosen to limit the projected position of the imposted border's

starting and ending vertices. Foremost, the entire imposted border must �t into the VRML window.

For sides not in side_cutoff, the vertex's projection must not fall too close to the window edge,

to allow for a reasonable amount of geometry visible on that side.

If the camera is too close to the imposted border, it can happen that xmin > xmax. In such a

case, the camera is moved further back. There are two alternatives, speci�able by a parameter of

the application. The �rst one adjusts zcam only so that xmin = xmax. The second one moves it

slightly further, to allow for some optimization in the X coordinate (as described above).

Imposted sectors & borders Determining which sectors are imposted by the impostor is the

second part of the placement process. Marking a sector as imposted has two consequences: the

sector is hidden when the impostor is shown in the scene and the sector's borders are processed when

the impostor is being generated. Because the placement process knows nothing about geometry, it

marks many sectors as imposted (and thus potentially contributing their geometry to the impostor),

even though some of them are totally occluded. The only negative e�ect of this is increased

generation time for the impostor. Again, it is possible to improve the results by hand, this time

removing sectors which will clearly not a�ect impostor geometry due to occlusion.

There are several �ags of sectors and borders involved in the process. These are speci�ed in

the database and denote additional relevant information which the designer has speci�ed for the

sector or border. Algorithm 5 describes the process. Several implementation notes are detailed

below. Note that computations are carried out in world coordinates.

Imposted sectors First, a set of half-planes whose intersection delimits the impostable area is

constructed, as illustrated in �gure 24. The �rst two half-planes correspond to edges of the �eld of

view � their intersection de�nes the �eld of view. A third half-plane corresponds to the imposted

border29. If an edge is in side_cutoff, a half-plane excluding geometry beyond the corresponding

wing is added to the set. The texture area of the future impostor is also computed.
29The plane's edge is shifted slightly further than the imposted border, to prevent mistakenly identifying sectors

like A as imposted.



4 THE PROGRAM 56

Algorithm 5 Impostor placement, part II: Finding imposted sectors
// imposted sectors
halfplanes.add(leftFovEdge.rightHalfplane );

halfplanes.add(rightFovEdge.leftHalfplane );

texRange =VRMLwindow.width ;

if "left" in side_cutoff {

halfplanes.add(line(mainBorder.b,mainBorder.leftWing.a ).rightHalfplane );

texRange.min =project(mainBorder.b ).s ;

}

if "right" in side_cutoff {

halfplanes.add(line(mainBorder.a,mainBorder.rightWing.b ).leftHalfplane );

texRange.max =project(mainBorder.a ).s ;

}

for each sector sec in database {

if sec !=generationSector and not sector.interior {

for each brd in sec.borders {

if brd.distantVisible or distance(brd,generationPoint )<threshold {

if brd is behind impostedBorder and

brd intersects all halfplanes and

project(brd ) intersects texRange {

impostedSectors.add(sec );

next sec ;

}

}

}

}

}

// inverted/hidden borders
for each sec in impostedSectors {

for each brd in sec.borders {

if brd intersects all halfplanes {

if inverted(brd ) {

invertedBorders.add(brd );

if not brd.invertable {

hiddenBorders.add(brd );

}

}

} else {

hiddenBorders.add(brd );

}

}

}



4 THE PROGRAM 57

Figure 24: Half-planes delimiting impostable area



4 THE PROGRAM 58

Then, all sectors are processed. A sector must ful�l all of the following conditions to be

imposted:

• It is not marked as interior.

• It lies at least partially in the intersection of all the half-planes described above.

• It is not too distant from the generation point or it contains a border marked as visible from

any distance.

• At least some of its geometry falls into the texture area.

Borders All borders of the imposted sectors are processed. If a border lies outside the half-plane

intersection, it is marked as hidden.

A border is inverted if the generation point lies to the right-hand side of the line containing the

border (looking in the direction of the border). This is computed as belonging to the appropriate

half-plane. A border can be marked in the database as visible even when inverted. If that is not

the case, an inverted border would be backface-culled during rendering, so it is marked as hidden

as well as inverted.

