Improvements

Isosurfaces Vector Fields

Point Clouds

Realtime Computer Graphics on GPUs Scientific Visualization

Jan Kolomazník

Department of Software and Computer Science Education Faculty of Mathematics and Physics Charles University in Prague

Computer Graphics Charles University

Volumetric Data •000	Direct Volume Rendering	Transfer Functions	Improvements	Isosurfaces	Vector Fields	

Volumetric Data

Improvements 0 0000 Isosurfaces Vec

Fields Point Clou

DATA SOURCE

- Computed tomography (CT)
- Magnetic resonance (MRI)
- Confocal laser scanning microscopy
- Ultrasonic imaging

. . .

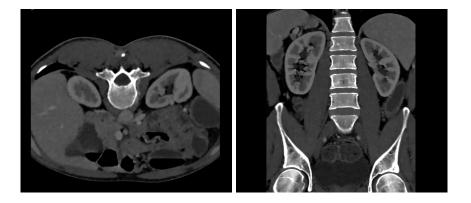
- Cryo-electron tomography
- Positron emission tomography (PET)

Improvemen

Isosurfaces Vector Fields

ds Point Clouds

DATA REPRESENTATION


- Regular, 3-dimensional grid of samples (voxels)
 - Scalar values density, absorption coefficients, event counting
 - Vectors
 - Color
- 3D texture:
 - Trilinear filtering
 - Easy slicing in general direction
- 2D texture:
 - Set of textures
 - Texture atlas
 - Manual filtering in Z-direction

Transfer Functions Improvements

Isosurfaces

Vector Fields Point Clouds

2D SLICES

Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements	Isosurfaces	Vector Fields	

Direct Volume Rendering

VOLUME RENDERING INTEGRAL

Direct Volume Rendering

$$I(D) = I_0 e^{-\int_{s_0}^D \kappa(t)dt} + \int_{s_0}^D q(s) e^{-\int_s^D \kappa(t)dt} ds$$

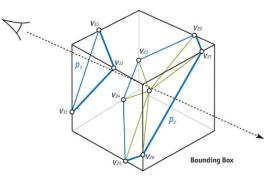
Isosurfaces

Vector Fields

Transfer Functions

entry point s₀

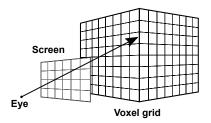
Volumetric Data


- exit point D (camera position)
- emission at a point q
- I_0 initial intensity s_0 (light emmitance of the background),
- κ is absorption coefficient.

Improvement 000 0000 Isosurfaces Vecto

Vector Fields Point Cl

VIEWPORT ALIGNED SLICES


- Generate proxy geometry
 - Viewport aligned slices (billboards)
 - Limited by volume bounding box limit fragment count
 - Convex easy to triangulate
- Enable framebuffer blending
 - Color attachment with float precision

RAY-CASTING

- Generate rays from camera through each pixel
 - Fragments generated by rendering bounding volume
- Discrete samples along the ray
- Numerical computation of the rendering integral

Improvements

Isosurfaces Ve

Vector Fields Poi

VOLUME COMPOSITING SCHEMES

- In Direct Volume Rendering, compositing accumulates color and opacity along the viewing ray.
- Two main compositing orders:
 - Front-to-back: processes samples from the eye toward the volume.
 - Back-to-front: processes samples from deep in the volume toward the eye.

s Improvement

Isosurfaces Vector

Vector Fields Point Clouds

COMPOSITING EQUATIONS

Color premultiplied by alpha Front-to-Back Compositing:

$$\begin{array}{rcl} C_{dst} & \leftarrow & C_{dst} + (1 - \alpha_{dst})C_{src} \\ \alpha_{dst} & \leftarrow & \alpha_{dst} + (1 - \alpha_{dst})\alpha_{src} \end{array}$$

Supports *early ray termination* when $\alpha_{dst} \approx 1$. **Back-to-Front Compositing** (painter's algorithm):

$$C_{dst} \leftarrow (1 - \alpha_{src})C_{dst} + C_{src}$$

Doesn't allow early termination.

