
Vector Operations Rotations Affine and Projective Spaces

Realtime Computer Graphics on GPUs
Math

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 64

Vector Operations Rotations Affine and Projective Spaces

Vector Operations

2 / 64

Vector Operations Rotations Affine and Projective Spaces

SCALAR (DOT) PRODUCT

▶ Definition:

p · q =
∑

i

pigi

▶ Value:
p · q = ∥p∥∥q∥ cosα

▶ Matrix notation:

p · q = pTq = [p0, ...pn−1]

 q0
...

qn−1


3 / 64

Vector Operations Rotations Affine and Projective Spaces

SCALAR (DOT) PRODUCT

▶ Definition:

p · q =
∑

i

pigi

▶ Value:
p · q = ∥p∥∥q∥ cosα

▶ Matrix notation:

p · q = pTq = [p0, ...pn−1]

 q0
...

qn−1


4 / 64

Vector Operations Rotations Affine and Projective Spaces

SCALAR (DOT) PRODUCT

▶ Definition:

p · q =
∑

i

pigi

▶ Value:
p · q = ∥p∥∥q∥ cosα

▶ Matrix notation:

p · q = pTq = [p0, ...pn−1]

 q0
...

qn−1


5 / 64

Vector Operations Rotations Affine and Projective Spaces

VECTOR PROJECTION

▶ Projection on another vector:

pproj =
p · q
∥q∥

q

▶ Matrix notation (qqT):

pproj =
1

∥q∥2

 q2
x qxqy qxqz

qxqy q2
y qyqz

qxqz qyqz q2
z

 px

py

pz


▶ Useful for repeated projections,

embedding in matrix expressions

6 / 64

Vector Operations Rotations Affine and Projective Spaces

VECTOR PROJECTION

▶ Projection on another vector:

pproj =
p · q
∥q∥

q

▶ Matrix notation (qqT):

pproj =
1

∥q∥2

 q2
x qxqy qxqz

qxqy q2
y qyqz

qxqz qyqz q2
z

 px

py

pz


▶ Useful for repeated projections,

embedding in matrix expressions

7 / 64

Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT

▶ Definition:

p × q = [pyqz − pzqy, pzqx − pxqz, pxqy − pyqx]

▶ As formal determinant:

p × q =

∣∣∣∣∣∣
i j k

px py pz

qx qy qz

∣∣∣∣∣∣
▶ Matrix formulation:

p × q =

 0 −pz py

pz 0 −px

−py px 0

 qx

qy

qz


8 / 64

Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT

▶ Definition:

p × q = [pyqz − pzqy, pzqx − pxqz, pxqy − pyqx]

▶ As formal determinant:

p × q =

∣∣∣∣∣∣
i j k

px py pz

qx qy qz

∣∣∣∣∣∣
▶ Matrix formulation:

p × q =

 0 −pz py

pz 0 −px

−py px 0

 qx

qy

qz


9 / 64

Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT

▶ Definition:

p × q = [pyqz − pzqy, pzqx − pxqz, pxqy − pyqx]

▶ As formal determinant:

p × q =

∣∣∣∣∣∣
i j k

px py pz

qx qy qz

∣∣∣∣∣∣
▶ Matrix formulation:

p × q =

 0 −pz py

pz 0 −px

−py px 0

 qx

qy

qz


10 / 64

Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT II

▶ Perpendicular to p,q:

(p × q) · p = (p × q) · q = 0

▶ Size:
∥p × q∥ = ∥p∥∥q∥ sinα

▶ Follows right hand rule

11 / 64

Vector Operations Rotations Affine and Projective Spaces

Rotations

12 / 64

Vector Operations Rotations Affine and Projective Spaces

2D ROTATION

▶ Basic expression:

x′ = x cosα− y sinα

y′ = x sinα+ y cosα

▶ Matrix notation:[
x′

y′

]
=

[
cosα − sinα
sinα cosα

] [
x
y

]
▶ Complex exponential:

