
Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Realtime Computer Graphics on GPUs
GPGPU I

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Introduction

2 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

HARDWARE ADVANCES

▶ VLSI technology evolves very quickly
▶ Frequency scaling slowed after 2005 (2-3GHz)
▶ modern desktop parts now boost up to 6 GHz

▶ Current trend – multi-core approach
▶ parallelizable tasks
▶ changes in programming techniques (traditionally all the

algorithms used to be sequential)
▶ High-performance computing (HPC) community practices are

becoming common in consumer segment

3 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

GPU ADVANCES

▶ graphic hardware evolution
1. single-purpose
2. configurable
3. programmable

▶ currently almost arbitrary algorithm can run on a GPU
▶ code size and memory are the only limits

▶ but GPU is efficient for special class of algorithms only

4 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

MULTI-CORE COMPUTING

▶ running many sequential algorithms
▶ two- to many-core CPUs
▶ full x86-64 instruction set, SSE, AVX extensions
▶ example 1: Intel Core i9 (Sky Lake X, Sep 2017)

▶ 14 nm, 24MB L3 cache, TDP: 165W
▶ 18 cores + hyperthreading = 36 computing threads
▶ out-of-order execution

▶ example 2: Intel Xeon 6 “Sierra Forest” 6700E (2024)
▶ Up to 288 Crestmont E-cores, 96MB L3 cahe, TDP: 330W

5 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

MANY-CORE COMPUTING

▶ emphasis on parallel algorithms
▶ graphic accelerators – programmable GPUs
▶ more simple instruction sets
▶ very high brute computing power
▶ example 1: NVIDIA Quadro GP100 (Pascal, 2017)

▶ 16 nm, 3584 cores, 1476MHz, TDP: 235W
▶ 16 GB HBM2 RAM (4096-bit bus)

▶ example 2: NVIDIA H100 (Hopper, 2023)
▶ 132 SMs / 16 896 CUDA cores, 1.9GHz, TDP: 700W
▶ 80 GB HBM3 RAM 3 TB/s

6 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

FLOPS

7 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

CPU VS. GPU

8 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

MEMORY BANDWIDTH

9 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

CUDA

10 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

HISTORY

▶ GPGPU (history) – computing in shaders, data in textures
▶ more elegant access to GPU resources was needed

▶ 2007: NVIDIA Tesla architecture (G80, GeForce 8800)
▶ general model for parallel programming
▶ computing thread hierarchy
▶ barriers for synchronization
▶ atomic operations

▶ CUDA: Compute Unified Device Architecture
▶ C for CUDA: programming language

11 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

CUDA ARCHITECTURE

▶ CUDA GPU: group of highly threaded streaming
multiprocessors (SM)

▶ number of SM per GPU depends on GPU generation
▶ each SM has a set of streaming processors (SP) – CUDA

cores
▶ G80: 8 SP per SM
▶ GF100: 32 SP per SM
▶ GP100: 64 SP per SM
▶ GA100: 64 SP per SM
▶ GH100: 128 SP per SM

▶ SP within one SM share control circuits, instruction decoder
and instruction cache

▶ SIMT (Single Instruction Multiple Threads) – warp

12 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

GPU SCHEME

13 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

STREAMING MULTIPROCESSOR

14 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

COMPUTE CAPABILITY

▶ Specification of set of HW features
▶ Instruction availability
▶ Memory sizes
▶ Synchronization options

▶ Mostly backward compatible
▶ Compilation must target specific feature set
▶ Each device supports specific Compute Capability version

15 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

PROGRAM STRUCTURE I

▶ one or more phases (one phase = one kernel)
▶ deployment on CPU or GPU

▶ CUDA source code can contain both parts
▶ nvcc (NVIDIA C compiler) separates these parts during

compilation
▶ language: from ANSI C to complete C++ support
▶ GPU code = kernel

▶ deployed on thousands of threads
▶ GPU threads are much more light-weighted (thread creation,

ctxsw a couple of machine cycles)

16 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

PROGRAM STRUCTURE II

17 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

PROGRAM STRUCTURE III

▶ Keywords __global__, __host__, __device__
▶ where the code can run
▶ from where it can be called

Keyword Runs on Executable from
__global__ float KernelFunc() GPU host, GPU (CC 3.5)
__device__ float DeviceFunc() GPU GPU
__host__ float HostFunc() host host
__host__ __device__
float HostDeviceFunc() host, GPU host, GPU

18 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Code Execution

19 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

SIMPLE EXAMPLE

// Kernel definition
__global__ void VecAdd(float *A, float *B, float *C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}

int main()
{

...
// Run kernel in N threads
VecAdd<<<1, N>>>(A, B, C);
...

