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Survey and Evaluation of Neural 3D Shape
Classification Approaches

Martin Mirbauer , Miroslav Krabec, Jaroslav Křivánek , Elena Šikudová

Abstract—Classification of 3D objects – the selection of a category in which each object belongs – is of great interest in the field of
machine learning. Numerous researchers use deep neural networks to address this problem, altering the network architecture and
representation of the 3D shape used as an input. To investigate the effectiveness of their approaches, we conduct an extensive survey
of existing methods and identify common ideas by which we categorize them into a taxonomy. Second, we evaluate 11 selected
classification networks on two 3D object datasets, extending the evaluation to a larger dataset on which most of the selected
approaches have not been tested yet. For this, we provide a framework for converting shapes from common 3D mesh formats into
formats native to each network, and for training and evaluating different classification approaches on this data. Despite being partially
unable to reach the accuracies reported in the original papers, we compare the relative performance of the approaches as well as their
performance when changing datasets as the only variable to provide valuable insights into performance on different kinds of data. We
make our code available to simplify running training experiments with multiple neural networks with different prerequisites.

Index Terms—3D shape analysis, classification algorithms, computer graphics, convolutional neural network, deep learning, image
processing, machine learning, multi-layer neural network, neural networks, object recognition.
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1 INTRODUCTION

Classification and generation of 3D shapes is one of the
widely researched topics in the field of artificial intelligence.
It is applied in a vast number of fields such as autonomous
driving [1], analysis of medical data [2] as well as various
fields of computer vision and graphics [3, 4]. Classification
of objects in 2D images has been revolutionized by deep
convolutional neural networks [5, 6] and has been shown to
achieve super-human accuracy [7]. This is not yet the case
for 3D shapes, perhaps because of the lack of a representa-
tion that is both expressive and easy to process by a neural
network.

Numerous network architectures working with different
3D shape representations have been designed, and new ones
are still being developed. However, their relative perfor-
mance needs further evaluation and comparison.

As the number of published approaches increases, un-
derstanding existing approaches, finding the proper repre-
sentation and approach for a given application, and follow-
ing new ones becomes more difficult. Categorizing them
into a taxonomy and comparing the methods which use
different representations is essential to simplify orientation
in the landscape of approaches.

In this work, we focus on supervised learning, specifi-
cally the classification task, which is closely related to global
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feature extraction – one of the tasks in the broader context
of machine understanding of shapes and scenes.

We define the classification task as follows: we are given
a set of training examples {(x1, y1), . . . , (xn, yn)}, where xi

is a 3D shape representation and yi is a numerical encoding
of the corresponding label. Each shape belongs to exactly
one class. A classification model is a parametric model
P (θ) : X → Y , where X is a space of 3D shapes, Y is a space
of labels, and θ are trainable parameters. With θ optimized
to minimize a prediction error metric, P (θ) should predict
the correct class label for each 3D shape from X .

The contributions of this work are:
First, we extensively survey deep learning-based 3D

shape classification approaches published before October
2019 and categorize them based on common approach ideas,
which provides researchers with an overview of approaches
suitable for processing 3D shapes.

Second, we select several existing techniques of 3D shape
classification to replicate their reported results, compare and
evaluate them on publicly available CAD datasets. We pro-
vide a pipeline which simplifies evaluating quality of new
classifiers and methods for converting between different
shape representations. The code is available on the project’s
website1.

1.1 Related Work
There are existing works surveying the machine learning
methods which process 3D shapes, however Zelener [8],
Ioannidou et al. [9] and Carvalho and von Wangenheim [10]
survey publications before the year 2016, which we extend
until the end of year 2020 thus including current state-of-
the-art methods. Other works by Arnold et al. [11], Griffiths
and Boehm [12] focus on processing scanned data (RGB-D

1. https://cgg.mff.cuni.cz/∼martinm/papers/2021-survey-eval
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Fig. 1. Illustration of 3D representations used as neural network input
Volumetric grid (Section 3), Multiple-viewpoints renderings (Section 4),
Point cloud (Section 5), and Mesh (included in Section 6). Example
shape: ModelNet40 airplane 0627.

or LIDAR) which contain noise and occlusion. There are also
works which include an overview of classification methods
using various representations of CAD models by Su et al.
[13], Shen [14] and Wang et al. [15]. However, each paper
contains only a few selected approaches. Bronstein et al. [16]
provide a comprehensive review of methods working with
non-Euclidean input data – graphs and manifolds. Rostami
et al. [17] and Ahmed et al. [18] survey and categorize
approaches also suitable for CAD models classification but
include only a few recent deep-learning-based approaches.
Compared to [18], we provide a more fine-grained catego-
rization of classification approaches derived independently
of their work but similar to their Input-oriented taxonomy.
Several works also compare the practical performance of
various network architectures on a benchmark dataset –
some only summarize the reported accuracies [9, 18, 19],
while others replicate the performance evaluation and inde-
pendently measure the accuracies [20, 21, 22].

1.2 Article Structure
The following sections 2 through 7 give an overview of
methods using different shape representations and describe
approaches for each representation in detail. In sections
8 and 9, we introduce our evaluation methodology and
present the results of our experiments.

2 SURVEY OF 3D CLASSIFICATION METHODS

Shapes can be represented in various formats depending on
the use-case or data acquisition method. In CAD applica-
tions, freeform surfaces or CSG (constructive solid geome-
try) models are commonly used [23, 24], providing precise
information about object shape; other modeling software
uses polygon mesh to represent the approximate shape of
the object. In applications where the object is not created
on a computer, its shape is measured in real world using
suitable sensors. In medical applications, computer tomog-
raphy or magnetic resonance imaging are used to produce

volumetric scans, and in automotive and robotics industries,
the object surface is scanned using an RGBD camera or a LI-
DAR producing point clouds. Some reviewed classification
approaches work with the native representation for their
data source, others convert the original representation to
another format more suitable for processing with a neural
network.

The usual approximative polygon or triangle mesh sur-
face representation of 3D models in available datasets is
non-regular as triangle sizes may differ within a model and
triangle counts may differ between individual models, un-
like e.g. images, where the resolution and pixel dimension
are fixed. Therefore such representation is a challenging in-
put to be directly processed by a neural network commonly
working with regularly structured input and only a few
networks use it as an input representation. Conversion to
a different representation is often used to pre-process the
mesh to a more suitable format.

2.1 Categorization of Approaches

We provide a hierarchical categorization of the surveyed
approaches based on the following criteria. First, we classify
the networks according to the shape representation they use
as their input: volumetric grid-based, multiple-viewpoint
image-based, point cloud-based, networks which process
the object’s shape or mesh approximation, and hybrid meth-
ods that process multiple representations simultaneously.
Basic representation types are illustrated in Figure 1. Second,
within each category, we couple the surveyed methods into
categories by the similarity of the used algorithms and
approach ideas and describe essential properties of each
method’s architecture. The resulting categorization is pre-
sented in Table 1. Figure 2 shows the overview of reported
accuracies.

Classification neural network architectures can be di-
vided into two parts: a feature extractor, which transforms
the input shape representation to a feature vector, called
descriptor, and a classifier, which learns to transform the
extracted features into scores denoting the probability of
individual classes. The feature extractor differs based on the
input representation and is usually designed based on each
approach’s unique ideas. Depending on the approach, these
parts may be trained together (end-to-end) or separately.
The following sections describe each representation in more
detail.

3 VOLUMETRIC GRID-BASED NEURAL NETWORKS

In volumetric convolutional neural networks (CNNs), the
convolution operation is used for the feature extraction task.
It exploits the spatial locality of low-level features such
as edges and can be applied hierarchically, usually with
pooling or striding, reducing the resolution and increasing
the level of abstraction in each step – similarly to CNNs that
process 2D images. As 2D convolutional neural networks
were a significant breakthrough in image classification [5],
it is natural to generalize this approach to three dimensions.
Instead of pixels, a 3D occupancy grid of volume elements
or voxels is used. However, the 3D convolution operation
is computationally more demanding, and volumetric grids
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Fig. 2. Reported accuracies of the surveyed methods over time. Datasets and input representations are denoted by different colors and shapes.

TABLE 1
Taxonomy of the surveyed approaches. The references in bold were

included in our evaluation
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Basic Architectures [25] [26]
Voxel CNN with Residual Connections [27] [28]
Auxiliary Task [29]
Network Architecture Optimization [30] [31] [32]
Octree-represented Voxel Grid [33] [34] [35]
Unsupervised Representation Learning [36] [37] [38] [39]
Non-convolutional Approaches [40]
Conversion from a Point Cloud [25] [41] [42]
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) Basic Architectures [43] [44] [13]
Multiple Modalities [45] [46]
Axis-aligned Views [47] [48]
Learned View Grouping [49] [50]
Unsupervised Viewpoints Assignment [51] [52]
Unsupervised Representation Learning [53]
Using Auxiliary Data [54]

Special Projections
Geometry Images [55]
Panorama [56] [57] [58] [59]
Spherical [60]
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Symmetric Operation on Points [61] [62]
Hierarchical Feature Extraction [63] [64] [65]
Convolution on Neighborhood Graph [66] [67] [68]

Convolution on Points
Grid Around the Query Point [69] [70] [71]

Continuous Convolution [72] [73] [74] [75] [76]
[77] [78] [79]

Sequential Processing Using Attention Mechanism [80] [81]
Encoding Locality into Order [82]

Unsupervised Learning of Shapes [83] [84] [85]

Su
rf
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e

sh
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e Manifold-based Convolution [86] [87] [88]
Graph-based Convolution [89] [90] [91] [92] [93]
Native Mesh-based Approaches [94] [95] [96] [97]

H
yb

ri
d

Ensembling [98] [13] [20]
Descriptor Merging [99]

tend to have high memory requirements as the voxel count
grows with the cube of the spatial resolution. For this
reason, only relatively low-resolution grids can be used, the
most usual being 323.