[x, y] ⇒ z = x + iy

▶ Multiply by eiα = cosα+ i sinα
▶ Inverse rotation by complex conjugate

13 / 64

Vector Operations Rotations Affine and Projective Spaces

2D ROTATION

▶ Basic expression:

x′ = x cosα− y sinα

y′ = x sinα+ y cosα

▶ Matrix notation:[
x′

y′

]
=

[
cosα − sinα
sinα cosα

] [
x
y

]
▶ Complex exponential:

[x, y] ⇒ z = x + iy

▶ Multiply by eiα = cosα+ i sinα
▶ Inverse rotation by complex conjugate

14 / 64

Vector Operations Rotations Affine and Projective Spaces

2D ROTATION

▶ Basic expression:

x′ = x cosα− y sinα

y′ = x sinα+ y cosα

▶ Matrix notation:[
x′

y′

]
=

[
cosα − sinα
sinα cosα

] [
x
y

]
▶ Complex exponential:

[x, y] ⇒ z = x + iy

▶ Multiply by eiα = cosα+ i sinα
▶ Inverse rotation by complex conjugate

15 / 64

Vector Operations Rotations Affine and Projective Spaces

ELEMENTARY ROTATIONS IN 3D

Rx =

 1 0 0
0 cosα − sinα
0 sinα cosα


Ry =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



Rz =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1



16 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα

17 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα

18 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα

19 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα

20 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα

21 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS II

▶ Final rotated position:

p′
perp = pperp cos θ + (a × p) sin θ

p′ = p′
perp + pproj (1)

▶ Matrix representation:

p′
perp = [p − (a · p)a] cos θ + (a × p) sin θ

= p cos θ + (a × p) sin θ + a(a · p)(1 − cos θ)

=

 1 0 0
0 1 0
0 0 1

p cos θ +

 0 −Az Ay

Az 0 −Ax

−Ay Ax 0

p sin θ

+

 A2
x AxAy AxAz

AxAy A2
y −AyAz

AxAz AyAz A2
z

p(1 − cos θ)

22 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS II

▶ Final rotated position:

p′
perp = pperp cos θ + (a × p) sin θ

p′ = p′
perp + pproj (1)

▶ Matrix representation:

p′
perp = [p − (a · p)a] cos θ + (a × p) sin θ

= p cos θ + (a × p) sin θ + a(a · p)(1 − cos θ)

=

 1 0 0
0 1 0
0 0 1

p cos θ +

 0 −Az Ay

Az 0 −Ax

−Ay Ax 0

p sin θ

+

 A2
x AxAy AxAz

AxAy A2
y −AyAz

AxAz AyAz A2
z

p(1 − cos θ)

23 / 64

Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS III

▶ Final matrix form: c + (1 − c)A2
x (1 − c)AxAy − sAz (1 − c)AxAz + sAy

(1 − c)AxAy + sAz c + (1 − c)A2
y (1 − c)AyAz − sAx

(1 − c)AxAz − sAy (1 − c)AyAz + sAx c + (1 − c)A2
z



24 / 64

Vector Operations Rotations Affine and Projective Spaces

EULER ANGLES

▶ arbitrary rotation decomposed into three components
▶ Leonard Euler (1707-1783)
▶ 3 angles – 3 elementary rotations
▶ order of rotations important (x-y-z, roll-pitch-yaw, z-x-z, ...)

▶ intrinsic vs. extrinsics

25 / 64

Vector Operations Rotations Affine and Projective Spaces

EULER ANGLES II

Disadvantages:
▶ Problematic interpolation between two orientations
▶ Gimbal lock – not as severe in SW as in HW (Apollo)

26 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS

▶ Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
▶ generalization of complex numbers in 4D space
▶ usage in graphics since 1985 (Shoemake)
▶ q = (v,w) = ix + jy + kz + w = v + w
▶ imaginary part v = (x, y, z) = ix + jy + kz
▶ i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k

27 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS

▶ Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
▶ generalization of complex numbers in 4D space
▶ usage in graphics since 1985 (Shoemake)
▶ q = (v,w) = ix + jy + kz + w = v + w
▶ imaginary part v = (x, y, z) = ix + jy + kz
▶ i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k

28 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS - WHY 4D?

▶ 3D – what is (ij) =?

(i)(x + iy + jz) = −y + ix + (ij)z

▶ We need to introduce ij = k

(i)(ix + jy + kz + w) = −x + iw − jz + ky

29 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS - WHY 4D?

