
Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

Realtime Computer Graphics on GPUs
GPGPU II

Jan Kolomaznı́k

Department of Software and Computer Science Education
Faculty of Mathematics and Physics

Charles University in Prague

1 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

Parallel Algorithms

2 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

BITONIC SORT

▶ O(n log2 n) comparators
▶ Alternating bitonic sequences
▶ Comparisons in a layer are processed in parallel

3 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

CONNECTED COMPONENT LABELING

▶ CCL
▶ Sequential algorithms:

▶ Search and ”bucket-fill”
▶ Two pass equivalence search

▶ Sequential algorithms:
▶ Union-find

4 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

GRAPH ALGORITHMS

▶ BFS
▶ Queue processed in parallel
▶ Managed using atomics

▶ Graph-cut/Max flow:
▶ Push-Relabel algorithm

Data: graph
Result: valid flow net
set excess to 0 for all vertices;
set label to 0 for all vertices except source which is ∞;
while push or relabel applicable do

execute the operation;
end

5 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

CUDA Continuation

6 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

COMPILATION TOOLS: NVCC

▶ nvcc: NVIDIA’s CUDA Compiler (nvcc) is the primary tool for
compiling CUDA C/C++ code.

▶ It supports both host and device code compilation, seamlessly
integrating CUDA kernels with host code.

▶ Compilation Process:
▶ Preprocessing: Handles CUDA-specific preprocessor directives

and includes.
▶ Compilation: Translates CUDA C/C++ code into GPU machine

code (PTX).
▶ Linking: Combines compiled GPU code with host code to

generate the final executable.

7 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

COMPILATION TOOLS: HOST COMPILERS

▶ Host Compilers: Various host compilers such as GCC and
Clang can be used with nvcc for compiling host code.

▶ It’s essential to check for version compatibility (ABI) to ensure
seamless integration with nvcc.

▶ Clang:
▶ Recent versions of Clang have added support for compiling

CUDA device code.
▶ While not fully compatible with nvcc, Clang provides an

alternative compiler option.
▶ Limitations include lack of full compatibility and missing

features like texture memory support.

8 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

COMPILATION TOOLS: PGI COMPILER

▶ PGI Compiler: The PGI compiler suite offers support for
compiling CUDA device code for both GPUs and CPUs.

▶ It provides additional flexibility by allowing device code to be
compiled for execution on the CPU.

▶ This feature is particularly useful for debugging and testing
CUDA code on CPU platforms without requiring a GPU.

9 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

PROFILING TOOLS

▶ nvprof: NVIDIA Profiler (nvprof) is a command-line profiling
tool for analyzing the performance of CUDA applications.

▶ It provides detailed information on kernel execution times,
memory usage, and API calls.

▶ nvvp: NVIDIA Visual Profiler (nvvp) is a graphical profiling tool
that offers a more intuitive interface for visualizing and
analyzing CUDA application performance.

▶ It allows developers to identify performance bottlenecks and
optimize their code using interactive visualizations.

▶ Both tools are essential for optimizing CUDA applications for
better performance and efficiency.

Figure: Screenshot of NVIDIA Visual Profiler (nvvp)

10 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

CUDA SUPPORT FOR MULTI-GPU PROGRAMMING

CUDA Technologies for Multi-GPU Programming:
▶ NVIDIA GPUDirect RDMA: GPUs within the same system to

directly access each other’s memory without CPU
▶ CUDA Streams and Asynchronous Execution: Concurrent

kernel execution and memory operations on different GPUs
▶ Unified Memory: accessible by GPUs and the CPU
▶ Multi-GPU Collective Operations: NVIDIA Collective

Communications Library (NCCL) – collective operations (e.g.,
all-gather, reduce) across multiple GPUs

Hardware Requirements for Multi-GPU Programming:
▶ NVIDIA GPU Architecture: supported on NVIDIA GPUs with

compatible architectures, such as Pascal, Volta, Turing, and
Ampere.