Each voxel contains a value representing the presence of
the object at a given place: several networks [25, 26, 31, 33]
use a binary occupancy grid where each voxel is assumed
to be either entirely occupied by the object (inside it) or
empty (outside of the object). This format can be used for
voxelized watertight 3D meshes as the “is inside” predicate
is well-defined. Another voxelization option is to occupy
only the voxels intersected by the object’s boundary (both
voxels inside and outside of the object are empty), typical for
voxel grids converted from point clouds. Non-binary values
may be used for encoding the point cloud density [41], but
the difference in results is negligible [29]. Additional input
channels such as surface normals may also be encoded in
each grid cell [34].

3.1 Basic Architectures
VoxNet [25] is the first of the successful systems applying
3D convolutions to occupancy grids for classification, which
we use as an example of a network with a convolutional
architecture. In VoxNet, the occupancy grid is processed by
two 3D convolutional layers, which extract local features
and lower the resolution. The convolution result is passed
to a leaky ReLU layer to achieve nonlinearity. Maximum
pooling is then performed to get better representation and
further lower the number of parameters needed. Finally, the
resulting 3D feature map is flattened and passed through
two fully connected layers, which output a vector with
category probabilities. Figure 3 shows a diagram of the
VoxNet architecture.

As is typical with neural networks, data augmentation is
a crucial part of the training process. VoxNet uses rotation
along the vertical axis as its main augmentation technique.
It uses n copies of each input instance during training, each
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Fig. 3. VoxNet [25] architecture. c is the number of output categories.

rotated by 360/n degrees – typical values of n range from
8 to 24. At evaluation time it presents all rotations of the
input object to the network and then uses pooling across the
rotations to get the class prediction. The authors reported
classification accuracy of 83% on a subset of the ModelNet40
dataset [26], which we briefly describe in Section 8.1. An offi-
cial VoxNet implementation in Theano+Lasagne is available
[100].

A similar 3D convolutional architecture is presented in
3D ShapeNets [26]. It consists of 3 convolutional layers
followed by a two-layer Restricted Boltzmann Machine
classifier. Apart from presenting a classification network
architecture, the authors also publish the ModelNet dataset.
The reported classification accuracy on the ModelNet40
subset is 77.32%. An official implementation in Matlab is
available [101].

3.2 Voxel CNN with Residual Connections

Voxception-ResNet [27] is inspired by deep residual con-
volutional networks for image classification, which are the
state-of-the-art approach for this task. It uses batch nor-
malization [102] and residual connections [7]. The network
consists of several sequential Voxception (Inception-style
[103]) modules allowing stochastic network depth [104]
between 8 and 45 layers, which should enable informa-
tion to propagate in the network through many possible
“pathways”. The best-performing architecture consists of
Voxception blocks and downsampling blocks, enabling the
residual network to choose the best downsampling methods
(e.g., convolutions with stride greater than one or pooling).
Voxel grid resolution of 323 is used. The network is trained
using 24 rotations of each input instance along the vertical
axis and using occupancy grid with values {−1, 5} instead
of {0, 1} to encourage the network to pay more attention
to positive entries. Voxception-ResNet (VRN) architecture
achieves 88.98% accuracy on ModelNet40 dataset for single
voxelization view and 91.33% with 24 views. An ensemble
of similar models achieves 95.54%, which remains one of
the highest reported for voxel-based networks. The au-
thors have published their implementation in Theano with
Lasagne [105].

Arvind et al. [28] explore the impact of residual layer
width in volumetric networks on the classification accuracy.
They show that increasing the number of channels in 3D
convolutional layers improves the classification accuracy.
This result extends the previous observations on residual 2D
convolutional networks to 3D CNNs. They use a shallower
architecture consisting of one classical 3D convolution, max-
pooling and two residual-convolutional blocks, each fol-
lowed by two identity blocks (two single-voxel convolutions)
acting as a two-layer perceptron with shared weights across

spatial dimensions, average pooling and a final classification
layer. The best single-network model found by hyperpa-
rameter grid search achieved 82.03% classification accuracy
on ModelNet40, or 86.50% by ensembling 10 independent
training sessions. As of writing, there is no implementation
available.

3.3 Auxiliary Task
Using an auxiliary task can improve classification accuracy.
In the context of 3D CNNs, this has been shown in ORION
[29] by simultaneously training the network for pose esti-
mation. Apart from the object class, the network outputs ro-
tation around the vertical axis. As different object categories
have different rotational symmetries, the authors estimate
the orientation by classifying the canonical rotation, where
the number of orientation classes is dependent on the object
category. This network achieves accuracy of 89.7% on the
ModelNet40 dataset with manual rotation alignment. An
implementation in Caffe and a manually-aligned version of
the ModelNet40 dataset are available [106].

3.4 Network Architecture Optimization
As the voxel representation and 3D CNNs are computation-
ally demanding, there have been attempts to speed up the
training and inference, such as manually or automatically
optimizing the number of layers or their hyper-parameters
or replacing floating-point weights with binary values.
LightNet [30] reduces the size of the VoxNet model by
adding one more convolutional and max-pooling layer, re-
ducing the resolution passed to the fully connected part of
the network to 2×2×2 with 128 feature channels. LightNet
also uses multi-task learning: subvolume supervision and ori-
entation estimation. Therefore there are two fully connected
classifier branches: main and auxiliary, both outputting
the category and 12-class orientation prediction. The main
branch uses all the extracted features by the convolutional
part, and consists of a two-layer perceptron with a final
softmax activation. The auxiliary branch consists of eight
fully connected layers with softmax activation, each taking
128 inputs – each from one voxel in the 2 × 2 × 2 feature
map – and outputting both the category and orientation
prediction independently on the other parts of the auxiliary
branch. This forces the convolutional part of the network to
extract meaningful features so that the class and orientation
can be determined even from parts of the input shape. The
final model has only 0.3M trainable parameters, less than
a third of the original VoxNet architecture, while achieving
superior ModelNet40 classification accuracy of 86.1%. The
code was not publicly available as of writing.
Xu and Todorovic [31] describe a process of automatic CNN
architecture optimization by iterative layer or filter addition
while keeping the trained weights. The best-performing
architecture found by this approach consists of 3 convo-
lutional layers followed by one fully connected (FC) layer.
Compared to 3DShapeNets [26] the authors achieve better
accuracy of 81.26% with less than 1% of the trainable pa-
rameters. An official implementation in Matlab is available
[107].
Ma et al. [32] show the reduction of memory footprint and
computational demands by converting layers inputs and
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weights to binary values, adding necessary batch normal-
ization layers and sign activation functions. Although in
most cases this process decreases the classification accuracy,
in the case of binVoxNetPlus, a network constructed by
adding one additional convolutional and a fully connected
layer to VoxNet, the accuracy is increased by binarization
from 83.91% to 85.47% while the model size was just 0.29
MB, approximately 8% of the original VoxNet. There was no
public implementation at the time of writing.

3.5 Octree-represented Voxel Grid

As memory and computational demands limit the reso-
lution of the voxel grid, a more efficient representation
is needed to make processing a higher-resolution voxel
grid feasible. Voxel occupancy grids representing real-world
objects or their surface are usually sparse; therefore, large
regions without changes in occupancy do not need to be
stored or processed in full resolution.

Octree [108] is a tree where each internal node has
exactly eight children, partitioning the space into finer and
finer cubes (2 × 2 × 2) until a depth limit is reached or
the space corresponding to a node is homogeneous. This
allows efficient voxelization of the 3D model where only
voxels on the object boundaries are stored at high resolution.
Convolution and max-pooling can be adapted to work on
octrees. The octree structure can be processed efficiently
on GPUs when stored suitably, allowing fast training and
inference.
OctNet [33] uses octree to efficiently represent an occupancy
grid, implementing convolution and pooling operations di-
rectly on octrees. This reduces the memory and computa-
tional requirements, allowing one of the presented models
to process occupancy grids of 2563 resolution at memory
requirements lower than if the model used the classical
voxel representation at 643 resolution. The proposed net-
work architecture consists of repeated blocks of two 33

convolutional layers and one max-pooling layer, halving
the resolution until a 83 feature map is reached, which is
then passed to a fully connected classifier. The classification
performance is on par with similar networks working with
a dense voxel grid, achieving ModelNet40 classification
accuracy of approximately 86.5% with 1283 input resolution.
As the authors focused on measuring the impact of increas-
ing the resolution, minimizing impact of other factors, a
“pure” 3D CNN is proposed, unused methods such as data
augmentation are likely to further improve the performance.
An official implementation in Torch is available [109].
O-CNN [34] uses octree to store the object surface, with
additional information: normal vector of the surface stored
in leaf nodes. The authors present an efficient convolution
operation on octrees and construct a hierarchical structure
of shared layers for individual levels of the tree. Global
feature computation proceeds from the finest leaf octants
and continues upwards to the root of the tree. The high-
level O-CNN architecture used for classification consists
of repeated 3D convolutions and max-pooling followed by
two fully connected layers with dropout and a final soft-
max activation. The O-CNN with five convolutional layers
processing the input with resolution of 643 achieved 89.9%
in ModelNet40 classification accuracy for single input and

90.6% with 12-rotation voting. Standard octrees have a fixed
maximum depth, wasting memory on flat regions where a
simple planar approximation would be sufficient. Adaptive
Octree representation used in Adaptive O-CNN [35] uses
planar patches as a representation in leaf nodes. Flat areas
of the original mesh can be represented by a single leaf
on a higher level of the tree, while more complex areas
are subdivided into finer details. Both computation time
and memory requirements are reduced compared to the O-
CNN network, in case of the 2563 input resolution, where
the change is the most significant, to approximately 1/4.
Apart from the convolutional encoder for feature extraction,
a decoder is also proposed, allowing other tasks such as 3D
autoencoding and shape completion. The achieved Model-
Net40 classification accuracy is 90.5% with 12-orientation
voting with input resolution of 323. The authors offer an
implementation of both networks in Caffe and tools for
converting mesh data to octrees and adaptive octrees [110].