Opacity from Absorption (based on distance):

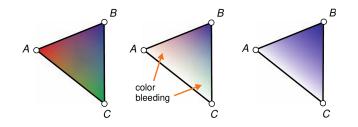
$$\alpha_i = 1 - e^{-\kappa_i \Delta s}$$

Direct Volume Rendering

000000000000

Volumetric Data

Interpolation with/without premultiplied alpha


Transfer Functions

Improvements

Isosurfaces

Vector Fields

Point Clouds

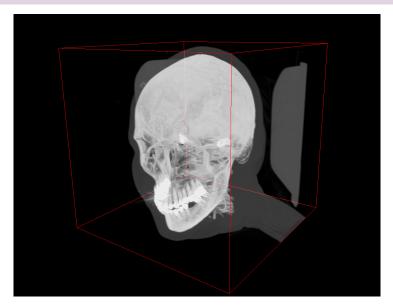
Improvements

Isosurfaces Ve

Vector Fields Point Clouds

MAXIMUM INTENSITY PROJECTION

- Uses maximum value found along the ray.
- Bad sense of depth.

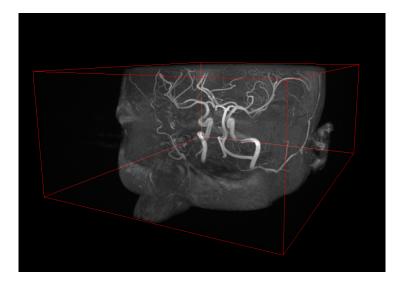

Improvements

Isosurfaces

es Vector Fields

Point Clouds

MAXIMUM INTENSITY PROJECTION


Improvements

Isosurfaces

vector Fields

s Point Clouds

MAXIMUM INTENSITY PROJECTION

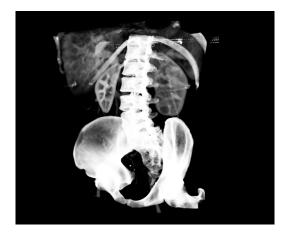
Direct Volume Rendering

0000000000000

Volumetric Data

Use values stored in voxels (color, density)

Transfer Functions


Improvements

Vector Fields

Isosurfaces

Point Clouds

Simple contrast/lightness adjustments

Improvements

Isosurfaces

s Vector Fields P

COMBINED GEOMETRY RENDERING

Opaque geometry

- Rendered before volume
- Rays terminated by value in z-buffer
- Transparent geometry
 - Checking for geometry/ray intersections during ray traversal
 - Color computed together with volume sampling

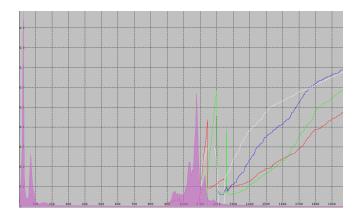
Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements	Isosurfaces	Vector Fields	

Transfer Functions **00000000000000** 0000

Isosurfaces

Vector Fields

1D TRANSFER FUNCTIONS

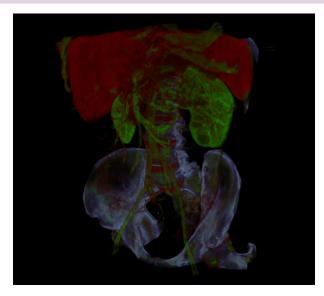

- Runtime fuzzy classification
- ▶ Transfer function g(v) : $R \rightarrow R^4$
- Ray sample: $g(f(\mathbf{x}))$
- Maps scalar value to RGBA color.
- Implementation:
 - 1D RGBA texture with interpolation
 - Final sample color access TF texture

Transfer Functions 0000000000000 0000

Improvements

Isosurfaces Vector Fields Point Clouds

HISTOGRAM + 1D TF


Transfer Functions 0000000000000 0000

Improvements

Isosurfaces

Vector Fields Point Clouds

1D TRANSFER FUNCTIONS

GRADIENT

$$\blacktriangleright \nabla f(\mathbf{X}) = \left(\frac{\partial f(\mathbf{X})}{\partial x_1}, \frac{\partial f(\mathbf{X})}{\partial x_2}, \frac{\partial f(\mathbf{X})}{\partial x_3}\right)$$

Direction of the greatest rate of increase.

- Magnitude is the slope of the graph.
- Directional derivative: $\frac{\partial f(\mathbf{x})}{\partial \mathbf{v}} = \nabla f(\mathbf{x}) \cdot \mathbf{v}$
 - Can be computed on the fly
 - Symmetric differences

Improvements 0000 Isosurfaces Vecto

Vector Fields Point C

1D TRANSFER FUNCTIONS + LIGHT

- Better surface shape perception.
- Compute shading for opaque regions (α channel over some threshold)
- Normalized gradient as surface normal.