4.4.5 Changes to the database

This section describes changes to the database made for the impostor generation and placement

processes. All of these changes were added as new tables.

border_flank (border_id, part, prolong, vector_x, vector_y, vector_z)

This table speci�es additional geometry information for borders which must not be truncated

during impostor generation (see sections 3.2.2 and 4.4.3). part is either `a' or `b' and identi�es

the border's point whose extrusion is being described. prolong can be either 0 or 1. A value

of 1 indicates the border will not be truncated, with points extending beyond the endpoint

being considered part of the border's plane. When prolong is 0, the vector coordinates

speci�ed are used as the �anking vector. Note that the orientation of the �anking vector

must correspond to border orientation. That is, to be visible, the vector's projection must

point from right to left.

place_impostor_borderflags (border_id, flags)

Border �ags used during impostor placement (see section 4.4.4) are speci�ed in this table.

The following �ags can be speci�ed:

non-blocking If the border is a wing of the main border, its side is not placed in side_cutoff.

invertable The border is not marked as hidden even if it is inverted.

distant-visible The border's sector is included into imposted sectors regardless of distance

from generation point.

tall This �ag is currently unused.



5 CONCLUSION 59

5 Conclusion

5.1 Performance & test results

VOP with the addition of interiors and impostors, as well as the Java program, were subjected to

several performance tests. All of these tests were carried out on the following con�guration:

• AMD Athlon 3500+ processor, frequency 2.21GHz

• 1024 MB RAM

• NVIDIA GeForce 6800GT, 350MHz, 256MB DDR3 memory at 1GHz

• Screen resolution 1024× 768

• Microsoft Windows XP Professional

• Cortona VRML browser, version 4.2

• Microsoft Internet Explorer 6.0

• Sun Java 1.5.0_06 (running the stand-alone application)

Impostor placement A total of 48 impostors were to be added to model, of which 3 are

surround-type impostors. Generation point positions for all the impostors were �rst established

running the automated impostor placement process. In 32 cases, the resulting generation points

were usable. 27 of these produced �tting impostors of good quality. For the other 5, approaching

distance for the limited visibility regime had to be increased, as the impostor quality was too low

for being viewed from the default distance of 25 metres; still, these impostors are fully usable in

the edge-only regime.

The automatic placement process gave unusable results in 16 cases. 2 of these were surround-

type impostors. 1 was an impostor intentionally designed for a di�erent set of angles than those

computed by the placement process. Most of the other wrongly placed generation points were for

impostors around Wallenstein's square, where gates between large open areas are common. 6 of

these were positions where the impostor is viewable from an open area and thus from a wide range

of angles, which places very high demands on impostor quality and thus generation point precision.

3 other mis-placed impostors were on borders where the view opens up, which is again a more

di�cult situation to assess as the right amount of geometry in the opening area has to be included

in the impostor. In one of these cases, the placement process determined the viewing direction

correctly and only the generation point's coordinates were wrong.

All but one of the impostors whose approaching distance had to be increased also involved a

view to or from an open area. In total, there were 27 impostors with a large open area around their

border. Of these, 11 were misplaced. Thus, it seems safe to conclude that the automatic placement

process performs well in a tight environment, as only 5 impostors in such an environment were

misplaced. Open areas present more problems, as there is little to base the viewing direction on,

and determining the viewing direction wrongly most likely renders the impostor unusable. Even

so, the process was successful in more than half such cases. Table 1 summarizes the performance

of the automatic placement process. It is also worth noting that for one of the 16 misplaced

impostors, a suitable generation point was not found even by hand, so the border does not include



5 CONCLUSION 60

Tight Open Surround Total
Total 21 24 3 48
Automated OK 15 11 1 27
Automated w/distance adjusted 1 4 n/a 5
Manual OK 5 7 2 14
Manual w/distance adjusted 0 1 n/a 1
Unusable 0 1 0 1

Table 1: Impostor placement results

an impostor in the end. For one of the hand-corrected impostors, approachable distance then had

to be increased.

As all the impostors involved were computed for the model of a real city, the results presented

are relevant for practical use. The automatic placement process is usable, having placed generation

points successfully in more than two third of the cases where impostors were actually used. Still,

its outputs should be veri�ed by a human designer, especially if surround-type impostors or open

areas are involved.

Impostor generation Of the 48 borders identi�ed for impostor creation, 47 were found actually

suitable for displaying an impostor. All of these impostors were generated by the ImpGen program.

Imposted sectors were determined by the second part of the automated placement process, even

for those placed by hand. The results were only edited by hand for two impostors, both of which

involved a nonstandard circumstance30.