3.6 Unsupervised Representation Learning
All approaches described so far learn features for clas-
sification in a supervised training scenario – providing
the correct category labels to the network when running
back-propagation training pass. This section describes ap-
proaches with an additional training step – unsupervised
learning of features on a different task such as reconstruc-
tion of the input, using an auto-encoder, to force the network
to find a meaningful latent space or “bottleneck” represen-
tation. The input-to-latent-space mapping learned by the
encoder can be used for feature extraction. In the next step,
a classifier can be trained to transform these features into
category labels of the input object in a supervised fashion.
The classifier can be either a separate model (e.g. SVM or
a neural network), or the decoder can be replaced with
e.g. a fully connected classifier, and the network can be
trained end-to-end, fine-tuning the previously found input-
to-latent-space mapping.
VConv-DAE [36] is the first attempt to learn a shape embed-
ding in an unsupervised way. The authors use a denoising
autoencoder with two convolutional (and de-convolutional)
layers that aims to learn a 6912-dimensional latent represen-
tation of training shapes. After training the autoencoder on
a subset of ModelNet dataset the authors compare following
two approaches for classification: using an SVM classifier, or
attaching two fully connected layers after the encoder and
fine-tuning the network end-to-end. The former approach
achieves 75.50% ModelNet402 classification accuracy, prov-
ing the network found some category-identifying features
on its own. The fine-tuned model achieved 79.84%. An
official implementation in Torch is available [111].
3D-GAN [37] is a fully 3D-convolutional generative adver-
sarial network [112] with a 5 convolutional layers generator
and discriminator trained on voxelized models from the
ShapeNetCore dataset. Concatenation of several discrimi-
nator layers’ outputs (max-pooled 2., 3. and 4.) is passed
to linear SVM for classification. This model achieves 83.3%
classification accuracy on the ModelNet40 dataset. The au-
thors provide an implementation in Torch [113].

2. Using a ModelNet40 subset with equal category model counts and
therefore different train/test split.
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Wang et al. [38] present 3D-ED-GAN, a combination of
3+3 convolutional layers encoder-decoder with adversarial
loss (discriminator) trained to reconstruct damaged, lower-
resolution input. Although the authors focus mainly on
inpainting, the encoder part of the network is used for
classification in one of the presented experiments. When
using only the encoder to extract features, passing them
to a linear SVM, the ModelNet40 classification accuracy of
84.3% is achieved. The ModelNet40 classification accuracy
of 87.3% is achieved with pre-training the encoder-decoder
on ShapeNetCore in an unsupervised fashion, then using
the latent representation as input of a classifier with softmax
activation. When the same model was trained from scratch
(without pre-training, with randomly initialized weights)
the accuracy of 86.1% was achieved, 1.2 pp lower than
the fine-tuned result. As of writing, only an unofficial3

implementation in TensorFlow is available [114].
Variational Shape Learner [39] is a variational encoder-
decoder learning the latent representations of shapes in
an unsupervised fashion and using the representation for
classification. Apart from producing just one global feature
vector (latent code) by passing the input voxel occupancy
grid through three convolutional layers followed by two
FC layers, local latent codes are also computed. Each local
feature is computed by two FC layers, whose input is the
concatenation of a sample of the global feature vector and
the previous local latent code – the output of the previous
local layer, if any. The authors argue this approach helps the
network better learn a hierarchical representation of input
shapes, where each local feature vector represents a higher
level of abstraction. This approach achieves 84.5% accuracy
on ModelNet40 by training an SVM on extracted features
– concatenated global and local latent features. An official
TensorFlow source code is available [115].

3.7 Non-convolutional Approaches
FPNN [40] presents a lightweight, non-rigid alternative to
convolution. Compared to convolution, the weights at given
positions are optimized together with the positions of the
probing points. First the voxel occupancy grid is converted
to a 3D distance field – a voxel grid containing values repre-
senting a continuous distance from the surface; distance at
arbitrary position is computed as a tri-linear approximation
using nearest cells. The distance field is “sensed” with
probing points (filters), whose weights and positions are
learned. The distances at probed positions and the trained
weights are combined by dot product. Similarly to the object
shape being represented with a distance field, normals are
stored in a three-channel normal field. The proposed non-
hierarchical architecture passes the distance and normal
fields through field probing layers, producing an internal
representation of the input shape, from which the object
class is extracted with fully connected layers. This approach
achieves 88.4% ModelNet40 classification accuracy with 4
fully connected layers at the end, with distance field and
normals on input, or 87.5% without the normal field. An
official implementation in Caffe is available [116].

3. Differs from the paper: needs modification to extract the latent
representation for classification, last decoder layer has 512 filters, not
256 as in the paper, possibly other differences.

3.8 Conversion from a Point Cloud

Point cloud processing with a convolutional neural network
is not trivial, as the standard convolution requires its input
to be a regular grid. There are approaches which take a point
cloud as input, convert it to a voxel grid, and apply 3D con-
volutions for feature extraction followed by classification.
VoxNet, which was mentioned earlier, uses a voxel occu-
pancy grid generated from a point cloud input, passing the
voxel grid to the CNN’s input.
PointNet by Garcia-Garcia et al. [41]4 integrates the point
cloud to occupancy grid conversion into the network as
a non-trainable layer. The grid representation is then pro-
cessed like in other voxel-based networks by repeated 3D
convolutions and pooling followed by a 3-layer perceptron.
PointGrid [42] achieves input regularity by sampling a
predefined number of points from the input point cloud
in each cell of a regular 3D occupancy grid, concatenating
relative coordinates of the sampled points in each voxel,
so they can be used as features of the voxel. The rest of
the model consists of 9 3D convolutions and max-pooling
followed by FC layers. This architecture achieves 92.0%
ModelNet40 classification accuracy and 86.1% accuracy on
the ShapeNetCore dataset. The official source code written
in TensorFlow is available [117].

4 MULTIPLE-VIEWPOINT IMAGE-BASED NEURAL
NETWORKS

Multi-view image-based networks use 2D images of the
object as input, captured or rendered from different view-
points. A general setup of a multi-view classification net-
work is as follows: the images (views of a single 3D shape)
are passed to one or more feature extractors, then a tech-
nique for combining features from different views is em-
ployed, and the resulting feature vector is sent to a classifier.
Feature combining techniques range from simple pooling
across the views to employing a recurrent neural network to
process them as a sequence. Being based on image feature
extractors allows reusing existing image-processing CNNs,
enabling transfer learning and leading to good results.

The individual multi-view approaches generally differ
in several aspects: the number of viewpoints and their spa-
tial distribution, input modality, whether they use multiple
modalities generated from each viewpoint, which 2D CNN
architecture they use for image feature extraction, whether
the weights are shared among viewpoints, and in the way,
they aggregate the features extracted from the rendered
images.

4.1 Basic Architectures

The first multi-view CNN approach for 3D object classifi-
cation by Lecun and Huang [43] uses two views as input
(simulating binocular vision), which are sent to a shallow
convolutional neural network. The architecture consists of
three convolutional layers with intermediary sub-sampling
layers, followed by one fully connected layer, which predicts
category probability vector. Half of the convolutional filters
in the first layer are applied to only one of the two images

4. Not to be confused with the PointNet by Qi et al. [61].
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Fig. 4. Multi-view architecture [44], as used in [13]. The numbers below
the diagram denote tensor sizes; c is the number of output categories.

(left or right), the other half process both. All features are
then merged in the last convolutional layer. As this work
predates the ModelNet dataset, it has only been evaluated
on a dataset of physical uniform-colored toys photos with
varying viewpoints and lighting, released with the paper.

The first approach to process more than two views for
classification is MVCNN [44]. It uses feature extractors
based on VGG [6], sharing weights for individual viewpoint
branches, then applies max pooling across the views to
combine the extracted features. Resulting feature vector is
passed to three sequential fully connected layers for clas-
sification. When training, the network is first trained as a
single-view classification network (single feature extraction
branch, without max pooling), then other view branches
are added and the network weights are fine-tuned. The
authors use two different viewpoint configurations: either
12 “turntable” views5 or 80 virtual cameras placed in 20
vertices of a dodecahedron around the object, each with 4
rotations in 90 degree increments to detect objects with non-
upright pose. The 12-view network achieves ModelNet406

classification accuracy of 89.9% with pre-training on Ima-
geNet, and the 80-view variant achieves 90.1%. The authors
published an implementation in Matlab [118].

A revisited but similar approach is presented by Su et al.
[13]. The authors explore different pre-trained image net-
work architectures and image rendering techniques, sig-
nificantly improving accuracy of this method. The best-
performing classification model takes 12 Phong-shaded im-
ages as input uses a pre-trained ResNet-34 convolutional
network as its base, and achieves 95.9% accuracy on the
ModelNet40 benchmark. When the VGG network is used for
feature extraction, the accuracy of 95.0% is achieved when
fine-tuning its weights initially trained on ImageNet1K, and
91.3% without pre-training. The authors also tried using
depth images concatenated to the shaded images, which
yields 96.2% classification accuracy. An illustration of the
multi-view architecture is shown in Figure 4. The authors
offer a publicly available PyTorch implementation[119], uti-
lizing the VGG CNN as the feature extractor.

