Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 000000
!

Realtime Computer Graphics on GPUs
Effects Il

Jan Kolomaznik

Department of Software and Computer Science Education
Faculty of Mathematics and Physics
Charles University in Prague

Computer
Graphics
Charles
University

1/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
@000000000000000 00000000 0000000 000000
!

Advanced Texturing

2/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0@00000000000000 00000000 0000000 000000
!

BOTTLENECKS OF MODERN RENDERERS

» Memory transfers between CPU (RAM) and GPU

» Communication with driver:
» Fixed pipeline:
» Lots of API calls to manage state
» OpenGL 3.0+:

> Bind operations
> Setting shader uniforms
» Draw calls

3/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
00@0000000000000 00000000 0000000 000000
!

PROBLEM — MULTI-MATERIAL SCENE/OBJECTS

» Changing shader programs + repeated uniform setup
» Bind new textures on material switch
» Multiple draw calls

4/38

Advanced Texturing Decals, Billboards Noise Functions
000@000000000000 00000000 0000000

Volumetric Effects

000000

UNIFORM BUFFER OBJECTS |

Advantages:

>

v

Same uniforms in multiple shader programs:

uniform vecd4 camera_position;
uniform vecd4 light_position;
uniform vec4 light_diffuse;

Single buffer cointaining the data
Larger uniform storage
Faster switching for uniform blocks

5/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000@00000000000 00000000 0000000 000000
!

UNIFORM BUFFER OBJECTS ||

» Switch to uniform block in GLSL

uniform shader_data
vec4 camera_position;
vec4 light_position;
vec4 light_diffuse;

» C++ counterpart:

struct shader_data_t

{
float camera_position[4];
float light_position[4];
float light_diffuse[4];

} shader_data;

6/38

Advanced Texturing Decals, Billboards Noise Functions
0000080000000000 00000000 0000000

Volumetric Effects

000000

UNIFORM BUFFER OBJECTS Il

>

Create uniform buffer:

GLuint ubo = 0;

glGenBuffers(1, &ubo);

glBindBuffer (GL_UNIFORM_BUFFER, ubo);

glBufferData(GL_UNIFORM _BUFFER, Sizeof(shader_data), &shader_data, <
GL_DYNAMIC_DRAW) ;

glBindBuffer (GL_UNIFORM_BUFFER, O0);

Update data:

glBindBuffer (GL_UNIFORM BUFFER, gbo);

GLvoid* p = glMapBuffer(GL_UNIFORM_BUFFER, GL_WRITE_ONLY);
memcpy (p, &shader_data, sizeof(shader_data))

glUnmapBuffer (GL_UNIFORM_BUFFER) ;

Connect UBO and GLSL program:

block_index = glGetUniformBlockIndex(program, "shader_data”);
GLuint binding_point_index = 2;
glUniformBlockBinding(program, block_index, binding_point_index);

ngindBufferRanqe(GL_UNIFORM_BUFFER, binding_point_index,
gbo, 0, sizeof(shader_data_t));

/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000e000000000 00000000 0000000 000000
!

BINDLESS TEXTURES

How to prevent texture binding?
» Generate integer handle for each texture:

» from texture object alone
» from texture object and sampler
» from specific image within texture

> Texture state becomes immutable (can update contents)
» Access texture by handle from shaders
» cannot be used until made resident

» Safety: errors may crash the GPU, program, OS
» Extensions: ARB_bindless_texture, NV_bindless_texture

8/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000e00000000 00000000 0000000 000000
!

BINDLESS TEXTURES — USAGE

» Creation:
glGetTextureHandleARB (GLuint texture);
glGetTextureSamplerHandleARB (GLuint texture, GLuint sampler);
» Image handle:
glGetImageHandleARB (GLuint texture, GLint level,
GLboolean layered, GLint layer, GLenum format);
» Residency:
glMakeTextureHandleResidentARB (GLuint64 handle);
glMakeImageHandleResidentARB (uint64 handle, enum access);
glMakeTextureHandleNonResidentARB (GLuint 64 handle);
glMakeImageHandleNonResidentARB (uint64 handle);

9/38

Advanced Texturing

00000000e0000000 00000000 0000000

Decals, Billboards Noise Functions Volumetric Effects
000000

BINDLESS TEXTURES — GLSL USAGE

» Handle must be resident
» Direct use:

>

>
>

Shader stage inputs/outputs (except FS outputs)

Vertex attributes (GL_UNSIGNED_INT64_ARB data type)
Uniforms, uniform blocks

layout (bindless_sampler) uniform sampler2D bindless;

uniform samplers
{

sampler2D arr([10];
bi

Local sampler variables (init form other samplers, integer cast)

10/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000 e000000 00000000 0000000 000000
!