▶ 3D – what is (ij) =?

(i)(x + iy + jz) = −y + ix + (ij)z

▶ We need to introduce ij = k

(i)(ix + jy + kz + w) = −x + iw − jz + ky

30 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

31 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

32 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

33 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

34 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

35 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)

36 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS II

▶ unit quaternion can be expressed by goniometry as
q = (uq sin θ, cos θ)

▶ for some unit 3D vector uq it represents a rotation (orientation)
in 3D
▶ ambiguity: both q and −q represent the same rotation!

▶ identity (zero rotation): (0, 1)
▶ power, exponential, logarithm:

q = uq sin θ + cos θ = exp(θuq), logq = θuq

qt = (uq sin θ + cosθ)t = exp(tθuq) = uq sin tθ + cos tθ

37 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS II

▶ unit quaternion can be expressed by goniometry as
q = (uq sin θ, cos θ)

▶ for some unit 3D vector uq it represents a rotation (orientation)
in 3D
▶ ambiguity: both q and −q represent the same rotation!

▶ identity (zero rotation): (0, 1)
▶ power, exponential, logarithm:

q = uq sin θ + cos θ = exp(θuq), logq = θuq

qt = (uq sin θ + cosθ)t = exp(tθuq) = uq sin tθ + cos tθ

38 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS II

▶ unit quaternion can be expressed by goniometry as
q = (uq sin θ, cos θ)

▶ for some unit 3D vector uq it represents a rotation (orientation)
in 3D
▶ ambiguity: both q and −q represent the same rotation!

▶ identity (zero rotation): (0, 1)
▶ power, exponential, logarithm:

q = uq sin θ + cos θ = exp(θuq), logq = θuq

qt = (uq sin θ + cosθ)t = exp(tθuq) = uq sin tθ + cos tθ

39 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS II

▶ unit quaternion can be expressed by goniometry as
q = (uq sin θ, cos θ)

▶ for some unit 3D vector uq it represents a rotation (orientation)
in 3D
▶ ambiguity: both q and −q represent the same rotation!

▶ identity (zero rotation): (0, 1)
▶ power, exponential, logarithm:

q = uq sin θ + cos θ = exp(θuq), logq = θuq

qt = (uq sin θ + cosθ)t = exp(tθuq) = uq sin tθ + cos tθ

40 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS

▶ unit quaternion q = (uq sin θ, cos θ)
▶ uq axis of rotation
▶ θ angle

▶ vector (point) in 3D: p = [px, py, pz, 0]
▶ rotation of vector (point) p around uq by angle 2θ

p′ = qpq−1 = qpq*

41 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS

▶ unit quaternion q = (uq sin θ, cos θ)
▶ uq axis of rotation
▶ θ angle

▶ vector (point) in 3D: p = [px, py, pz, 0]
▶ rotation of vector (point) p around uq by angle 2θ

p′ = qpq−1 = qpq*

42 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ

▶ Rotate by i from left:

(i)(w + ix + jy + kz) = −x + iw − jz + ky

▶ Rotate by i from right:

(w + ix + jy + kz)(i) = −x + iw + jz − ky

▶ Rotate by i from both sides:

(i)(w + x + jy + kz)(i) = −w − ix + jy + kz

▶ Prevent rotation in w:

(i)(w+ ix+ jy+kz)(i−1) = (i)(ix+ jy+kz+w)(−i) = w− ix+ jy+kz

▶ To prevent the second 4D rotation we rotated twice around the
first axis.

43 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ

▶ Rotate by i from left:

(i)(w + ix + jy + kz) = −x + iw − jz + ky

▶ Rotate by i from right:

(w + ix + jy + kz)(i) = −x + iw + jz − ky

▶ Rotate by i from both sides:

(i)(w + x + jy + kz)(i) = −w − ix + jy + kz

▶ Prevent rotation in w:

(i)(w+ ix+ jy+kz)(i−1) = (i)(ix+ jy+kz+w)(−i) = w− ix+ jy+kz

▶ To prevent the second 4D rotation we rotated twice around the
first axis.