5. Twelve virtual cameras regularly distributed at 30-degree elevation
from the object centroid.

6. Limited to 100 shapes per category; published dataset: 3983 shapes.

4.2 Multiple Modalities
The classification accuracy may benefit from extra informa-
tion in addition to the shaded images, such as depth or sur-
face curvature, passed as additional images to separately-
trained feature extraction branches of the network. There
are more approaches based on this idea.
Johns et al. [45] process a pair of images in two modalities
(shaded and depth) from multiple viewpoints. The images
are processed with a CNN to extract features passed to
a 3-layer fully connected network to predict a class label
and next-best-view viewpoints. This model achieves Model-
Net40 classification accuracy of 89.5% (6 viewpoints chosen
by the network) or 92.0% (12 views). No code was available
at the time of writing.
The classification approach described by Minto et al. [46]
uses axis-aligned images with multiple rendered modalities:
depth, voxel density (X-ray-like image), and estimated sur-
face curvature constructed by fitting a parametric surface
(NURBS) to the points constructed from depth-image sam-
ples. The images are passed to a 4- or 5-layer CNN, whose
weights are shared among branches processing the images
of the same modality, which are rendered from viewpoints
rotated around the vertical axis. The extracted features are
then concatenated and passed to a fully connected layer
with a softmax activation for classification. This achieves
89.3% classification accuracy on ModelNet40. No code was
available at the time of writing.

4.3 Axis-aligned Views
Some approaches restrict the camera positions to only axis-
aligned viewpoints, while using one modality.
Zanuttigh and Minto [47] use six axis-aligned depth images
rendered from coordinate axis directions, looking toward
the origin. The images are passed to CNNs consisting of
four 7 × 7 convolutions, in a branch for each view, sharing
weights for rotations around the vertical axis. The feature
extractors’ outputs are concatenated and sent to a single-
layer classifier. This approach yields ModelNet40 classifica-
tion accuracy of 87.8%. No code was available at the time of
writing.
Sarkar et al. [48] propose to use multi-layer heightmaps as
an input image modality. Multi-layer heightmaps are depth
images rendered from multiple planar slices through the ob-
ject, in this case, axis-aligned. Three views with a heightmap
of each slice, stored as individual channels, are passed to
VGG16 (with batch normalization, without FC layers), the
resulting features are then merged by concatenation along
the depth or channel dimension to preserve the information
about which feature comes from which view. A convolu-
tional layer then reduces the channel count, and the features
are passed to one FC layer for classification. This model
achieves 93.11% classification accuracy on ModelNet40 with
5-layer heightmaps and VGG CNN pretrained on ImageNet.
The authors have published their PyTorch code [120].

4.4 Learned View Grouping
Rather than using simple max- or average-pooling to aggre-
gate features from multiple viewpoints, these approaches
use a trainable model, promising to learn to use the most
important features from each view.
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GVCNN [49] adds a view-grouping step between the ex-
tracted features and the classifier, considering the correla-
tion among individual views. The features are extracted by
passing each view (shaded image) through the first five
convolutional layers of GoogLeNet7 independently. Then
per-view discrimination scores are computed by pooling the
extracted features, and views are assigned to groups based
on their discrimination scores – quantized to bins expressing
“how well does this view perform in classification”. Then
the view groups are pooled using a grouping scheme, which
is selected based on the final group count. On ModelNet40
this approach achieves 93.1% accuracy with 8 views, pre-
trained on ImageNet1K. The authors have not published
the code, but there are two unofficial implementations: in
TensorFlow [121] and in PyTorch [122].
SeqViews2SeqLabels [50] employs a recurrent neural net-
work and treats multiple views as a sequence of images
using an encoder-decoder architecture. The network outputs
a sequence of class labels rather than probability vectors.
A pre-trained VGG-19 network, fine-tuned on the single-
image classification task, is used as per-view feature extrac-
tor. Feature vectors are fed into the encoder as a sequence.
Both the encoder and decoder consist of GRU cells [123]; at-
tention is used in the decoder for selecting distinctive views
for current output label. This architecture achieves 93.31%
classification accuracy on ModelNet40. An implementation
in TensorFlow is available [124].

4.5 Unsupervised Viewpoints Assignment

Unlike other multi-view networks, these networks do not
obtain information about the position of the viewpoints, i.e.,
the viewpoints can be rotated arbitrarily. It is the task of the
network to find a suitable assignment of input images to
viewpoints.
RotationNet [51] combines the multi-view classification
with an unsupervised pose estimation task. This encourages
the network to train one CNN per viewpoint to classify
the object in an input image from a specific viewpoint. A
new category is added to the set of original classification
categories to assess the image-to-viewpoint assignment’s
correctness. The meaning of this category is “this is not the
correct viewpoint”. Such per-viewpoint training helps the
CNNs by reducing the input image variations, allowing the
trained convolutional filters to be more view-specific. The
image-to-viewpoint assignment is trained in an unsuper-
vised fashion, trying multiple assignments during inference,
choosing the most probable one8 according to predicted
categories. The authors report maximum accuracy of 97.37%
on the same subset of ModelNet40 dataset as used in [44].
The authors published two implementations, one in Caffe
[125], and another one in PyTorch [126].
Sarkar et al. [52] present a RotationNet-like network trained
on images produced by rendering slices of the input model.
They render multi-layer heightmaps or occupancy slices
images – a binary image representing intersections of the

7. GoogLeNet = Inception v1, but Inception v4 is used in both
available unofficial implementations

8. The one with the least probability of being in the “incorrect
viewpoint” category

model with the slicing plane. The authors report the ac-
curacy on ModelNet40 of 99.76% when using 12 turntable
views in occupancy slices modality with 10 slices. The code
had not been published at the time of writing.

4.6 Unsupervised Representation Learning

Like in the case of volumetric networks, the classification
can be achieved by first training an auto-encoder network
in an unsupervised fashion, and then using the bottleneck
representation as extracted features, only appending a clas-
sifier.
Soltani et al. [53] use unsupervised representation learning
working on images of one of multiple modalities. The au-
thors use a variational autoencoder built from four residual
convolution blocks in the encoder, working with multi-view
depth maps or silhouettes rendered from 20 viewpoints
in dodecahedron vertices. While not focusing on reaching
state-of-the-art classification accuracy, the proposed AllVP-
Net architecture with two-layer dense classifier appended to
the encoder achieves ModelNet40 classification accuracy of
82.1% and 89.1% on their split of ShapeNetCore, both with
depth images used as input. No fine-tuning was used. The
authors offer an implementation in Torch [127].

4.7 Using Auxiliary Data

Some 3D shape datasets provide part segmentation infor-
mation useful to aid further the classification process.
Parts4Feature [54] proposes using local part detection by
extracting features from each view and using a region pro-
posal network [128] to produce a representation of possible
parts visible in each view. For classification, top k proposed
regions are aggregated by an attention mechanism and part
co-occurrence patterns learning. Using part segmentation
information during training, the model achieves 93.40%
accuracy on ModelNet40 and 86.9% on the ShapeNetCore
dataset. No code was available at the time of writing.

4.8 Special Projections

There are also approaches which use other projections than
perspective or planar projections from multiple viewpoints,
described earlier.

4.8.1 Geometry Images

A 2-manifold 3D mesh can be represented as a so-called
geometry image by cutting the mesh along edges and
mapping the unwrapped mesh into a square image domain
containing channels representing the original coordinates
and local properties such as curvature. Sinha et al. [55] take
a geometry image of 56 × 56 pixels as an input with the
following channels: two principal curvatures, topological
mask and height field. The proposed CNN extracts a 96-
dimensional feature vector from the image, which is passed
to a fully connected layer for classification. The approach
achieves ModelNet40 classification accuracy of 83.9%. The
code for generating geometry images has been published
[129], but we have not found the code for the CNN or its
training.
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4.8.2 Panorama Projection

Another projection of a 3D shape suitable for CNNs is a
panoramic view. DeepPano [56] uses a single view of the
3D shape: a depth image created by cylindrical projection
around the vertical axis, passed to a 4-layer CNN, row-
wise max-pooling for rotation invariance, and two fully
connected layers and softmax-activated output. This model
achieves 82.54% classification accuracy on ModelNet40. The
authors have published their Matlab code for panorama
projection image rendering [130], but not the CNN imple-
mentation.
Another approach by Sfikas et al. [57] uses three views:
rendering each model in cylindrical projection along each
axis. Depth and normals’ deviation map modalities are
stored as image channels. Image features are extracted with
a 3-convolutional-layer CNN and classified with one fully
connected layer, dropout layer and softmax activation. The
object pose is normalized before rendering. The classifica-
tion accuracy of 90.70% is achieved on the ModelNet40
dataset. No public implementation is available.
In a follow-up paper, Sfikas et al. [58] also use three views:
cylindrical projections corresponding to major axes with
an additional modality: the magnitude of the normals’
deviation map gradient. The architecture is identical to the
previous model, except it has two fully connected layers in-
stead of one. The authors achieve ModelNet40 classification
accuracy of 95.56%. No code was available at the time of
writing.
Cao et al. [59] use 12 views: vertical stripe-projections
around the sphere (parallel to longitudes) and one horizon-
tal stripe (cylindrical projection). The vertical slice images
are fed into a MVCNN-like network with AlexNet feature
extraction; similarly, a feature vector is extracted from the
horizontal stripe. Finally, the two feature vectors are con-
catenated and passed to a fully connected layer with soft-
max activation for classification. Using depth and contours
modalities the network achieves 94.24% classification accu-
racy on ModelNet40 and 91.00% on ShapeNetCore, both
fine-tuning AlexNet weights pre-trained on the ImageNet
dataset. No code was available at the time of writing.

4.8.3 Spherical Representation

The input shape can also be projected into a spherical
domain and passed to a CNN with operations working
in that domain. Spherical CNN [60] computes a spherical
function similar to a depth map – distance to the first
intersection of a ray cast from a point on an enclosing sphere
toward the origin – and surface normals at the intersection
points. Convolutions in the spherical harmonic domain are
applied, and spectral pooling is used for rotation invariance.
The architecture consists of two branches, one for each
modality, each with 8 spherical-convolutional layers. The
extracted features are then pooled, concatenated and passed
to a classifier. This achieves ModelNet40 classification accu-
racy of 88.9% when only z-rotation invariance is required,
and 86.9% for full SO(3) rotation invariance. The authors
published an implementation in TensorFlow and code to
convert voxel occupancy grids to spherical domain [131],
but no code for mesh projection.