Under these conditions, generating all 47 impostors with a 750ms VRML delay timeout took

a total time of 57 minutes on the above detailed machine, averaging at about 73 seconds per

impostor. This time can be reduced by manually reviewing the list of imposted sectors for each

impostor and removing those which are totally occluded and thus do not contribute to the impostor

geometry. This was also done and the impostors generated again, this time in 31 minutes, which

averages to 40 seconds per impostor.

Considering the impostor generation is a one-time process carried out at design time, its speed

was deemed acceptable. Most of the time is spent in safety timeouts waiting for VRML actions to

complete, so the process is not as computation-heavy as the time it takes would suggest.

Table 2 lists various data on impostor size for the 47 impostors generated. A typical impostor

can easily be replacing 10 or more lnodes, while those which represent views down a long street or

similar can be imposting 20 or more. As most house textures in VOP have over 10 kB, impostors

clearly bring a saving of data transferred over the network and stored in memory. Triangle counts

for VOP models are di�cult to obtain, but an ornate façade crest or indented windows can bring

the number well over 20. It is also important to remember that the triangle count given for

impostors in table 2 includes �oor. Thus, it seems safe to conclude that impostors reduce the

number of polygons rendered as well.

Performance tests Several performance tests were carried out on various scene con�gurations.

The results are given in table 3. The tests were taken on the above speci�ed machine running all

relevant servers (HTTP server, MySQL server, VOP system) locally.

30One included a high tower, resulting in the generation point being placed extremely far, the other was a
surround-type impostor.



5 CONCLUSION 61

Mean Median
Texture size (kB) 35.6 31.6
File size (kB) 21.0 19.6
Total size (kB) 56.7 56.6
Triangle count 412.6 375

Table 2: Impostor sizes

Framerate displayed by Cortona was used as the data. The tests were taken by walking two

�xed routes at constant walking speed. The �rst route led from Letenská Street to the end of

Nerudova; it was chosen because it includes many impostors and is more or less straight, allowing

for walking constantly without the need to stop and turn around. The second route concentrated

on turning and involved doing a complete circular walk around the block separating the upper and

lower part of Malostranské nám¥stí.

All con�gurations used share these settings: do not use LOD; use highest detail representation

(L1); VRML only page layout. The con�gurations were the following:

25m Limited visibility regime with standard approaching distance to impostors (25 metres).

Appr Limited visibility regime allowing approaching the very edge of the impostor. This mode is

not intended for normal browsing, as it exposes the poor close-up visual quality of impostors.

However, it was included in the tests for comparison with the standard limited visibility

regime, as it does not involve proximity sensors on impostor gateways.

Edge0 Edge-only regime, with visibility set to 0, only showing immediately adjacent sectors.

Edge20 The default setting, edge-only regime with visibility set to 20.

Edge50 Edge-only regime, visibility set to 50.

Vis20 Impostors disabled, visibility 20.

Vis50 Impostors disabled, visibility 50.

Vis254 Impostors disabled, visibility 254.

All The entire model loaded.

Visibility 20 was chosen as being the default value in original VOP. Visibility of 50 was included

because in situations where a view into the distance is not possible (i. e. occluded), visibility 50

and disabled impostors seem to o�er visual results comparable to impostor use. In places where

a view into the distance (such as down a long street) is possible, impostors naturally o�er a more

realistic experience. Visibility of 254 was included as the highest possible visibility value short of

loading the entire model.

All of the con�gurations were tested twice, once with the DirectX renderer (labelled `HW') and

once with Cortona's software renderer (labelled `SW').

Several points can be inferred from the �gures.

• When using visibility 0, di�erence between the two impostor regimes is minimal. Neverthe-

less, as the di�erences between Appr and 25m show, the necessity of employing proximity

sensors in the limited visibility regime does have an impact on performance.



5 CONCLUSION 62

HW SW
Mean FPS Straight Round Total Straight Round Total

25m 72.5 78.7 76.3 31.8 33.8 32.8
Appr 74.0 85.3 79.6 33.2 36.4 34.8
Edge0 79.1 81.3 80.2 30.9 34.4 32.5
Edge20 65.5 78.5 72.6 28.4 30.0 29.4
Vis20 74.4 76.5 75.8 28.9 31.8 30.0
Edge50 50.7 46.9 48.9 23.1 22.0 22.5
Vis50 73.6 45.0 59.0 23.5 22.9 23.2
Vis254 41.5 32.8 37.6 19.2 17.8 18.6
All 8.0 8.8 8.3 7.2 7.8 7.4

Table 3: Performance test results

• The addition of impostors places increased requirements on performance, which can be seen as

Edge20 and Edge50 o�ering worse performance than Vis20 and Vis50 respectively. However,

these comparisons completely disregard the much better visual quality brought by the use of

impostors.