44 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ

▶ Rotate by i from left:

(i)(w + ix + jy + kz) = −x + iw − jz + ky

▶ Rotate by i from right:

(w + ix + jy + kz)(i) = −x + iw + jz − ky

▶ Rotate by i from both sides:

(i)(w + x + jy + kz)(i) = −w − ix + jy + kz

▶ Prevent rotation in w:

(i)(w+ ix+ jy+kz)(i−1) = (i)(ix+ jy+kz+w)(−i) = w− ix+ jy+kz

▶ To prevent the second 4D rotation we rotated twice around the
first axis.

45 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ

▶ Rotate by i from left:

(i)(w + ix + jy + kz) = −x + iw − jz + ky

▶ Rotate by i from right:

(w + ix + jy + kz)(i) = −x + iw + jz − ky

▶ Rotate by i from both sides:

(i)(w + x + jy + kz)(i) = −w − ix + jy + kz

▶ Prevent rotation in w:

(i)(w+ ix+ jy+kz)(i−1) = (i)(ix+ jy+kz+w)(−i) = w− ix+ jy+kz

▶ To prevent the second 4D rotation we rotated twice around the
first axis.

46 / 64

Vector Operations Rotations Affine and Projective Spaces

SPHERICAL LINEAR INTERPOLATION – SLERP

▶ two quaternions q and r (q · r ≥ 0, else take −q)
▶ real parameter 0 ≤ t ≤ 1
▶ interpolated quaternion slerp(q, r, t) = q(q*r)t

slerp(q, r, t) =
sin(θ(1 − t))

sin θ
q +

sin θt
sin θ

r

▶ the shortest spherical arc between q and r

47 / 64

Vector Operations Rotations Affine and Projective Spaces

SPHERICAL LINEAR INTERPOLATION – SLERP

▶ two quaternions q and r (q · r ≥ 0, else take −q)
▶ real parameter 0 ≤ t ≤ 1
▶ interpolated quaternion slerp(q, r, t) = q(q*r)t

slerp(q, r, t) =
sin(θ(1 − t))

sin θ
q +

sin θt
sin θ

r

▶ the shortest spherical arc between q and r

48 / 64

Vector Operations Rotations Affine and Projective Spaces

SPHERICAL LINEAR INTERPOLATION – SLERP

▶ two quaternions q and r (q · r ≥ 0, else take −q)
▶ real parameter 0 ≤ t ≤ 1
▶ interpolated quaternion slerp(q, r, t) = q(q*r)t

slerp(q, r, t) =
sin(θ(1 − t))

sin θ
q +

sin θt
sin θ

r

▶ the shortest spherical arc between q and r

49 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION FROM TWO VECTORS

▶ two vectors s and t:
1. normalization of s, t
2. unit rotation axis u = (s × t)/∥s × t∥
3. angle between s and t: s · t = cos θ

▶ Identities to prevent trigonometry:

sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
50 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION FROM TWO VECTORS

▶ two vectors s and t:
1. normalization of s, t
2. unit rotation axis u = (s × t)/∥s × t∥
3. angle between s and t: s · t = cos θ

▶ Identities to prevent trigonometry:

sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
51 / 64

Vector Operations Rotations Affine and Projective Spaces

QUATERNION FROM TWO VECTORS

▶ two vectors s and t:
1. normalization of s, t
2. unit rotation axis u = (s × t)/∥s × t∥
3. angle between s and t: s · t = cos θ

▶ Identities to prevent trigonometry:

sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
52 / 64

Vector Operations Rotations Affine and Projective Spaces

SUMMARY

rotational matrix
+ HW support, efficient point/vector transformation
– memory (float[9]), other operations are not so
efficient

rotational axis and angle
+ memory (float[4] or float[6]), similar to quaternion
– inefficient composition and interpolation

quaternion
+ memory (float[4]), composition, interpolation
– inefficient point/vector transformation

53 / 64

Vector Operations Rotations Affine and Projective Spaces

Affine and Projective Spaces

54 / 64

Vector Operations Rotations Affine and Projective Spaces

AFFINNE AND PROJECTIVE SPACES

Affine space:
▶ Set V of vectors and set P of points
▶ Affine transformations can be represented by matrix

