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Vector Operations Rotations Affine and Projective Spaces

SCALAR (DOT) PRODUCT

▶ Definition:

p · q =
∑

i

pigi

▶ Value:
p · q = ∥p∥∥q∥ cosα

▶ Matrix notation:

p · q = pTq = [p0, ...pn−1]

 q0
...

qn−1


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Vector Operations Rotations Affine and Projective Spaces

VECTOR PROJECTION

▶ Projection on another vector:

pproj =
p · q
∥q∥

q

▶ Matrix notation (qqT ):

pproj =
1

∥q∥2

 q2
x qxqy qxqz

qxqy q2
y qyqz

qxqz qyqz q2
z

 px

py

pz


▶ Useful for repeated projections,

embedding in matrix expressions

6 / 64



Vector Operations Rotations Affine and Projective Spaces

VECTOR PROJECTION

▶ Projection on another vector:

pproj =
p · q
∥q∥

q

▶ Matrix notation (qqT ):

pproj =
1

∥q∥2

 q2
x qxqy qxqz

qxqy q2
y qyqz

qxqz qyqz q2
z

 px

py

pz


▶ Useful for repeated projections,

embedding in matrix expressions

7 / 64



Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT

▶ Definition:

p × q = [pyqz − pzqy, pzqx − pxqz, pxqy − pyqx]

▶ As formal determinant:

p × q =

∣∣∣∣∣∣
i j k

px py pz

qx qy qz

∣∣∣∣∣∣
▶ Matrix formulation:

p × q =

 0 −pz py

pz 0 −px

−py px 0

 qx

qy

qz


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Vector Operations Rotations Affine and Projective Spaces

CROSS PRODUCT II

▶ Perpendicular to p,q:

(p × q) · p = (p × q) · q = 0

▶ Size:
∥p × q∥ = ∥p∥∥q∥ sinα

▶ Follows right hand rule
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Vector Operations Rotations Affine and Projective Spaces

Rotations
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Vector Operations Rotations Affine and Projective Spaces

2D ROTATION

▶ Basic expression:

x′ = x cosα− y sinα

y′ = x sinα+ y cosα

▶ Matrix notation:[
x′

y′

]
=

[
cosα − sinα
sinα cosα

] [
x
y

]
▶ Complex exponential:

[x, y] ⇒ z = x + iy

▶ Multiply by eiα = cosα+ i sinα
▶ Inverse rotation by complex conjugate
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Vector Operations Rotations Affine and Projective Spaces

ELEMENTARY ROTATIONS IN 3D

Rx =

 1 0 0
0 cosα − sinα
0 sinα cosα


Ry =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ



Rz =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1


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Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS

▶ Axis a, angle θ, point p, rotated point p′:

∥a∥ = 1

▶ Project p onto axis:

pproj = (a · p)a
Ra,θpproj = pproj

▶ Perpendicular component:

pperp = p − (a · p)a
∥pperp∥ = ∥p∥ sinα

▶ Cross product with axis:

(a × p) · pperp = 0

∥a × p∥ = ∥p∥ sinα
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Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS II

▶ Final rotated position:

p′
perp = pperp cos θ + (a × p) sin θ

p′ = p′
perp + pproj (1)

▶ Matrix representation:

p′
perp = [p − (a · p)a] cos θ + (a × p) sin θ

= p cos θ + (a × p) sin θ + a(a · p)(1 − cos θ)

=

 1 0 0
0 1 0
0 0 1

p cos θ +

 0 −Az Ay

Az 0 −Ax

−Ay Ax 0

p sin θ

+

 A2
x AxAy AxAz

AxAy A2
y −AyAz

AxAz AyAz A2
z

p(1 − cos θ)
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Vector Operations Rotations Affine and Projective Spaces

ROTATION AROUND ARBITRARY AXIS III

▶ Final matrix form: c + (1 − c)A2
x (1 − c)AxAy − sAz (1 − c)AxAz + sAy

(1 − c)AxAy + sAz c + (1 − c)A2
y (1 − c)AyAz − sAx

(1 − c)AxAz − sAy (1 − c)AyAz + sAx c + (1 − c)A2
z


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Vector Operations Rotations Affine and Projective Spaces

EULER ANGLES

▶ arbitrary rotation decomposed into three components
▶ Leonard Euler (1707-1783)
▶ 3 angles – 3 elementary rotations
▶ order of rotations important (x-y-z, roll-pitch-yaw, z-x-z, ...)