SPARSE VIRTUAL TEXTURE

» Also known as megatextures (ldsoft — Rage)

» Different approach to binding prevention — one large texture for
whole scene

» Texture may be larger than GPU memory (over-subscription)

» Similar to virtual address space and physical memory
» Pages are texture tiles
» Page table for translation of texture coordinates

» Each object in scene uniquely textured
> Artist less limited by technical aspects

11/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000 0e00000 00000000 0000000 000000

VIRTUAL TEXTURING

N

b S) -"_t(17‘11 Epov
4 LIPS *.:[I:v.,‘.? B

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000008 0000 00000000 0000000 000000

VIRTUAL TEXTURING

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 e000 00000000 0000000 000000
!

VIRTUAL TEXTURING

Texture Pyramid with Sparse Page Residency Physical Page Texture
-

T 1)
Quad-tree of Sparse Texture Pyramid

14/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000800 00000000 0000000

000000
!

MEGATEXTURES — PAGE MAPPING

» Access the page table with original texture coordinates
(nearest neighbor)
» No special coordinate mapping
» Within-page offset:
» Depends on mip-map level

page_phys_tc = texture(page_tex, vtex_tc);

within_page_tc = epo(mip,level) * vtex_tc;
within_page_tc = fract(within_page_tc);

within_page_tc *= rescale_page_to_physical;
phys_tc = page_phys_tc + within_page_tc;

sample = texture(diffuse_tex, phys_tc);

15/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000080 00000000 0000000 000000
!

FEEDBACK ANALYSIS

» Separate pass — render page IDs (low resolution)
» Determine pages + mip-map levels

» Loading missing pages — delay before used (mip-map fallback)

16/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000000e 00000000 0000000 000000
!

IMPLEMENTATION DETAILS

Page faults:
» Mip-map substitution

» Propagate lower mip-map levels page mapping to un-mapped
upper levels

HW support:
» TexPageCommitmentARB()
Filtering:
» Bilinear filtering with/without tile borders
» Trilinear — mip-map the physical pages (larger border)
» Anisotropic — complicated

17/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 00000000 0000000 000000
!

Decals, Billboards

18/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 0@000000 0000000 000000
!

DECALS

» Runtime interaction with the scene
» Additional details:

Bullet holes

Graffiti

Local material weathering
Footsteps

vVVvyvyyYy

19/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 000000
!

DECALS — APPROACHES

» Megatextures:
» Draw decals directly in the scene texture
» Maybe permanent without increased overhead
» Special geometry rendered in front of the object
» Z-fighting, depth offset
» Simple scene — textured quad
» Geometry projection in general case
» Adding decals increases scene complexity — only few
latest/important kept

» Screen space decals — deferred shading

20/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 000@0000 0000000 000000
!

DECALS — PROJECTING GEOMETRY

» Oriented bounding box:

» projector along z-axis

> X,y are mapped to u,v coordinates
» Intersection with scene geometry

> select intersecting tringles
» cut triangles — project to projector space, uv-mapping

21/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 0000@000 0000000 000000
!

DECALS — SCREEN SPACE

» Deffered shading
» Render projector box
» Reject fragments which project outside the box (use z-buffer +
view direction)
» Flattened box — projected on the geometry
» Normal mapping:
» Normal buffer may contain modulated normals
» Underlying geometry normal — partial derivatives in the z-buffer
» Problems:
» Clipping the projector box
> Projection on 90 degree corners

71/

22/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000e00 0000000 000000
!

BILLBOARDS

» Billboard — semitransparent texture showing more complicated
object/scenery
> texture is usually mapped on a rectangle
» often perpendicular to view direction
> .. following the viewer — special transform matrix
> rotation around vertical axis only (unsightly from above)
> usage
> trees and bushes (even unoriented billboards, multi-billboards)
» complex inscriptions, 2D graphics, HUD, lens flare..