• As far as visual quality is concerned, Edge20 can be deemed about equivalent to Vis50 in

close quarters. Where views into the distance are possible, an impostor for that view can

easily surpass even the visual quality o�ered by Vis254. From this, it is obvious that impostor

use brings considerable improvement in rendering speed.

Table 4 expresses the performance with impostors relative to selected other con�gurations. Setups

o�ering comparable visual quality are marked in bold. It can be seen that the default setup,

Edge20, o�ers a 25% performance gain over Vis50 while most of the time providing better visual

quality.

HW SW Average
Vis20 Vis50 Vis254 Vis20 Vis50 Vis254 Vis20 Vis50 Vis254

25m 101% 130% 203% 109% 141% 176% 105% 135% 190%
Edge0 106% 136% 213% 108% 140% 175% 107% 138% 194%
Edge20 96% 123% 193% 98% 127% 158% 97% 125% 176%
Edge50 65% 82% 130% 75% 97% 121% 70% 90% 126%

Table 4: Relative performance test results

5.2 Conclusion

The task of this thesis was to add support for interiors and impostors into the existing Virtual Old

Prague project. Both of these goals were accomplished.

Interiors Interiors were implemented by basing their design on existing VOP structure and code,

so that much of original functionality can be used on interiors without modi�cation. Support was

added for doorways which allow a user to enter and exit interiors by clicking on an appropriate

entrance in the scene. Sectors were extended to include lighting and automatically generated

ceilings. A new type of border was added for interior walls. Their geometry is generated by the

system and they can be textured by a repeating texture, by a single large texture, or rendered



5 CONCLUSION 63

in �at colour. They can include windows or doors. Doors are used to connect interior sectors,

utilising the existing mechanism of gates, extending it beyond use on proxi borders.

Impostors Depth-augmented impostors were added to the system. Compared to a traditional

�at-pane impostor, these can be viewed from a substantially greater range of angles and positions.

They also o�er limited parallax e�ects and self-occlusion.

Impostors were linked to gate borders, as these naturally correspond to places where views into

the distance exist. Two regimes were introduced for displaying impostors. The limited visibility

regime tries to display impostors in preference to actual objects whenever possible, resulting in the

least amount of geometry being rendered at any one time. It relies on the existence of an impostor

for almost every gate, as it only ever loads actual geometry for sectors immediately adjacent to

the one the user is currently in. This regime o�ers slightly better performance but worse visual

quality, making it better suited for low-performance client machines. The edge-only regime o�ers

better visual quality at the cost of rendering more geometry, as it displays a wider area around the

user in full geometry and only uses impostors for views beyond this area.

Apart from gate-linked impostors, so-called �surround-type� impostors were also added. These

can be bound to any border and are normally used for views outside from an interior.

The system o�ers means of generating impostors from the model automatically. However, it is

also possible to include hand-made impostors into the model. This allows for creation of impostors

for parts of town not present in the model (most likely using a real-world photography for texture).

Impostor generation Due to the absence of a suitable programmable environment, data for

impostors is obtained by capturing the output of a VRML browser from screen. A program was

developed which bypasses the need to access the renderer's internal data structures by displaying

the scene per borders, processing the image data obtained to infer impostor geometry. The impostor

generation process is based on a method described in [5]. Instead of employing a regular grid of

augmenting vertices, it utilises its knowledge of geometry inferred from the image data to re�ne

the vertex mesh locally as necessary. It includes an algorithm with implementation by Lambert

[4].

The program also o�ers a simple authoring capability, automatically determining the generation

points from which impostor views should be captured. Choice of such points requires understanding

of the city's topology as well as intuition and aesthetic feeling. Thus, the automatic process is not

entirely reliable. In generating the impostors added as part of this thesis, it failed in determining

a usable point about 30 percent of the time. It can thus be used as a tool to help the designer, but

its outputs must be checked before use.