▶ intrinsic vs. extrinsics
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Vector Operations Rotations Affine and Projective Spaces

EULER ANGLES II

Disadvantages:
▶ Problematic interpolation between two orientations
▶ Gimbal lock – not as severe in SW as in HW (Apollo)
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Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS

▶ Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
▶ generalization of complex numbers in 4D space
▶ usage in graphics since 1985 (Shoemake)
▶ q = (v,w) = ix + jy + kz + w = v + w
▶ imaginary part v = (x, y, z) = ix + jy + kz
▶ i2 = j2 = k2 = −1, jk = −kj = i, ki = −ik = j, ij = −ji = k
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Vector Operations Rotations Affine and Projective Spaces

QUATERNIONS - WHY 4D?

▶ 3D – what is (ij) =?

(i)(x + iy + jz) = −y + ix + (ij)z

▶ We need to introduce ij = k

(i)(ix + jy + kz + w) = −x + iw − jz + ky
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS

▶ addition (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2)

▶ multiplication qr = (vq × vr + wrvq + wqvr,wqwr − vq · vr)

▶ multiplication by a scalar sq = (0, s)(v,w) = (sv, sw)
▶ conjugation (v,w)* = (−v,w)
▶ unit id = (0, 1)
▶ norm (squared absolute value)

∥q∥2 = n(q) = qq* = x2 + y2 + z2 + w2

▶ reciprocal q−1 = q*/n(q)
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION OPERATIONS II

▶ unit quaternion can be expressed by goniometry as
q = (uq sin θ, cos θ)

▶ for some unit 3D vector uq it represents a rotation (orientation)
in 3D
▶ ambiguity: both q and −q represent the same rotation!

▶ identity (zero rotation): (0, 1)
▶ power, exponential, logarithm:

q = uq sin θ + cos θ = exp(θuq), logq = θuq

qt = (uq sin θ + cosθ)t = exp(tθuq) = uq sin tθ + cos tθ
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS

▶ unit quaternion q = (uq sin θ, cos θ)
▶ uq axis of rotation
▶ θ angle

▶ vector (point) in 3D: p = [px, py, pz, 0]
▶ rotation of vector (point) p around uq by angle 2θ

p′ = qpq−1 = qpq*
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ

▶ Rotate by i from left:

(i)(w + ix + jy + kz) = −x + iw − jz + ky

▶ Rotate by i from right:

(w + ix + jy + kz)(i) = −x + iw + jz − ky

▶ Rotate by i from both sides:

(i)(w + x + jy + kz)(i) = −w − ix + jy + kz

▶ Prevent rotation in w:

(i)(w+ ix+ jy+kz)(i−1) = (i)(ix+ jy+kz+w)(−i) = w− ix+ jy+kz

▶ To prevent the second 4D rotation we rotated twice around the
first axis.
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION ROTATIONS - WHY 2θ
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Vector Operations Rotations Affine and Projective Spaces

SPHERICAL LINEAR INTERPOLATION – SLERP

▶ two quaternions q and r (q · r ≥ 0, else take −q)
▶ real parameter 0 ≤ t ≤ 1
▶ interpolated quaternion slerp(q, r, t) = q(q*r)t

slerp(q, r, t) =
sin(θ(1 − t))

sin θ
q +

sin θt
sin θ

r

▶ the shortest spherical arc between q and r
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Vector Operations Rotations Affine and Projective Spaces

QUATERNION FROM TWO VECTORS

▶ two vectors s and t:
1. normalization of s, t
2. unit rotation axis u = (s × t)/∥s × t∥
3. angle between s and t: s · t = cos θ

▶ Identities to prevent trigonometry:

sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
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sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
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QUATERNION FROM TWO VECTORS