}

20 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

KERNEL EXECUTION

MyKernel<<<gridSize , blockSize , dynamicSharedMemorySize , streamID>>>(arg1 , arg2 , . . . ) ;

▶ gridSize
▶ int or dim3
▶ Specifies 3D structure of thread blocks

▶ blockSize
▶ int or dim3
▶ Specifies 3D structure of threads in block

▶ dynamicSharedMemorySize
▶ amount of dynamically allocated shared memory
▶ 0 is default

▶ streamID
▶ Which stream is used for execution
▶ 0 is default

21 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

GRID, BLOCK, WARP

▶ Usual approach – map grid and
blocks on input data

▶ Block:
▶ Executed on single SM
▶ Cannot be removed until finished

▶ Threads in warp:
▶ Set of threads that all share the

same code
▶ Follow the same execution path

(masking execute on branching)

22 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

AUTOMATIC SCALABILITY

23 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

SIMPLE EXAMPLE IMPROVED

// Kernel definition
__global__ void VecAdd(float *A, float *B, float *C, int N)
{

int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < N) {

C[i] = A[i] + B[i];
}

}

int main()
{

...
constexpr int M = 256;
// Run kernel in M threads per block
VecAdd<<<(N + M - 1)/ M, M>>>(A, B, C, N);
...

}

24 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

STREAMS

▶ CUDA Stream – queue of commands (kernel execution,
memory transfers, event)

▶ Commands in stream serialized
▶ Different streams – possible concurrency
▶ Default stream 0 always exists (can be per thread)
▶ cudaStreamCreate()
▶ Synchronization:

▶ cudaStreamSynchronize(stream)
▶ Event system

25 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Memory Types

26 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

HOST MEMORY (RAM)

▶ Normal memory RAM
▶ By default cannot be accessed from device

▶ Must be copied to device memory

27 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

GLOBAL MEMORY

▶ Actual GPU memory
▶ Used as normal linear memory – pointer arithmetics
▶ Management:

▶ cudaMalloc(), cudaMallocPitch(), cudaMalloc3D()
▶ cudaMemcpy(), cudaMemcpyToSymbol()

▶ Read from kernel can take hundreds of cycles

28 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

TEXTURE MEMORY

▶ Allow usage of texturing HW:
▶ Spatial caching
▶ Filtering

▶ Limited by predefined element types (colors)
▶ No custom structures

29 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

SHARED MEMORY

▶ Same space as L1 cache
▶ Division is customizable

▶ __shared__ keyword
▶ Shared by threads in block
▶ Use when same value accessed is multiple times in block

execution (not necessarily by same thread)

30 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

REGISTERS

▶ 32-bit registers
▶ Divided between active warps
▶ Shared memory + registers limit occupancy:

▶ Number of active warps vs. max possible warps on SM
▶ Limiting number of registers may lower performance

▶ May be necessary to run at least 1 block on SM

31 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Advanced Features

32 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

UNIFIED MEMORY

▶ Single memory address space accessible from any processor
in a system

▶ Replace malloc(), new with calls to cudaMallocManaged()
▶ New on Kepler architecture
▶ Pascal:

▶ 49-bit virtual addressing
▶ On-demand page migration
▶ Oversubscription to GPU memory

33 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

DYNAMIC PARALLELISM I

34 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

DYNAMIC PARALLELISM II

▶ Kernels can be executed from kernels on device
▶ Parent kernel waits until children finishes
▶ Allows adaptive thread execution

35 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

GRAPHICAL APIS CONNECTION

▶ Acquire access to memory used by buffer objects in OpenGL,
DX, Vulcan
▶ cudaGraphicsMapResources(...), . . .