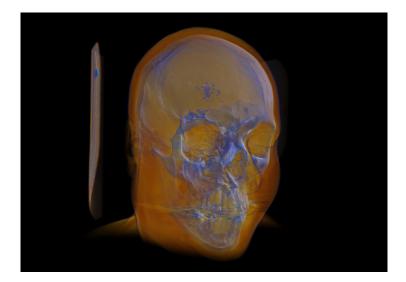
Transfer Functions Improv

Improvements

Isosurfaces

es Vector Fields Point Clouds

1D TRANSFER FUNCTIONS + LIGHT


Transfer Functions 00000000000000 0000

Improvements

Isosurfaces

Vector Fields Point Clouds

1D TRANSFER FUNCTIONS

Improvements

Isosurfaces

s Vector Fields P

POST-CLASSIFICATION VS. PRE-CLASSIFICATION

Pre-classification

- TF applied before rendering
- Interpolating already mapped data
- Post-classification
 - TF applied on the fly
 - Mapping interpolated input
- TF pre-integration
 - More precise integratal computation
 - Precompute integrals for each possible segment (start, end values)

Isosurfaces

Vector Fields

2D TRANSFER FUNCTIONS

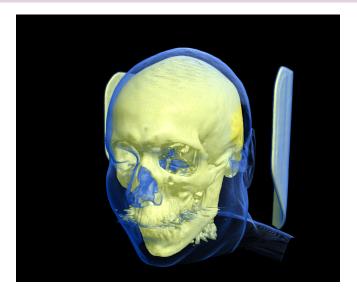
- ▶ Transfer function $h(v_1, v_2)$: $R^2 \rightarrow R^4$
- Ray sample: $h(f(\mathbf{x}), g(\mathbf{x}))$
- Maps two dimensional vector to RGBA color.
- Where we get the second dimension?.
 - Dual source CTs
 - Gradient magnitude

Transfer Functions 000000000000000 0000

Isosurfaces

Vector Fields

GRADIENT MAGNITUDE


- Can be computed on the fly.
- Ability to separate borders from homogeneous regions.

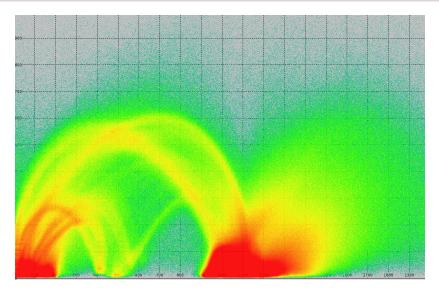
Improvements

Isosurfaces

Vector Fields Point Clouds

GRADIENT MAGNITUDE

Direct Volume Rendering

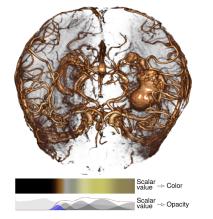

Transfer Functions Improv

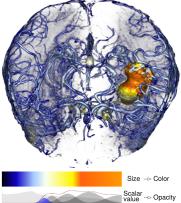
Improvements

Isosurfaces

ves Vector Fields Point Clouds

SCATTER PLOT

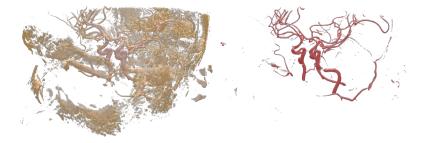



Improvements

Isosurfaces

Vector Fields Point Clouds

SIZE-BASED TRANSFER FUNCTIONS


Transfer Functions Improv

Improvements

Isosurfaces Ve

Vector Fields Point Clouds

SHAPE ORIENTED TRANSFER FUNCTIONS

Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements •000	lsosurfaces	Vector Fields	

Improvements

LIGHTING

- Self shadowing
- Material modeling
- Light scattering
- ▶ ...

JITTERING

- Uniform ray sampling alias
- Hide behind noise:
 - Randomly shift ray origins, along view direction
 - Pregenerated random texture

Transfer Functions Improv

Improvements

Isosurfaces

es Vector Fields P

SPEEDUP TECHNIQUES

Early termination

- Do not sample data behind opaque sections
- Empty space skipping
 - Large sparse data
 - Multiresolution
 - Skip sections without important data
 - Must be recomputed when TF changes

Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements	lsosurfaces ●0000	Vector Fields	

Isosurfaces

Improvements

Isosurfaces

s Vector Fields Point C

POLYGONAL MESH

- Polygonal mesh representing level set
- Volume preprocessing:
 - Cuberille (+filtering)
 - Marching cubes, tetrahedra, ...
- Use normal rasterization pipeline for rendering