23/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000080 0000000 000000

IMPOSTORS

» Impostor — billboard created dynamically (as necessary) in a
rendering engine
» cache of complex scenery (not very dynamic)
» complex object/scenery (geometric or color complexity)
» for distant objects mostly
» hierarchy, LoD, multiple instances of the (almost) same object

» trees, bushes
> impostors might be oriented along main branches..

» technique: HW render-target textures

24/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000008 0000000 000000

EXAMPLE

©Linda (Bohemia Interactive)

25/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 00000000 9000000 000000
!

Noise Functions

26/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 00000000 0®00000 000000
!

OVERVIEW AND MOTIVATION

» Critical for realistic textures and models

» Simplifies creation of natural variations

» Applications: terrain, procedural texturing, simulations
» Key for realism in visual effects and games

27/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 00@0000 000000
!

NOISE FUNCTIONS

» Generate pseudo-random
» Smooth gradients — frequency limited
» Controlled randomness mimics natural forms
» Types:
» Value
»> Gradient (Perlin, Simplex)

» Cellular (Worley)
» Fractal Noise

28/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000000 00000000 0008000 000000

PERLIN NOISE

» Developed by Ken Perlin, 1983
» Algorithm:

» Gradient vectors computed at grid points

» Interpolated across grid to produce smooth transitions
» Properties:

» Visually isotropic in 2D and 3D
» Repeats over large scales, which can be controlled

» Applications: Terrain, clouds, fire textures

e N
|

Vi
\\'
) =

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000e00 000000
!

SIMPLEX NOISE

» Ken Perlin, 2001
» Algorithm:
» Similar to Perlin but with simplex grid (triangular/hexagonal)
» Reduces computational complexity, especially in higher
dimensions
» Properties:
» Faster computation and lower complexity than Perlin
» Scales more efficiently to higher dimensions (4D and beyond)

» Avoids square-grid artifacts of Perlin noise

30/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000080 000000
!

WORLEY NOISE

» Steven Worley, 1996
» Algorithm:
» Points randomly distributed, partitioned into cells
» Noise generated based on proximity to nearest points
» Properties:
» Produces a voronoi diagram-like appearance
» Can simulate phenomena like cracked surfaces, sponge
textures

» Applications: Stone, water effects, organic textures

31/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 000000e 000000
!

COMPOSITING NOISE FUNCTIONS

» Combines multiple noise types to increase texture complexity
» Techniques:

> Layering different scales and amplitudes
» Masking layers to control influence areas

» Example: Mix Perlin (base texture) + Worley (detalil
enhancement)

» Enhances detail and realism in procedural content

32/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 00000000 0000000 900000
!

Volumetric Effects

33/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 0@0000
!

VOLUMETRIC EFFECTS

> Light usually passes through some medium (air, water, ...)
» Intensity, color (polarization) may be modulated:

» Attenuation (fog)
» Scattering (sunbeams, blue sky)

» Simulated by:

» Ray traversal
»> Blending billboard slice planes

34/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 00@000
!

RAY CASTING

» Space traversal along light ray
» Integrating properties along the ray:

y= / e s)ds

raystart

» Discrete samples:

» Regular voxel grid

» Procedural description
» Numerical integration:

> Piece-wise constant

» Interpolation (linear, polynomial)
> ...

Screen

Voxel grid

35/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
000000000000 0000 00000000 0000000 000800
!

SUNBEAMS

» Also known as crepuscular rays, god rays, ...
» Scattering on particles under direct light:

> Sun + clouds
» Point light source + dusty room

36/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 0000e0
!

SUNBEAMS — IMPLEMENTATION

» Deffered shading
» Ray casting from viewer to each pixel
» Ray sampling
» Check if sample illuminated — shadow map test
> Apply light scattering (physical model) to illuminated points
> Aggregate the effect and apply to color buffer
» Heavy computation

» Downsampled g-buffer
» Bluring result to prevent aliasing

37/38

Advanced Texturing Decals, Billboards Noise Functions Volumetric Effects
0000000000000 000 00000000 0000000 00000e
!

OTHER APPROACHES

» Create light volume geometry from shadow map and light
source

> Solve the rendering integral in intervals defined by light mesh

» Screen space approach:

» Directional light source bluring (decreasing alpha)
> Ligth source must be in the image

38/38

	Advanced Texturing
	Decals, Billboards
	Noise Functions
	Volumetric Effects