▶ PCIe Bus and NVLink Connectivity: GPUs connected either
through PCIe bus or NVLink interconnect

11 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

TENSOR CORES

▶ New in Volta and Turing architectures
▶ Accelerate matrix problems of the form D = A ∗ B + C

▶ Single core works on 4x4 matrices
▶ fp16 precision for multiplication
▶ fp16 or fp32 for accumulation

▶ Warp matrix functions
▶ Special calls for specific matrix sizes

▶ Significant speedup of NN training and inference
▶ Denoising in raytracing APIs

12 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

CUDA GRAPHS AND DEPENDENCY TRACKING

▶ Dependencies between GPU kernels.
▶ Efficient scheduling and execution of GPU workloads

Key Concepts:
▶ Computation Graphs: Represent the sequence of GPU

operations and their dependencies, allowing for explicit
specification of parallel tasks and their interdependencies.

▶ Dependency Tracking: ensuring that dependent kernels wait
for their inputs to become available before execution.

13 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

WARP VOTING

▶ all(predicate): Returns true if the predicate is true for
all active threads in the warp. Useful for making collective
decisions like memory deallocation when all threads agree.

▶ any(predicate): Returns true if the predicate is true for
any active thread in the warp. Useful for triggering an action if
at least one thread meets a condition.

▶ ballot(predicate): Returns a 32-bit integer where each
bit corresponds to the result of the predicate for each thread in
the warp. This function is powerful for complex conditional
processing and can be used to count the number of true
predicates.

14 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

Deep Neural Networks

15 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

DEEP NEURAL NETWORKS

▶ Another neural networks renaissance
▶ Large neural networks with lots of layers

▶ Convolutional networks
▶ Large numbers of identical neurons – highly parallel by nature
▶ Backpropagation

▶ Millions of parameters
▶ Large training set

▶ Training vs. inference

16 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

EXAMPLE

17 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

CUDNN

▶ GPU-accelerated library of primitives for deep neural networks
▶ Used for speedup of DNN frameworks like:

▶ TensorFlow
▶ Caffe
▶ Pytorch
▶ Keras
▶ Matlab
▶ . . .

▶ Special implementations for selected common cases – highly
optimized

18 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

TENSORRT

▶ Also by Nvidia
▶ Inference optimization

▶ Significantly less computationally demanding than training
▶ Deployed on embedded systems – memory constrains

▶ Change network topology without sacrificing inference
precision

▶ Use lower numerical precision
▶ Less space occupied by weights
▶ Usage of tensor cores

19 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

OpenCL

20 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

OPENCL

▶ Alternative to C for CUDA
▶ Basic idea from C for CUDA, 1:1 equivalence in some parts
▶ Programming model for execution of massivily parallel tasks

on CPU, GPU, Cell, . . .
▶ Language:

▶ Originally subset of C99
▶ Subset of C++17 in OpenCL 2.x, 3.0 and backported to 1.0
▶ Just-in-time compilation

21 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

HOST CODE

▶ Code structure similar to shader programming
▶ API:

▶ clBuildProgram()
▶ clCreateCommandQueue()
▶ clCreateBuffer()
▶ clEnqueueWriteBuffer()
▶ . . .

22 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

OPENCL CONCEPTS

OpenCL CUDA equivalent
kernel kernel
host program host program
NDRange (index space) grid
work item thread
work group block

23 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

OPENCL THREADS

OpenCL CUDA equivalent
get_global_id(0) blockIdx.x · blockDim.x + threadIdx.x
get_local_id(0) threadIdx.x
get_global_size(0) gridDim.x · blockDim.x
get_local_size(0) blockDim.x

24 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

OPENCL MEMORY

OpenCL CUDA equivalent
global memory global memory
constant memory constant memory
local memory shared memory
private memory local memory

25 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

SAMPLE OPENCL KERNEL

// Kernel definition
__kernel void VecAdd(

__global const float *A,
__global const float *B,
__global float *C)

{
int id = get_global_id(0);
C[id] = A[id] + B[id];

}

26 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

SPIR

▶ Standard Portable Intermediate Representation
▶ Distribute device-specific pre-compiled binaries
▶ SPIR-V incorporated in the core specification of:

▶ OpenCL 2.1
▶ Vulkan API
▶ OpenGL 4.6

27 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

COMPARISON BETWEEN C AND C++ FOR OPENCL

▶ History:
▶ C for OpenCL:

▶ Initially adopted due to its widespread use and familiarity.
▶ Suitable for low-level system programming.