▶ two vectors s and t:
1. normalization of s, t
2. unit rotation axis u = (s × t)/∥s × t∥
3. angle between s and t: s · t = cos θ

▶ Identities to prevent trigonometry:

sin
θ

2
=

√
1 − cos θ

2
(2)

cos
θ

2
=

√
1 + cos θ

2
(3)

sin θ = 2 sin
θ

2
cos

θ

2
(4)

▶ Final quaternion:

q =

(
norm(u) sin

θ

2
, cos

θ

2

)
=

(
s × t√

2(1 + s · t)
,

√
1 + s · t

2

)
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SUMMARY

rotational matrix
+ HW support, efficient point/vector transformation
– memory (float[9]), other operations are not so
efficient

rotational axis and angle
+ memory (float[4] or float[6]), similar to quaternion
– inefficient composition and interpolation

quaternion
+ memory (float[4]), composition, interpolation
– inefficient point/vector transformation
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Affine and Projective Spaces
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AFFINNE AND PROJECTIVE SPACES

Affine space:
▶ Set V of vectors and set P of points
▶ Affine transformations can be represented by matrix

Projective space:
▶ Homogeneous coordinates
▶ All lines intersect (space contains infinity)
▶ Affine and projective transformations can be represented by

matrix
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HOMOGENNEOUS COORDINATES

▶ homogeneous coordinate vector [x, y, z,w]
▶ transformation: multiplying by a 4 × 4 matrix
▶ homogeneous matrix is able to translate and to do perspective

projections
▶ from homogeneous coordinates [x, y, z,w] into Cartesian

coordinates: by division (w ̸= 0)[ x/w, y/w, z/w]
▶ coordinate vector [x, y, z, 0] – point in infinity
▶ from Cartesian coordinates to homogeneous: trivial extension

[x, y, z]. . . [x, y, z, 1]
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TRANSFORMATION MATRIX

Ap =

 M T

0 0 0 1




px

py

pz

pw


▶ T defines translation
▶ M defines:

▶ rotation
▶ scaling

Mscale =

 sx 0 0
0 sy 0
0 0 sz


▶ shear

Mshear =

 1 0 λ
0 1 0
0 0 1


▶ and their combinations
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NORMAL VECTOR TRANSFORMATION

▶ Only orientation change is valid transformation for normals
▶ Tangents (t) remain valid:

n · t = 0 ⇒ n′ · t′ = (Gn) · (Mt) = 0

(Gn) · (Mt) = (Gn)T(Mt)
= nTGTMt
⇒ G = (M−1)T
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TRANSFORMATIONS FOR RENDERING PIPELINE

Object space Model transformation

World space View transformation

Eye (Camera) space Projection

Clip space Viewport trans-
formation

Window space
(pixel coords)
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LOOKAT CAMERA MATRIX

▶ Camera position (eye) e
▶ Lookat point p
▶ Up vector u

v = norm(e − p)
n = norm(v × u)

(5)

Matrix which transforms camera into its position:

TR =


1 0 0 ex

0 1 0 ey

0 0 1 ez

0 0 0 1




nx ux vx 0
ny uy vy 0
nz uz vz 0
0 0 0 1


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▶ Camera position (eye) e
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▶ Up vector u
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(5)

Matrix which transforms camera into its position:
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
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0 0 0 1



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LOOKAT CAMERA MATRIX II

World view needs to be transformed by its inverse:

(TR)−1 = R−1T−1 = RTT−1 =


nx ny nz 0
ux uy uz 0
vx vy vz 0
0 0 0 1




1 0 0 −ex

0 1 0 −ey

0 0 1 −ez

0 0 0 1



=


nx ny nz −(n · ex)
ux uy uz −(u · ey)
vx vy vz −(v · ez)
0 0 0 1


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PERSPECTIVE PROJECTION

Point p projection: x = − n
pz

px and y = − n
pz

py

Pfrustum =


2n

r−l 0 r+l
r−l 0

0 2n
t−b

t+b
t−b 0

0 0 − f+n
f−n − 2nf

f−n
0 0 −1 0



Perspective correct interpolation
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