Improvements

Isosurfaces Vector Fields

ds Point Clouds

REALTIME ISOSURFACE CONSTRUCTION

Ray-casting

- Search for isovalue crossings
- Fine search in subintervals for intersection point
- Gradient for surface normal

Volumetric Data

Direct Volume Rendering

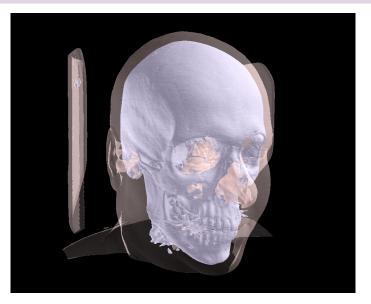
Transfer Functions Transfer Functions Improvements

Isosurfaces 00000

Vector Fields Point Clouds

ISO-SURFACES

Volumetric Data


Direct Volume Rendering

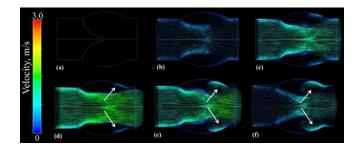
Transfer Functions Transfer Functions Improvements

Isosurfaces ○○○○●

Vector Fields Point Clouds

ISO-SURFACES

Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements	lsosurfaces	Vector Fields ●00000000	


Vector Fields

Vector Fields Point Clouds

DATA SOURCE

Physical simulations:

- Fluid dynamics
- Particle simulations
- Electromagnetic fields (Maxwell)

Improvements

Isosurfaces V

Vector Fields

NUMERICAL INTEGRATION

- Simulate motion under vector field influence
- Numerical integration
 - Euler method low numerical stability, fast
 - Higher order Runge-Kutta methods

Improvements

Isosurfaces

Vector Fields 000000000

Point Clouds

DIFFERENTIAL OPERATORS

Improvements

Isosurfaces

s Vector Fields F

GLYPHS, ICONS, PROBES

Sample vector field:

- Arrows
- Lines
- Balls, ellipsoids
- Ribons
- Other characteristics represented by shape, color
- To prevent clutter:
 - Importance sampling
 - Slice-probe through vector field

Improvements 0000

s Isosurfaces

es Vector Fields

Point Clouds

RENDERING GLYPHS

- Large number of similar geometries
- Instanced rendering
 - Impostors for complicated geometries
- Geometry shader:
 - From point samples generate glyph geometry

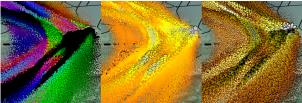
Volumetric Data

Transfer Functions


Improvements

s Isosurfaces

S Vector Fields Point Clouds


GLYPH EXAMPLES

Sampling jitter

Different shading

Improvements

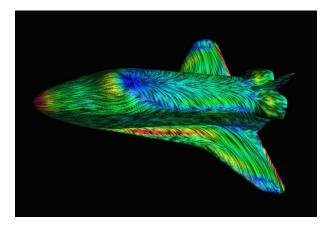
Isosurfaces V

Vector Fields Poir

LINE INTEGRAL CONVOLUTION

- Underlying texture blurred along vector directions
 - Multiple texture accesses in fragment shader integration

Improvements


Isosurfaces

Vector Fields

Point Clouds

LIC ON SURFACE

Compute in object fragment shader

	Volumetric Data	Direct Volume Rendering	Transfer Functions	Improvements	lsosurfaces	Vector Fields	
--	-----------------	-------------------------	--------------------	--------------	-------------	---------------	--

Point Clouds

Improvements

Isosurfaces Vec

Vector Fields Point Clouds

DATA SOURCE

- Surface points:
 - 3D scanner output
 - Scene reconstruction:
 - Stereo cameras
 - Camera + depth sensor (Kinect)
 - Single moving camera
- Random spatial samples:
 - Unstructured vector field
 - Unstructured volume

Improvement

Isosurfaces

Vector Fields Point Clouds

POINT CLOUD RENDERING

- Glyph for each point
 - Colored/textured facets
- Glyph for group of points
 - Size, shape properties of point group

Improvement 0 0000 Isosurfaces Vec

Vector Fields Point Clouds

VOLUME RENDERING

Unstructured volume samples:

- Datastructure for fast queries (octree, ...)
- Ray sample weighted average of points in certain radius

Surface reconstruction:

- Distance field
- Isosurface rendering