▶ Read or update the memory
▶ Unmap the resource

36 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Parallel Algorithms

37 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

INTRODUCTION

▶ Algorithms for massively parallel architectures:
▶ Often bottom up design
▶ Shallow datastructures
▶ Memory access patterns considered first

▶ Try to make all operations local only
▶ Problem reformulation:

▶ Search for possible constrains
▶ Solve dual problem
▶ Cellular automata
▶ . . .

38 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

BASIC META-ALGORITHMS

▶ Map :
▶ ForEach (inplace?)
▶ Transform

▶ Spatial filters with limited support:
▶ Convolution
▶ Morphological operations

39 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

REDUCE (FOLD)
▶ Associative binary operation to combine input elements into

single value:
▶ Sum
▶ Multiplication
▶ Min/Max

▶ On GPU:
1. Tree-based approach used within each thread block
2. Global sync (multiple kernels)
3. Reduce block results

▶ Optimizations:
▶ Prevent thread idling
▶ Shared memory access patterns
▶ Ref: Mark Harris – Optimizing Parallel Reduction in CUDA (30x

speedup) 40 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

SCAN (PREFIX-SUM)

▶ Associative binary operation to combine input elements in
front of each of the processed elements

▶ Inclusive vs. exclusive
▶ Similar implementation and optimizations as reduction

41 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

EXAMPLE: SELECT ELEMENTS BY INDICATOR

▶ Task:
▶ Output elements selected by predicate

▶ Naive approach:
▶ Adding Elements to output array directly
▶ Bottleneck – size update

▶ Better solution:
▶ Two level solution
▶ Store local selection into shared memory
▶ Update global output size once per block

▶ Advanced solution:
▶ Run parallel prefix-sum on indicator set (0/1 for each element)
▶ Computes indices for all selected elements and final size
▶ Final step – store all selected elements on precomputed

positions

42 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

EXAMPLE: INTEGRAL IMAGES

▶ Apply prefix-sum to rows and columns
▶ Sum/average queries for rectangular regions with constant

complexity
▶ Used in feature detectors:

▶ Haar features
▶ Blur filter approximation

43 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

DATASTRUCTURES

▶ Basic categories:
▶ Dense arrays
▶ Hash tables
▶ Sparse structures

▶ Matrices
▶ Graphs

▶ Different criteria:
▶ Read/write
▶ Incremental changes vs. Rebuild from scratch
▶ Space waste

▶ Two level design:
▶ Local datastructure living in shared memory
▶ Main datastructure living in global memory
▶ Write local instances at the end of computation

44 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

Compute Shaders

45 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

MOTIVATION

▶ Why not OpenCL or CUDA?
▶ One API for graphics and GP processing
▶ Avoid interop
▶ Avoid context switches
▶ You already know GLSL

▶ APIs:
▶ Core since OpenGL 4.3
▶ Part of OpenGL ES 3.1
▶ Vulcan

46 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

WHERE IT BELONGS?

47 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

USAGE

▶ Write compute shader in GLSL
▶ Define memory resources
▶ Write main()function

▶ Initialization
▶ Allocate GPU memory (buffers, textures)
▶ Compile shader, link program

▶ Run it
▶ Bind buffers, textures, images, uniforms
▶ Call glDispatchCompute(...)

48 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

SAMPLE COMPUTE SHADER

#version 430
layout(local_size_x = 1, local_size_y = 1) in;
layout(rgba32f, binding = 0) uniform image2D img_output;

void main() {
// base pixel colour for image
vec4 pixel = vec4(0.0, 0.0, 0.0, 1.0);
// get index in global work group i.e x,y position
ivec2 pixel_coords = ivec2(gl_GlobalInvocationID.xy);

// output to a specific pixel in the image
imageStore(img_output, pixel_coords, pixel);

}

49 / 50



Introduction CUDA Code Execution Memory Types Advanced Features Parallel Algorithms Compute Shaders

BUILTIN VARIABLES

in uvec3 gl_NumWorkGroups;
in uvec3 gl_WorkGroupID;
in uvec3 gl_LocalInvocationID;
in uvec3 gl_GlobalInvocationID;
in uint gl_LocalInvocationIndex;

50 / 50


	Introduction
	CUDA
	Code Execution
	Memory Types
	Advanced Features
	Parallel Algorithms
	Compute Shaders