5 POINT-CLOUD-BASED NEURAL NETWORKS

A point cloud is a set of points in Euclidean space represent-
ing the surface of the object. It is a natural output format
of laser scanning devices used by robots or autonomous
cars. It can also be easily constructed from an artificially-
modeled object by sampling its surface, e.g. mesh faces.
Compared to volumetric grids or images, point clouds are
neither structured nor ordered, which poses a challenge to
neural networks: point-based operations need to be defined
for successful feature extraction. Unlike VoxNet [25] and
PointNet by Garcia-Garcia et al. [41] presented above, which
convert the input point cloud to a dense volumetric grid and
apply 3D convolutions, this section describes architectures
which work directly with a set of point coordinates or
a derived representation maintaining its unstructured and
non-dense nature.

The approaches working with this representation differ
the most in the feature extraction methods. Some process
each point individually and apply a symmetric aggregation
operation to achieve order-invariance. Others construct a
nearest-neighbor graph and extract features from that, or
define a convolution-like operation working with points by
generalizing the input and kernel to non-rigid positions.

5.1 Symmetric Operation on Points
One of the first networks to successfully overcome the
difficulties of processing raw unordered point clouds is
PointNet by Qi et al. [61]. Its main idea lies in using only
symmetric functions, i.e., functions for which the order of
arguments does not matter. Each point is processed in-
dependently by a series of multi-layer perceptrons (MLP)
sharing their weights. Then a global feature vector is con-
structed using max-pooling, which is a symmetric function.
Another important feature of PointNet is the set of learnable
geometric transformations, which ensure some invariance
to rotation or jittering (random small translations) of the
input point cloud. Rotation and jittering are also used as
data augmentation during the training. Figure 5 shows the
diagram of the PointNet architecture. The authors report
ModelNet40 classification accuracy of 89.2% on 1024 points.
A TensorFlow implementation of this network is available
[132]. The PointNet architecture (without T-Net blocks) is
also implemented in Minkowski Engine [133], a generic ma-
chine learning and auto-differentiation framework support-
ing sparse tensors, which allows training and evaluation
using different number of points in each object.
Deep Sets [62] is a concurrent research based on the same
idea of using a symmetric function for points aggregation.
In the proposed classification network, each input point is
transformed independently into a learned internal represen-
tation by three dense layers with tanh non-linearity. Then
max-pooling is used, which is a symmetric operation as in
PointNet. The resulting vector is processed with two dense
layers for classification. This model achieves ModelNet40
classification accuracy of 90.0%± 0.3% for 5000 points or
87%± 1% for 1000 points. An official implementation in
PyTorch is available [134].

Although PointNet and Deep Sets achieve better classi-
fication accuracy than previous methods based on manu-
ally designed feature extractors, the performance was later
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Fig. 5. PointNet [61] architecture. n denotes the number of input points, c is the number of classes.

improved by approaches which learn to aggregate local
features.

5.2 Hierarchical Feature Extraction

The hierarchical structure of successful deep convolutional
neural networks for image processing allows the networks
to increase the level of abstraction at each layer. Several
approaches apply similar hierarchical feature aggregation
to point cloud feature extraction.
PointNet++ [63] presents a hierarchical structure inspired
by convolutional neural networks which solves the problem
of extracting local features. It clusters close sets of points
together and runs the original PointNet on such neighbor-
hoods. For this purpose, iterative farthest point sampling
and multi-resolution grouping (which ensures good rep-
resentation for regions with different densities) are used –
fulfilling the same role as the pooling layer. Local features
obtained in this way are represented by the centroid of the
original neighborhood and clustered again in a hierarchical
manner. Finally, a fully connected layer is employed to
extract global features and perform classification. Several
rotations of the 3D model are used during both training and
evaluation to achieve better results. PointNet++ achieves
ModelNet40 classification accuracy of 90.7% for 1024-point
input or 91.9% for 5000 points including normal vectors as
extra features in addition to positions. An implementation
in TensorFlow is available [135].

The PointNet++ architecture lacks the ability to reveal
the spatial distribution of the input point cloud during the
hierarchical feature extraction. SO-Net [64] solves this prob-
lem by constructing a self-organizing map (SOM) which
represents the point cloud better than simple centroids used
in PointNet++. Each point of the original point cloud is as-
sociated with k nearest SOM nodes and for each such node
a mini point cloud is constructed. This also ensures that
the mini point clouds are overlapping, which is essential
for improving the accuracy. These mini point clouds are
processed by a series of fully connected layers similar to the
original PointNet. This process yields a local feature vector
for each of the original SOM nodes, which are then used for
constructing a global feature vector by means of max pool-
ing across the nodes. SO-Net achieves 93.4% classification
accuracy on the ModelNet40 dataset. An implementation in
PyTorch [136] is available, including the code for creating
self-organizing maps from point clouds.

A kd-tree [137] is a data structure suitable for storing
and searching in a set of points of higher dimension. Its
3D variant is used as an input format for Kd-networks
[65]. First, a kd-tree is constructed over a point cloud. The
tree is then fed to a series of layers in a recursive manner
starting in the leaf nodes. The features are aggregated from
child nodes at each level using a fully connected layer

with ReLU nonlinearity, until the root node is reached. The
global feature vector is extracted from the root and used for
classification. Nodes on the same level of the tree, where the
tree is split according the same coordinate, share the weights
of the fully connected layers (e.g., weights are shared for
all nodes at the third level of the tree, where it splits
the points according to the x coordinate). During training,
this network uses several geometric perturbations for data
augmentation as well as randomized kd-tree construction.
This approach can process raw point clouds but requires
heavy preprocessing when constructing the kd-trees. This
approach achieves 91.8% classification accuracy on the Mod-
elNet40 dataset. The authors supply an implementation in
Theano with Lasagne [138], also providing a framework for
kd-tree construction from a point cloud.

5.3 Convolution on Neighborhood Graph

The input point cloud contains spatial information, which
may be converted to another representation – a graph
with nodes corresponding to the original points and edges
connecting nearest neighbors, with original point positions
stored as node features. Previously published graph-based
convolution and pooling operations [89] can be used for
hierarchical feature extraction at the expense of increased
computational cost compared to previously described ap-
proaches.

Dominguez et al. [66] create a 6-nearest neighbors graph
from a point cloud. Then graph convolution and pooling are
applied repeatedly: a group of three graph-convolutional
layers is followed by a pooling operation halving the num-
ber of points, all repeated four or six times for hierarchi-
cal feature extraction. A fully connected classifier follows
this feature extractor. This approach achieves 91.7% classi-
fication accuracy on ModelNet40 for 516 points with pre-
training on a subset of the full ModelNet dataset and voting
over 10 augmented point cloud instances created by vertex
dropouts and flips. A TensorFlow implementation of this
network is available [139].
Dynamic graph CNN [67] proposes a convolution-like op-
eration (EdgeConv) defined on edges of a k-nearest neigh-
bor graph. The EdgeConv operation proceeds per-node: it
applies a learned asymmetric edge function, implemented
as a shared MLP, to each of k-nearest neighbor edges, and
aggregates the results for given node neighborhood with a
symmetric operation – max-pooling. The EdgeConv output
is a higher-dimensional feature vector per each point. The
proposed architecture transforms the input point cloud with
a learned matrix multiplication to normalize it, and then
passes the points through four sequential EdgeConv layers.
The outputs of these layers are concatenated, pooled and
classified with an MLP. Since the node positions are changed
after each layer, the point cloud is not explicitly converted
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to a graph representation – the graph is constructed “on de-
mand” as needed from a set of points passed between layers.
This approach achieves ModelNet40 classification accuracy
of 92.9% for 1024-point input or 93.5% when sampled with
2048 points. Implementations in PyTorch and TensorFlow
are available [140].

Lei et al. [68] propose efficient graph convolution and
pooling operations on neighborhood graphs. The convolu-
tion kernel uses binning in discretized spherical coordinates
similar to [70] weights are selected based on the position
relative to the query point. Graph coarsening using farthest
point sampling (to select point set of desired size to remain
in the graph) is used to construct a multi-resolution pyramid
of graphs; between its layers the convolution kernels are ap-
plied. Similarly, the order of pyramid layers can be reversed
for upsampling. A classification network consisting of three-
level pyramid encoder, global feature extraction and a fully
connected classifier achieves ModelNet40 classification ac-
curacy of 91.4% on 2048 points and 92.1% on 10000 points.
A TensorFlow implementation is available [141].

5.4 Defining Convolution on Points

Similar to volumetric grid-based neural networks drawing
from image CNNs, there have been successful attempts
to adapt the convolution operation to work with point
clouds. As in these networks, the convolution operation
computes local activation as an aggregated product of a
learned kernel and the neighborhood of each query point
in the input. However, unlike voxel networks, the point
convolution cannot assume a regular input (e.g. uniform
density of the point cloud), but may use a regular kernel and
point binning when computing the activation. In addition
to the convolution operation, the pooling and sub-sampling
operations also need to be adapted to point clouds to allow
hierarchical feature extraction.

5.4.1 “Grid” Around the Query Point
In the following approaches, the kernel is a spatial structure
centered at the position of the query point. The input points
are binned in a grid based on their relative position from the
query point, and weights are learned for the grid cells.

Hua et al. [69] define a pointwise convolution operator,
which is applied at each point position, which essentially
voxelizes a local neighborhood. The pointwise convolution
centers a kernel at the currently processed point and bins
close points to a regular grid around current point, ag-
gregating point features in each cell, then a regular 3D
convolution is used. To reduce the dependency on the input
points permutation, the authors propose sorting the points
in a canonical ordering (Morton curve). In the proposed
classification network, the intermediate results from all four
convolutional layers are concatenated and passed through
two FC layers for classification. This achieves ModelNet40
classification accuracy of 86.1%. An official implementation
in TensorFlow is available [142].

