
Surface Details Non-realistic Rendering Postprocessing

Realtime Computer Graphics on GPUs
Effects I

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 32

Surface Details Non-realistic Rendering Postprocessing

Surface Details

2 / 32

Surface Details Non-realistic Rendering Postprocessing

TANGENT SPACE

▶ Local coordinate space
▶ Z axis – normal N
▶ X axis – tangent T (direction in which u coordinate changes)
▶ Y axis – bitangent B (direction in which v coordinate changes)

▶ TBN matrix – transformation local tangent space to world
space

▶ Orthonormal in texture space
▶ In general not othonormal in world space (only in special

cases)

3 / 32

Surface Details Non-realistic Rendering Postprocessing

TANGENT SPACE – MESH PREPROCESSING

▶ Tangent space computed for each vertex
▶ Triangle P1,P2,P3, relative coordinates Q2,Q3, relative tex.

coordinates [s2, t2], [s3, t3]

Qi = Pi − P1

[si, ti] = [ui − u1, vi − v1]

▶ Solve:
Qi = siT + tiB

▶ Average with incident triangles (like normals)
▶ Approximation by orthonormal space:

▶ Easy inverse matrix computation
▶ Less data transferred to GPU
▶ Passing normal and 4D tangent (w used for handedness

determination)
B = Tw(N × T)

4 / 32

Surface Details Non-realistic Rendering Postprocessing

TANGENT SPACE – MESH PREPROCESSING

▶ Tangent space computed for each vertex
▶ Triangle P1,P2,P3, relative coordinates Q2,Q3, relative tex.

coordinates [s2, t2], [s3, t3]

Qi = Pi − P1

[si, ti] = [ui − u1, vi − v1]

▶ Solve:
Qi = siT + tiB

▶ Average with incident triangles (like normals)
▶ Approximation by orthonormal space:

▶ Easy inverse matrix computation
▶ Less data transferred to GPU
▶ Passing normal and 4D tangent (w used for handedness

determination)
B = Tw(N × T)

5 / 32

Surface Details Non-realistic Rendering Postprocessing

TANGENT SPACE – COMPUTATION IN FRAGMENT

SHADER

▶ Current HW fast enough for on-the-fly computation
▶ Fast enough to also compute inverse matrix (no need for

orthogonalization)
▶ How to compute differences from position and texture

coordinates:

vec3 dp1 = dFdx (p) ;
vec3 dp2 = dFdy (p) ;
vec2 duv1 = dFdx (uv) ;
vec2 duv2 = dFdy (uv) ;

6 / 32

Surface Details Non-realistic Rendering Postprocessing

BUMP MAPPING

▶ Modulated normals in tangent space – normal map
▶ normal [0, 0, 1] mapped to RGB [1/2, 1/2, 1]

▶ Use TBN matrix to transform into world space for lighting
computation

7 / 32

Surface Details Non-realistic Rendering Postprocessing

PARALLAX MAPPING

▶ Bump map – no parallax for surface displacement
▶ Effect can be simulated by modifying texture coordinates using

displacement map

8 / 32

Surface Details Non-realistic Rendering Postprocessing

PARALLAX MAPPING – BASIC

▶ Computation in local tangent space
▶ Scale eye vector into P by H(A)

▶ Crude estimation of texture offset Pxy

▶ Problematic for steep displacements and low viewing angles

9 / 32

Surface Details Non-realistic Rendering Postprocessing

PARALLAX MAPPING – STEEP PARALLAX

▶ Better estimation of the texture offset
▶ Check multiple layers to detect intersection more precisely

10 / 32

Surface Details Non-realistic Rendering Postprocessing

AMBIENT OCCLUSION

▶ constant ambient term not good enough
▶ does not consider occlusion (even self-occlusion)
▶ ridges are equally lighted as valleys

▶ pre-computed average (potential) contribution of surround light
to the surface point

11 / 32

Surface Details Non-realistic Rendering Postprocessing

AMBIENT OCCLUSION

▶ for every surface point compute:
▶ percentage of unoccluded rays from an environment

(self-occlusion elimination) – accessibility coefficient
▶ dominant light direction (best lit from) – B
▶ technique: ray-casting from each point, counting rays without

collision

12 / 32

Surface Details Non-realistic Rendering Postprocessing

ACCESSIBILITY MAP UTILIZATION

▶ accessibility coefficient
▶ multiplication factor for ambient light approximation (instead of

the kA constant)
▶ dominant vector B

▶ addressing for the environment light map
▶ map should be blurred in advance
▶ texture data are multiplied by the accessibility coefficient as well

13 / 32

Surface Details Non-realistic Rendering Postprocessing

AO – OCCLUSION COEFFICIENT

Figure: Phong Figure: Occlusion coefficient

14 / 32

Surface Details Non-realistic Rendering Postprocessing

AO – AVERAGE RAY

Figure: Normals Figure: Average unoccluded rays

15 / 32

Surface Details Non-realistic Rendering Postprocessing

AO – AVERAGE RAY + ENV. MAPPING

Figure: Phong Figure: Ambient from env. map

16 / 32

Surface Details Non-realistic Rendering Postprocessing

Non-realistic Rendering

17 / 32

Surface Details Non-realistic Rendering Postprocessing

X-RAY VISION

▶ Highlight invisible objects (occluded by different object)
▶ CAD system – invisible components
▶ VR, Games – highlight objects of interest
▶ Possible approaches:

▶ Select occluded objects, render without depth test after
everything else

▶ Selection by different means
▶ Problematic partial occlusion

▶ Second render pass for highlighted objects, inverted depth test
▶ Works with partial occlusion

18 / 32

Surface Details Non-realistic Rendering Postprocessing

CARTOON (CEL) SHADING

▶ goal: results similar to human 2D graphics
▶ contour emphasis
▶ pen-and-ink drawing simulation (hatching)
▶ imitation of painting techniques (oil, watercolor)
▶ cartoon-style shading

▶ approaches (techniques)
▶ special textures (coarse shading tones, ..)
▶ procedural textures (fragment shader)
▶ post-processing (for specific painting techniques)
▶ + combinations

19 / 32

Surface Details Non-realistic Rendering Postprocessing

COUNTOUR RENDERING

▶ No need for explicit definition of contours
▶ Solids have to be regular (closed)
▶ Two phases:

1. front-facing faces only
▶ no special rendering style
▶ back-face culling

2. edges of back-facing faces only
▶ more thick line (glLineWidth()) – contour lines will stick out
▶ alternative – render backfaces of blown-up mesh (no scaling)

20 / 32

Surface Details Non-realistic Rendering Postprocessing

CARTOON LIGHT MODEL

▶ light model similar to “Blinn-Phong“
▶ diffuse term cosα
▶ optional specular term coshβ

▶ diffuse term indexes simple ramp texture, or quantize the
intensity
▶ only small number of color tones
▶ no texture filtering for sharp outlines
▶ CAD applications – determination of plane orientation

▶ optional specular term with priority
▶ thresholding for white-color highlight

21 / 32

Surface Details Non-realistic Rendering Postprocessing

Postprocessing

22 / 32

Surface Details Non-realistic Rendering Postprocessing

BASIC POSPROCESSING OPERATORS

▶ Process outputs from deffered shading stage
▶ Texture coordinate transformation
▶ Spatial filtering – operations on pixel (texel) neighborhood

▶ Linear filtering – convolution
▶ Edge detection
▶ Smoothing
▶ Bluring
▶ Bloom

▶ Non-linear:
▶ Morphological operations
▶ Median filtering

23 / 32

Surface Details Non-realistic Rendering Postprocessing

COORDINATE TRANSFORMATION

▶ Transform input u, v coordinates (f : [0, 1]2 → [0, 1]2)
▶ Warping
▶ Optical Effects

▶ Fish eye lens
▶ Barrel distortions

▶ Extreme stretching limited by number of texels
▶ Higher order interpolation – bicubic, . . .

24 / 32

Surface Details Non-realistic Rendering Postprocessing

SPATIAL FILTERING

▶ Value of the pixel is updated by some function over the
neighboring pixels

▶ Linear combination – convolution
▶ Mask containing weights (kernel)

▶ Nonlinear operations – min, max, median, . . .

25 / 32

Surface Details Non-realistic Rendering Postprocessing

SPATIAL FILTERING – IMPLEMENTATION

▶ Fragment shader:
▶ ustep, vstep – single texel offset in normalized texture space
▶ texelFetch() – access via non-normalized coordinates

▶ Compute shader:
▶ Better optimization options

26 / 32

Surface Details Non-realistic Rendering Postprocessing

GAUSSIAN SMOOTHING

▶ Gaussian distribution (normal) – result of combined random
processes

▶ Used for smoothing (bluring), noise reduction
▶ σ determines kernel radius – 68-95-99.7 rule
▶ Separable filter:

▶ Equivalent to two pass filtering with horizontal and vertical 1D
kernel

▶ 2n instead of n2 texture reads

27 / 32

Surface Details Non-realistic Rendering Postprocessing

CONTOUR (EDGE) DETECTION

▶ Edges in image – sharp changes in value
▶ Places with high gradient
▶ Alternative for cartoon shading

28 / 32

Surface Details Non-realistic Rendering Postprocessing

NUMERICAL DIFFERENTIATION

▶ Finite difference
f (x + h)− f (x)

h
▶ Symmetric difference

f (x + h)− f (x − h)
2h

▶ Higher-order methods – increased numerical stability
▶ Differentiation increases noise

Dx =
[
−1 0 1

]
Dy =

 1
0

−1


29 / 32

Surface Details Non-realistic Rendering Postprocessing

SOBEL FILTER

▶ Numerical partial derivations with small smoothing
▶ Gradien magnitude – edge strength
▶ Threshold small values – filter out small fluctuations

Sx =

 −1 0 1
−2 0 2
−1 0 1

 Sy =

 1 2 1
0 0 0

−1 −2 −1



30 / 32

Surface Details Non-realistic Rendering Postprocessing

DISCONTINUITIES IN G-BUFFERS

▶ Z-buffer
▶ Boundary between objects
▶ Different parts of objects

▶ Normals
▶ Strong edge without normal interpolation
▶ Boundary between objects

▶ ID-buffer (stencil)
▶ Boundaries only between different objects

31 / 32

Surface Details Non-realistic Rendering Postprocessing

COMBINED CONTOURS

▶ Detected discontinuities in normals and depth
▶ Summ together – all important contours together

32 / 32

	Surface Details
	Non-realistic Rendering
	Postprocessing