Projective space:
▶ Homogeneous coordinates
▶ All lines intersect (space contains infinity)
▶ Affine and projective transformations can be represented by

matrix

55 / 64

Vector Operations Rotations Affine and Projective Spaces

AFFINNE AND PROJECTIVE SPACES

Affine space:
▶ Set V of vectors and set P of points
▶ Affine transformations can be represented by matrix

Projective space:
▶ Homogeneous coordinates
▶ All lines intersect (space contains infinity)
▶ Affine and projective transformations can be represented by

matrix

56 / 64

Vector Operations Rotations Affine and Projective Spaces

HOMOGENNEOUS COORDINATES

▶ homogeneous coordinate vector [x, y, z,w]
▶ transformation: multiplying by a 4 × 4 matrix
▶ homogeneous matrix is able to translate and to do perspective

projections
▶ from homogeneous coordinates [x, y, z,w] into Cartesian

coordinates: by division (w ̸= 0)[x/w, y/w, z/w]
▶ coordinate vector [x, y, z, 0] – point in infinity
▶ from Cartesian coordinates to homogeneous: trivial extension

[x, y, z]. . . [x, y, z, 1]

57 / 64

Vector Operations Rotations Affine and Projective Spaces

TRANSFORMATION MATRIX

Ap =

 M T

0 0 0 1




px

py

pz

pw


▶ T defines translation
▶ M defines:

▶ rotation
▶ scaling

Mscale =

 sx 0 0
0 sy 0
0 0 sz


▶ shear

Mshear =

 1 0 λ
0 1 0
0 0 1


▶ and their combinations

58 / 64

Vector Operations Rotations Affine and Projective Spaces

NORMAL VECTOR TRANSFORMATION

▶ Only orientation change is valid transformation for normals
▶ Tangents (t) remain valid:

n · t = 0 ⇒ n′ · t′ = (Gn) · (Mt) = 0

(Gn) · (Mt) = (Gn)T(Mt)
= nTGTMt
⇒ G = (M−1)T

59 / 64

Vector Operations Rotations Affine and Projective Spaces

TRANSFORMATIONS FOR RENDERING PIPELINE

Object space Model transformation

World space View transformation

Eye (Camera) space Projection

Clip space Viewport trans-
formation

Window space
(pixel coords)

60 / 64

Vector Operations Rotations Affine and Projective Spaces

LOOKAT CAMERA MATRIX

▶ Camera position (eye) e
▶ Lookat point p
▶ Up vector u

v = norm(e − p)
n = norm(v × u)

(5)

Matrix which transforms camera into its position:

TR =


1 0 0 ex

0 1 0 ey

0 0 1 ez

0 0 0 1




nx ux vx 0
ny uy vy 0
nz uz vz 0
0 0 0 1


61 / 64

Vector Operations Rotations Affine and Projective Spaces

LOOKAT CAMERA MATRIX

▶ Camera position (eye) e
▶ Lookat point p
▶ Up vector u

v = norm(e − p)
n = norm(v × u)

(5)

Matrix which transforms camera into its position:

TR =


1 0 0 ex

0 1 0 ey

0 0 1 ez

0 0 0 1




nx ux vx 0
ny uy vy 0
nz uz vz 0
0 0 0 1


62 / 64

Vector Operations Rotations Affine and Projective Spaces

LOOKAT CAMERA MATRIX II

World view needs to be transformed by its inverse:

(TR)−1 = R−1T−1 = RTT−1 =


nx ny nz 0
ux uy uz 0
vx vy vz 0
0 0 0 1




1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1



=


nx ny nz −(n · ex)
ux uy uz −(u · ey)
vx vy vz −(v · ez)
0 0 0 1



63 / 64

Vector Operations Rotations Affine and Projective Spaces

PERSPECTIVE PROJECTION

Point p projection: x = − n
pz

px and y = − n
pz

py

Pfrustum =


2n

r−l 0 r+l
r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+n
f−n − 2nf

f−n
0 0 −1 0



Perspective correct interpolation
64 / 64

	Vector Operations
	Rotations
	Affine and Projective Spaces