The spatial structure does not need to be a regular
grid. Xie et al. [70] propose a convolution kernel where
the current point neighborhood in relative radial coordinate
system is split into a predefined number of bins in each
coordinate. E.g. there are 8 quadrant bins with trainable

weights for 2 polar and 4 azimuthal splits and no radial
split. Points in each bin are aggregated by sum-pooling and
the resulting per-bin vectors are transformed to a feature
vector of the desired dimensionality. The best classification
model consists of 5 ShapeContext layers, max-pooling and
a MLP classifier. This approach achieves 90.0% accuracy on
ModelNet40 for 1024 points, 27-bin kernels (3 azimuthal ×
3 polar × 3 radial, max. radius = 0.5) or 89.8% for a learning
model, where the bins are not hand-crafted, but the points
are processed with a self-attention block. There was no code
available at the time of writing.

Another option outlined in A-CNN [71] is to compute
a convolution of points in a ring around a point. The order
of points is “normalized” by sorting them counter-clockwise
when querying for point neighbors inside a ring after projec-
tion to an estimated tangent plane. The annular convolution
is a 1D convolution of a 1 × k kernel and the ordered
neighbors in a ring. The authors argue that compared to
multi-scale neighborhood extraction (e.g. in PointNet++) the
proposed ring approach does not have overlaps of indi-
vidual areas at different scales, allowing the weights to be
optimized using more discriminative, less redundant data.
The classification network consists of repeated farthest point
subsampling and annular convolutions to increase the re-
ceptive field of the extracted features, max-pooling and MLP
for classification. The trained model achieves ModelNet40
classification accuracy of 92.6%. Authors’ implementation
in TensorFlow is provided [143].

5.4.2 Continuous Convolution
Rather than defining a discrete spatial structure, the convo-
lution operation can be naturally defined on a continuous
domain. The following approaches outline some of the
possible definitions.

Point Convolutional Neural Networks [72] define a con-
volution operation on point clouds by extending the func-
tion defined over the point cloud to continuous 3D space.
Then the classical convolution operation is applied, and the
result is converted back to a point cloud by sampling. The
proposed classificaton network consists of 3 convolutional
layers followed by two FC layers. The classification accuracy
on ModelNet40 is 92.3% with 1024 points. An implementa-
tion in TensorFlow is available [144].

Shen et al. [73] propose a kernel correlation layer, a
convolution-like operation on point sets producing activa-
tions based on the correspondence of the kernel and the
query point neighborhood. The kernel is a set of points
with learnable positions. The classification network model
extracts the low-level features by kernel correlation for each
point, concatenates them with input points’ positions and
passes the result through a series of MLPs with a concate-
nated graph max-pooling “side-branch” to aggregate local
features of nearby points. The model achieves ModelNet40
classification accuracy of 91.0%. The authors’ implementa-
tion in Caffe is available on request [145].
KPConv [74] also uses a kernel consisting of a set of points
with learnable positions and also weights. The proposed 5-
layer classification networks achieve 92.9% and 92.7% clas-
sification accuracy for rigid and deformable kernels, respec-
tively. An official TensorFlow implementation is available
[146].
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PointConv [75] is another approximation of continuous
convolution by a set of points. To approximate continuous
weight functions, MLP is used and weights are compen-
sated for non-uniform point density: features∗weights

density . The
classification architecture consists of a feature extractor with
4 pointwise-convolution layers and a 3-layer perceptron.
The authors report ModelNet40 classification accuracy of
92.5% when using 1024 points with normals. An official
PyTorch implementation is available [147].
SpiderCNN [76] also proposes a continuous kernel general-
ization. The learnable kernels are based on step function and
Taylor polynomials – to reduce the number of parameters
needed in contrast with MLP. The best-performing classi-
fication network consists of 4 SpiderConv layers, whose
outputs are concatenated, top-2-pooled and passed to a MLP
classifier. SpiderCNN achieves ModelNet40 classification
accuracy of 92.4%. A TensorFlow implementation of the
architecture was published by the authors [148].
PointCNN [77] introduces a X -Conv operator – a method
applying a typical convolution to point clouds by first
weighting and permuting input features with a learned
transformation of the point coordinates relative to the query
point. The X -transformation is based on an MLP, which
learns the weights of individual points and their latent or-
der. The classification network consists of two X -Conv lay-
ers subsampled with dilation d: instead of passing k nearest
neighbors to the X -Conv, k ∗ d nearest neighbors are found
and k points are sampled from them. The X -Conv layers
are followed by four FC layer branches, each using different
outputs of the last X -Conv layer. The FC branch outputs are
averaged during evaluation. The proposed model achieves
92.2% classification accuracy on ModelNet40 and 92.5% on
rotation-aligned ModelNet40. An official implementation in
TensorFlow is available [149].
Flex-Convolution [78] focuses on reducing computational
and memory requirements, allowing large9 point clouds to
be processed. The simplified kernel is linear in each dimen-
sion – a dot-product of a trainable parameter vector and
point’s relative coordinates, with trainable bias added. The
used point sub-sampling is random sampling weighted by
local point cloud density. The authors achieve ModelNet40
classification accuracy of 90.2% (for 1024 points). Authors’
implementation in TensorFlow is available [150].
Another continuous convolution with a spherical neighbor-
hood kernel is presented by Liu et al. [79]. A 3-layer MLP
computes the weights from a vector of low-level relations of
the query point (centroid) and each point in the neighbor-
hood: Euclidean distance, coordinate difference and point
position. The classification network uses three convolutional
layers and a MLP classifier. This model achieved Model-
Net40 classification accuracy of 93.6% for 1024 points with
voting across 10 random scales. An official implementation
in PyTorch is available [151].

5.5 Sequential Point Cloud Processing

Processing the point cloud as a sequence with a suitable
architecture such as a recurrent neural network or 1D convo-
lutional network is also an option. However, an additional

9. Up to 7 million points can be processed concurrently.

challenge needs to be overcome. As the order of points in a
point cloud file can be arbitrary, the architecture must detect
related points, or the input must be ordered so that spatially
close points are near each other in the sequence.

5.5.1 Using Attention Mechanism
Attention mechanisms are widely used in natural language
processing tasks such as machine translation [152]. The
attention block produces a mask assigning a weight to each
input element. In contrast to convolution, which exploits
locality for feature extraction, attention can combine sequen-
tial elements regardless of their distance.
In Point2Sequence [80] the authors propose to use an
attention-based encoder-decoder recurrent neural network
to extract contextual information from local areas rather
than hard-coding the neighborhood-merging operations.
The proposed architecture first establishes multiscale areas
by selecting centroids from the input point cloud by farthest
point sampling and then samples points near the centroids
at different scales. Then a per-point MLP and max pooling
extract a 128-dimensional feature vector from each area.
These features are then fed as a sequence to an LSTM [153]
encoder. A decoder processes the encoder’s representation
while using an attention mechanism to aggregate the fea-
tures from multiple scales and areas, producing a global 128-
dimensional feature vector. Finally, a 3-layer, per-point MLP
classifier produces the classification result. This architecture
achieves ModelNet40 classification accuracy of 92.6%. An
official TensorFlow implementation is available [154].
Set Transformer [81] is another encoder-decoder network

utilizing attention for feature aggregation. Both the encoder
and decoder consist of attention layers. To allow directly
processing larger sets, the input set is first induced by few
trainable parameters before computing attention, resulting
in linear rather than quadratic complexity. After the input
set is transformed by the induced set attention layers, the re-
sulting feature vector is decoded by a multi-head-attention-
based pooling layer with learnable seed points followed
by a self-attention and a feed-forward layer. The authors
report ModelNet40 classification accuracy of 90.4% with
5000 points. A PyTorch implementation is available [155].

5.5.2 Encoding Locality into the Order of Points
Another way of processing a set of points is to use the clas-
sical convolution operation but to change the order of input
points to better reflect the object’s spatial structure, so the
spatially close points are close even in the representation.
Gadelha et al. [82] propose an encoder-decoder network
to process a spatially-sorted list of points with strided 1D
convolutions. The input points are assumed to be in the kd-
tree order10. To enable learning both local and global fea-
tures with convolution, the authors use a multi-resolution
representation of the point cloud, passing three versions of
the point cloud in each layer with a different number of
samples – generated as a pre-processing step. To work with
this representation, the authors propose a multi-resolution

10. Recursively constructed by sorting the sequence of points by po-
sition in a given axis, then splitting the sequence in half and recursively
sorting the subsequences by the next axis, which is determined by
randomly choosing an axis with a probability distribution based on
the spans of points along axes.
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convolution (MR-CONV) block, which takes a point cloud
(with positions or general features) represented at three
scales. It “mixes” the scales by average-pooling the higher-
resolution point cloud, upsampling (nearest neighbour) the
lower-resolution point cloud, and concatenating with the
adjacent-resolution point clouds. Then the MR-CONV oper-
ation applies a strided 1D convolution, batch normalization
and a non-linear activation function (ReLU). The classifica-
tion network consists of an encoder (repeated MR-CONV
operations) followed by an FC layer for classification. Apart
from classification, the authors propose to use other en-
coder or decoder branches for other applications: image-
to-shape inference and unsupervised shape reconstruction
with latent representation learning. The proposed network
achieves ModelNet40 classification accuracy of 91.7% in
the supervised classification scenario11 or 86.4% for clas-
sification based on features extracted using a variational
autoencoder (VAE) trained on ShapeNet in unsupervised
fashion. Official PyTorch implementation is available [156].