Sample interiors Two interiors were added to the model to demonstrate interior presentation.

One is a small part of the building of the faculty of mathematics and physics on Malostranské

nám¥stí. The other is St. Nicholas church, also on Malostranské nám¥stí. These utilize all the

interior features added. Their detailed description is given in appendix A.

Sample impostors Impostors were added to selected borders in area of Malostranské nám¥stí,

Mostecká, Nerudova, Sn¥movní, Thunovská, Tomá²ská, Vald²tejnská and Vald²tejnské nám¥stí. All

of these impostors were generated using the program created. They include three surround-type

impostors for looking out of the sample interior of MFF.



5 CONCLUSION 64

5.3 Future work

As outlined in section 1.4, the focus of this thesis was on implementation in the system, not on

authoring tools. Creating such tools would be the logical next step. Interior design could be

integrated into the existing VOPedit program. A tool for visual presentation and possible editing

of impostor placement could also be created.

The generation program was designed with two plugin points: triangulation and colour re-

duction. Fully usable implementations were provided for both of these, but a more sophisticated

colour reducer could be considered.

The automated placement system was designed primarily as a simple helping tool. Its perfor-

mance could probably be improved by performing a detailed analysis of the ideal generation point

positions as determined by a designer and inferring more accurate rules from it. It might also be

subject to further research if some form of pre-determining occlusion could be implemented in the

present environment of minimal knowledge of actual geometry. This could potentially reduce the

number of sectors identi�ed as being imposted.



A ADDED BUILDING INTERIORS 65

A Added building interiors

A.1 Faculty of mathematics and physics

A small part of the building of MFF was modelled to demonstrate the various interior-related

features. The entrance wall is a hand-modelled lnode, all other walls are inwalls, generated by

the system. Walls in the entrance hall are rendered in �at colour, the rest of walls is textured with

a repeating wallpaper.

The arched ceiling in the entrance hall is implemented as a stand-alone node, the rest of the

ceilings is generated automatically. The ceiling of �Rotunda� (the room with columns) contains a

roof window, to demonstrate the possibility of specifying a custom shape for the generated ceiling.

All of the interior sectors have lights speci�ed. There are also lamps with point lights added

as nodes to the passageway. The stairs, pillars and the door frame are added using the standard

node mechanism. Three surround-type impostors were generated for the interior.

A.2 St. Nicholas church

The church of St. Nicholas was chosen as a representation of an interior attractive for tourists.

Its walls are inwalls with non-repeating wallpapers. The ceiling is implemented as a stand-alone

node. The textures were acquired using a digital camera.



REFERENCES 66

References

[1] Ji°í �íºek, Kamil Ghais, Stanislav Mike², Jakub Rajnoch, Michal Holub, and Pavel Chromý.

Virtual Old Prague Documentation.

[2] International Organization for Standardization. ISO/IEC 14772-1:1998: Information tech-

nology � Computer graphics and image processing � The Virtual Reality Modeling Lan-

guage � Part 1: Functional speci�cation and UTF-8 encoding. International Organization

for Standardization, Geneva, Switzerland, 1998. Available from: http://www.web3d.org/

x3d/specifications/vrml/ISO-IEC-14772-VRML97/.

[3] International Organization for Standardization. ISO/IEC 14772-2:2001: Information technol-

ogy � Computer graphics and image processing � The Virtual Reality Modeling Language

� Part 2: External authoring interface. International Organization for Standardization,

Geneva, Switzerland, 2001. Available from: http://www.web3d.org/x3d/specifications/

vrml/ISO-IEC-14772-VRML97/.

[4] Timothy Lambert. Delaunay triangulation algorithms [online]. Available from: http://www.

cse.unsw.edu.au/~lambert/java/3d/delaunay.html.

[5] François Sillion, George Drettakis, and Benoit Bodelet. E�cient impostor manipulation for

real-time visualization of urban scenery. Computer Graphics Forum, 16(3):C207�C218, 1997.

[6] Maryann Simmons and Carlo H. Sequin. Portal tapestries. Available from: http://citeseer.

ist.psu.edu/466318.html.

[7] Ann Wollrath and Jim Waldo. RMI. In The Java Tutorial Continued: The Rest of the

JDK. Addison-Wesley Professional, 1998. Available from: http://java.sun.com/docs/books/

tutorial/rmi/.