▶ C++ for OpenCL:
▶ Introduced to provide a more modern and expressive alternative.
▶ Addresses the demand for a higher-level programming model.

28 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

COMPARISON SUMMARY

▶ Expressiveness: C++ offers a more modern and expressive
programming model compared to C.

▶ Productivity: C++ enhances developer productivity with
features like lambda expressions and STL integration.

▶ Compatibility: Both C and C++ are used for OpenCL
programming, with C++ adoption growing through SYCL.

▶ Performance: Both languages can achieve similar
performance levels in OpenCL applications.

29 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

Other APIs

30 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

C++ AMP, OPENACC

▶ C++ Accelerated Massive Parallelism:
▶ Open specification from Microsoft
▶ Builds on DX11
▶ Language extensions, runtime library
▶ Heterogenous computation
▶ Deprecated since VS 2022

▶ OpenACC:
▶ Similar to OpenMP
▶ Compiler directives (pragmas) + runtime library

31 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

SYCL

▶ Standard by Khronos
▶ Cross-platform abstraction layer
▶ Builds on the underlying concepts, portability and efficiency of

OpenCL
▶ Single-source style using completely standard C++

32 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

FEATURES OF SYCL

SYCL offers several key features for parallel programming:
▶ Single-Source Programming: SYCL enables developers to

write parallel code in standard C++ without the need for
separate kernel languages or extensions.

▶ Host-Device Collaboration: SYCL allows seamless
interaction between host and device code, simplifying data
transfers and synchronization.

▶ Template Metaprogramming: SYCL leverages C++
templates to enable compile-time optimizations and generate
efficient device code.

▶ Automatic Parallelism: SYCL runtime automatically
parallelizes and executes code on available hardware
accelerators, maximizing performance.

33 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

SAMPLE SYCL CODE

inc lude<CL/ syc l . hpp>
inc lude<iostream>

i n t
main () {

using namespace cl : : sycl ;
i n t data [1 0 2 4] ;
/ / i n i t i a l i z e data to be worked on
/ / By i n c l u d i n g a l l the SYCL work i n a {} block , we ensure
/ / a l l SYCL tasks must complete before e x i t i n g the block
{

queue myQueue ;
bufferbuffer<i n t , 1> resultBuf (data , range<1>(1024)) ;
/ / c reate a command group to issue commands to the queue
myQueue .submit ([&] (handler& cgh) {

/ / request access to the b u f f e r
auto writeResult = resultBuf .get_access<access : : write>(cgh) ;
/ / enqueuea p a r a l l e l f o r task
cgh .parallel_for<c lass simple_test>(range<1>(1024) , [=] (id<1> idx) {

writeResult [idx] = idx [0] ;}) ;
}) ;

} / / end of scope , so we wa i t f o r the queued work to complete
f o r (i n t i = 0; i < 1024; i++)

std : : cout<< ” data [” << i << ”] = ” << data [i] << std : : endl ;
r e t u r n 0 ;

}

34 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

SYCL IMPLEMENTATIONS

SYCL is supported by several implementations, each providing a
SYCL-compatible programming environment:
▶ ComputeCpp: Codeplay Software, SYCL implementation for

wide range of hardware platforms, including CPUs, GPUs, and
FPGAs.

▶ Intel oneAPI DPC++ Compiler: SYCL support for Intel CPUs,
GPUs, and FPGAs

▶ hipSYCL: hipSYCL is an open-source SYCL implementation
targeting AMD GPUs and CPUs

▶ triSYCL: triSYCL is an experimental and reference SYCL
implementation

35 / 36

Parallel Algorithms CUDA Continuation Deep Neural Networks OpenCL Other APIs

Thank you for your attention!

36 / 36

	Parallel Alg.
	CUDA Cont.
	Deep Neural Networks
	OpenCL
	Other APIs