5.6 Unsupervised Learning of Shapes
As in 2D image-based and voxel-based neural net-
works, hourglass-shaped autoencoder-type networks can be
trained in an unsupervised fashion to reconstruct the input,
which forces the network to find a compressed bottleneck
latent representation of the shape, from which the shape is
reconstructed. This bottleneck representation (vector) can be
used for classification by using it as a classifier input.
Achlioptas et al. [83] use an autoencoder consisting of
PointNet-like encoder with five shared FC layers with
ReLU activation and batch normalization, followed by max-
pooling, and a decoder with 3 FC layers. This autoencoder
is trained on the ShapeNet dataset with Chamfer distance
used as a loss function to force the network to reconstruct
a point cloud which both fits and covers the input. After
the training, the encoder part is used for feature extraction,
and a linear SVM classifier is used to classify the objects.
This achieves ModelNet40 classification accuracy of 84.5%.
An official TensorFlow implementation is available [157].
In FoldingNet [84], the authors also train an encoder-
decoder network which reconstructs its input. However,
instead of generating the output points implicitly, based
solely on the bottleneck representation, the decoder is given
a regular 2D grid to be folded to the desired shape, essen-
tially fitting a surface to the given input shape. The encoder
processes k-nearest-neighbor graph nodes and a per-point
3x3 covariance matrix of each point’s neighbors’ positions
with MLPs (shared weights, applied per-point) and graph
max-pooling layers, aggregating features from the neighbor-
hood graph. The decoder transforms grid points coordinates
using two MLP layers, each taking a concatenation of the
bottleneck representation and a grid or intermediate point
cloud (after the first folding). Chamfer distance is used as
a loss function. A linear SVM classifier is used to classify
the input point cloud based on the latent representation
from the encoder, trained on the ShapeNet dataset in un-
supervised fashion. The classification accuracy of 88.4%

11. 1K points sampled with Poisson disk sampling, voting was used
during evaluation: the points are scale-augmented and their order is
randomized 16 times by re-building the probabilistic kd-tree – the
classification result is averaged.

is achieved on the ModelNet40 dataset. Official PyCaffe
implementation is available on request [158].

In addition to methods using the learned representation
directly for a high-level task such as classification or seg-
mentation, there is recent research exploring transfer learn-
ing in point cloud-based networks. Xie et al. [85] partially
pre-train a network on a large dataset in an unsupervised
fashion (finding correspondences between two differently
transformed views of a point cloud) before fine-tuning it to
the intended task. The authors report ShapeNetCore classi-
fication accuracy improvements between 0.6 pp and 5.9 pp
reaching 85.7% when pre-training on ScanNet, compared to
training from scratch. The greatest improvements are seen
for least represented classes or when artificially limiting the
dataset used for supervised training. While the code for
segmentation experiments is available [159], the classifier
code is not published.

6 SURFACE SHAPE-BASED NEURAL NETWORKS

An object’s shape can be precisely or approximately rep-
resented by a set of freeform surfaces or polygonal faces
with connectivity – a mesh. These representations are non-
Euclidean, therefore operations such as convolution and
pooling need to be re-defined in this domain. There are
several ways of processing such data. The approaches in this
category, commonly denoted geometric deep learning, work
mainly with graphs and manifolds. In this section we briefly
revise fundamental ideas of these approaches and survey
approaches which assume mesh as their input format.

Manifold is a topological space where each point has
a neighborhood that is topologically equivalent (homeo-
morphic) to an Euclidean space, called the tangent space
[16]. Well-formed, watertight 3D surfaces have a manifold
structure, locally homeomorphic to a 2D Euclidean space –
a mesh is a 2D surface embedded in a 3D space. A metric
and functions such as displacement can be defined on the
manifold, enabling the use of convolution operation in the
tangent space.

Graphs can be viewed as a special case of manifold
– with a discrete domain and a neighborhood distance
metric. Graph-based approaches were already introduced
in Section 5.3, where graph convolution and subsampling
were used to extract features from a point neighborhood
graph constructed from a point cloud. Such a neighborhood
graph assumes nearby points to be connected, which may
not be true in general. E.g., when two unrelated faces from
different parts of the object are near each other – this
information is preserved in the mesh representation but is
lost by conversion to a point cloud.

An extensive survey of fundamental graph- and
manifold-based methods is presented in [16], which we refer
the reader to for additional details about these approaches.

In addition to the general geometric approaches, there
are approaches which attempt to define convolution and
subsampling or pooling operations directly on meshes.
These approaches are based on graph representation of
the mesh, exploiting the “more regular” graph structure of
triangular meshes, or define necessary operations for feature
extraction and aggregation directly on a mesh.
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6.1 Manifold-based Convolution

Manifold-based convolutional methods operate in the 2D
manifold space of the object’s surface. These methods
mainly focus on correspondence or local feature extrac-
tion utilizing local charting, not classification, but such
approaches can be applied to global feature extraction given
a proper pooling operation.
Geodesic CNN [86] generalizes 2D convolution to Rieman-
nian manifolds. The authors define a geodesic (charting)
patch operator as a product of Gaussians using polar coordi-
nates as parameters, producing a “blob” at a given distance
and angle. Discretization of the operator to meshes is pro-
vided. The authors apply this approach to local descriptor
extraction, shape correspondence and shape retrieval. Only
the patch extraction Matlab code is available [160].
Anisotropic CNN [87] defines a different patch that is based
on anisotropic heat diffusion which produces a directional
“blob” with rotation eccentricity and scale given by the
parameters. An official Theano implementation with pre-
processing in Matlab is available [161].
Mixture Model CNN [88] generalizes classical Euclidean
CNNs and previous approaches ([86, 87, 90]) as specific
cases of a proposed unified framework. Both graph and
manifold variants are covered. The authors also propose
MoNet where the patch is a sum of learnable Gaussian ker-
nels. The authors’ implementation in Theano and Lasagne
and TensorFlow with shape preprocessing in Matlab was
unavailable at the time of writing12 [162]. An alternative
implementation of the graph-based variant is available as
a part of the PyTorch Geometric framework [21].

6.2 Graph-based Convolution

Graph-based approaches are based on propagating signals
on a graph by filtering in spatial or spectral domain. There
are two main related tasks commonly tackled in graph-
structured data such as social networks: node classification
(classification of each graph node, corresponding to segmen-
tation or local feature extraction), and graph classification
(global feature extraction), producing single output for the
whole graph.
Bruna et al. [89] define graph convolution and pooling op-
erations generalization in spatial or spectral construction. In
the spatial construction, each convolutional layer computes
a dot product of node features with learnable filters and
then pools values over nodes in a cluster, which can be
done repeatedly in a hierarchical manner. No weight sharing
within a layer is used. The spectral construction operates on
eigenvectors of the Laplacian matrix [163] of the graph. Only
a limited number of eigenvectors are processed; this corre-
sponds to low-pass filtering. An unofficial implementation
of the convolution operator is available [164].
Diffusion-convolutional Neural Networks [90] extract the
context of each node by graph diffusion – spreading node
features by matrix power series up to a pre-defined hop
count. No pooling operation is provided. An official imple-
mentation in Theano and Lasagne is available [165].
Graph Convolutional Network by Kipf and Welling [91]
shows a propagation rule which approximates spectral

12. An archived version cached by web.archive.org was available.

graph convolution, diffusing local features to neighboring
nodes. As with Euclidean convolution, the receptive field (or
propagation hop count) increases with the number of layers.
The layer weights are shared across nodes. The network
structure remains unchanged as no pooling operation is
used. The authors provide their TensorFlow implementation
[166].
Graph-CNN by Dominguez et al. [92] uses a graph-
convolutional approach for classifying a mesh converted
to a graph. After mesh face count reduction, the authors
create 8 adjacency matrices, each containing edges with
a specific axis-aligned orientation (e.g. positive X and Y
direction and negative Z). This data is processed by sev-
eral graph convolutional layers, each of which increases
the receptive field of features stored in nodes. No pooling
layer is used; the authors believe that “small increases in
receptive field size through cascaded convolution layers
will be enough for effective inference” [92, Sec. 3.1]. This
approach’s classification accuracy is evaluated on a mesh
dataset ModelNet1013 achieving 74.3% with 4 layers each
with 24 filters. No implementation was found at the time of
writing.

FeaStNet [93] presents a graph-convolution operator
generalizing classical convolution. Rather than using a fixed
weight for all neighbors, the weight of filters for a neigh-
boring node is determined by a soft-assignment function
using a linear transformation of node features with learned
weights, passed through soft-max over all neighbors which
decouples the learned weights from the neighbor count.
The authors focus on 3D shape correspondence and part
segmentation, but with suitable pooling, the approach could
be applied to classification. A TensorFlow implementation is
available [167].

6.3 Native Mesh-based Approaches

Approaches in this section either use the mesh directly
as an internal representation format, defining operations
directly on the mesh, or assume mesh structure constraints
for processing the mesh using a generic graph approach.
Directionally convolutional networks for 3D shape seg-
mentation [94] process the mesh similarly to a graph. The
input is a triangular mesh with face normal vectors used as
features. Convolution and pooling operations are defined in
the spatial domain using rings – a set of neighboring faces
at a given distance. Faces in each ring are ordered counter-
clockwise, starting from the maximum curvature direction.
The proposed directional convolution operator is a normalized
dot product of ordered neighboring faces’ features and a
learned kernel. Pooling operation downsamples a given
number of rings (a cluster) into one face, computing the
maximum or the average of each feature over the cluster.
The proposed model outputs segmentation – a class for each
face – with a network combining a global fully connected
branch and a local branch containing two directional convo-
lution and pooling layers, and a MLP. No implementation
was found at the time of writing.

13. A smaller subset of the ModelNet dataset – the accuracy is not
directly comparable with results on ModelNet40, but usually MN40
accuracies are lower than MN10 for the same classification method.
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Surface Networks [95] provide a graph neural networks
improvement suited for triangular meshes. The authors
propose using the Dirac operator rather than the Lapla-
cian to extract the differential information from features
stored in vertices or faces. Dirac operator is a first-order
differential operator capable of extracting principle curva-
ture directions; Laplacian is a second-order operator with
access only to local mean curvature and normal vector. The
proposed networks consist of alternating layers where the
Dirac operator or its adjoint is applied to either vertices
or faces. The authors use the proposed layers in a deep
VAE architecture, using 15 modified ResNet-v2 blocks with
convolution replaced by Laplace or Dirac operators. They
focus on shape reconstruction; classification performance
has not been evaluated. Reference PyTorch implementation
is available [168].
MeshNet [96] uses a similar approach as point cloud-based
networks: processing a set of elements constructed from
faces by per-face feature extraction. Relative triangle corner
positions and a normal vector direction, and information
about neighboring faces are used to extract per-element fea-
tures. The spatial and structural features are extracted and
processed separately. In the proposed classification network,
elements are fed through two proposed Mesh Conv layers,
which transform concatenated features from each face and
its neighboring faces by a MLP, and “inflated” by a shared
MLP. Then a global feature vector is computed by another
MLP processing concatenated outputs of both Mesh Conv
layers, and pooling over all faces. Finally, a MLP classifier
produces class scores. This approach achieves ModelNet40
classification accuracy of 91.9%, comparable to point cloud-
based networks. An implementation in PyTorch is provided
[169].
MeshCNN [97] proposes to store features in edges of a
triangular mesh. Initially, the following edge features are ex-
tracted: dihedral angle, two inner angles and two distances
to the opposite vertex relative to the edge length. Pooling
is implemented as edge collapse into a point, merging the
then-overlapping pairs of edges. This approach requires the
input to be a manifold mesh. Convolution is defined as a
sum of features of an edge and its four adjacent edges’
symmetrized features weighted by a learned kernel. The
approach is used in classification and segmentation archi-
tectures. In the case of classification, averaging the feature
vectors of remaining edges is then used as a symmetric func-
tion to produce a global feature vector, which is then fed to a
dense classifier. The proposed classification architecture has
been evaluated on a smaller SHREC dataset [170], but not
on the ModelNet dataset as it contains non-manifold shapes.
The authors provide a PyTorch implementation [171].

7 HYBRID APPROACHES

Ensembling or merging different models has been proved
to improve classification accuracy [172]. In case of 3D shape
classification, different classification models tend to have
different failure cases depending on which aspects of the
shape are captured by the used representation. Volumetric
representation captures the high-level shape or spatial dis-
tribution of the object but lacks details due to limited resolu-
tion. Multi-view image-based representation better captures

silhouettes and surface curvature captured by shading, but
is limited to two dimensions, which causes loss of details
due to occlusion. Point cloud representation may provide
additional information about surface shape in the object’s
parts which are not visible from the selected viewpoints
while lacking the curvature information. Mesh-based rep-
resentation retains connectivity information, which is not
present in the point cloud. Combining classification meth-
ods that use different representations may improve the
resulting classifier’s robustness, similarly to the multi-view
image-based networks that use different modalities (sur-
veyed in Section 4.2). In this section we focus on approaches
using a combination of different 3D object representations.

In autonomous driving research, the fusion of an RGB
camera (2D) and LiDAR (3D) data is commonly done (e.g.
[173]). Compared to the autonomous driving context where
a single viewpoint is used (or a few viewpoints from the
vehicle), the 3D shape classification task is not limited to the
images captured from the vehicle position but instead can
use arbitrary views of the object.

We identified two main approaches to combining net-
works that use different input representations: ensembling
– combining the classification scores e.g., by computing an
element-wise average – which allows combining any type
of classification methods to produce one, more robust pre-
diction, and descriptor merging, which merges intermediate
feature vectors and then trains a common classifier.

7.1 Ensembling

FusionNet [98] is an ensemble of a 20-view MVCNN pro-
cessing grayscale images and two 2D convolutional volu-
metric networks processing voxel grids of 60 rotations of
the object about the gravity axis. Both volumetric networks
take 30×30×30 occupancy grid as an input, and treat one of
the spatial dimensions as feature channels (like color) of the
remaining two dimensions, on which 2D convolutions are
applied. The first convolutional network (V-CNN I) has a
common 2D CNN classification architecture with three con-
volutional and two fully connected layers. In V-CNN II, the
first two convolutions are replaced by Inception-like mod-
ules. The multi-view CNN is based on AlexNet, pre-trained
on ImageNet. Each network has only one set of weights
shared among all the views; features from individual views
are max-pooled, and all the networks are trained separately.
This ensemble achieves 90.80% ModelNet40 accuracy. No
code was found at the time of writing.

Su et al. [13] experiment with ModelNet40 subsets,
reducing the number of objects per category. In this ex-
periment, the authors use various ensembles of MVCNN,
VoxNet and PointNet. An ensemble averaging classification
scores of VoxNet and PointNet achieves a better classi-
fication accuracy around 90% on the whole ModelNet40,
which is higher than the individual networks (between
85% and 90%). An ensemble of all three networks did not
provide any significant accuracy increase compared to just
using MVCNN. The authors also train a linear model on
concatenated features extracted by the networks, which they
report did not provide any improvements.

Koguciuk et al. [20] evaluate feasibility of ensembling
seven different 3D shape classification methods using point
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cloud as an input. While all ensembled methods use the
same representation, the authors measure classification ac-
curacy improvements using different architectures com-
pared to using just one architecture trained on different data
as in [27]. A ModelNet40 classification accuracy of 94.03% is
reported using an ensemble of two architectures: SO-Net
and PointCNN, and 94.15% using Pointnet, PointNet++ and
SO-Net. The code is available [174].

7.2 Descriptor Merging
PVNet [99] combines point cloud and multi-view repre-
sentation, extracting features from both using suitable net-
works. The point cloud is transformed by a learned matrix
similar to PointNet’s input transform T-net. The features
are then extracted by a sequence of two edge convolutions
– k-nearest neighbours, 1x1 convolution and pooling. The
features from multi-view images are produced by a CNN
with weights shared among all the views. The pooled view
features are transformed to the same subspace as point
cloud features by an embedding layer. An embedding atten-
tion fusion scheme merges the features from both branches.
The per-point features pass through two attention fusion
blocks with access to the embedded view-based feature vec-
tor, choosing significant local features by a learned attention
mask from global view features. The point cloud features
pass through the convolution and pooling layer and are
concatenated with the embedded view-based features. Fi-
nally, this vector is classified by a FC classifier. This method
achieves 93.2% ModelNet40 accuracy using 1024 points and
12 views with AlexNet used as the multi-view network
feature extractor, pre-trained on ImageNet. The individ-
ual multi-view network alone achieves 89.9% accuracy, the
point-cloud part reaches 92.2%. When combined naively by
concatenation before the last FC layer, only 92.5% accuracy
is achieved, showing benefit of the merging scheme. An
implementation in PyTorch is available [175].

8 EVALUATION METHODOLOGY

In this section, we describe how we train and evaluate
performance of several neural network classification models
on the same datasets and compare their results. We use
two datasets in our performance evaluation; for all but two
networks, we extend the evaluation by measuring how the
methods behave on more general data than originally used
by the authors.

8.1 Datasets
Since we aim to compare the classification performance
of multiple network types on the same set of 3D shapes,
our choice is limited – rendering (conversion to images
for the multi-view image-based methods) requires at least
approximate surfaces as input. From the formats of available
datasets, mesh is the most suitable to be converted to the
other representations as it provides the most information
about the object surface. Using point-cloud-based datasets
would require surface reconstruction introducing artifacts;
similarly, image-based datasets lack spatial information pre-
venting conversion to a point cloud or a volumetric repre-
sentation. Therefore the input to our evaluation framework

is a set of labeled 3D meshes, which we convert into each
network’s native input format using methods described
below. In addition to vertices and faces, 3D mesh files can
contain information such as material description and texture
coordinates, but we ignore these as the chosen classification
methods do not utilize them.

We use two mesh datasets with sufficient size and qual-
ity: ModelNet40 and ShapeNetCore.

ModelNet [26] is one of the most known and commonly
used datasets containing annotated 3D models in a mesh
format. Its subset, ModelNet40 with 12,311 models in 40
categories covering mainly furniture, household objects and
appliances, is intended as a benchmark for testing different
machine learning approaches. We use this dataset as the
main focus for our evaluations. The dataset has an official
80% : 20% split to training and testing subsets. We split a
validation subset from the training subset in experiments
prefixed modelnet40val-. ModelNet40 models have widely
different scales, therefore we normalize each model’s scale
to fit inside a unit sphere (for point clouds) or unit cube
(volumetric grids and images). For additional experiments
detailed in the supplementary material we also use a man-
ually aligned version of the dataset [29].

ShapeNet [176] is an ongoing effort to establish a richly-
annotated, large-scale dataset of 3D shapes. We use its
subset called ShapeNetCore (v2), providing 51,209 models
in 55 categories, partially overlapping with ModelNet40
categories, but including more appliances, vehicle types and
other objects. Less than 2.5% of the models are assigned to
more than one category or are duplicates, so we excluded
those14, yielding 50,769 unique models, each in exactly
one category. While there is an official split to training,
test, and validation sets for the dataset version used in
the SHREC16 competition, it does not contain all current
models and is not divided uniformly within categories. We,
therefore, construct our own split randomly choosing 70%
of models in each category assigned to the training set, 10%
to validation and the rest to the test set. Our final split into
sets and categories is available on this paper’s webpage; an
overview of the split within each category is shown in the
supplementary material.

Using just the train/test split and choosing the hyper-
parameters such as training epoch count based on the test
set accuracy is biased. This issue is commonly solved by
cross-validation, which requires running the training and
evaluation multiple times, or by introduction of a third
subset (split into train/validation/test), which would be
used for final evaluation once the optimal hyperparameters
are found and fixed on the train and validation subsets,
not containing the held out test samples. We employ the
latter option for selecting the training epoch count in this
article. In contrast, using the train/test split allows the use
of the most data for training and evaluation, minimizing
the error in computing the accuracy – we include additional
experiments in the supplementary material which use the
full train/test split.

14. Exception: all models in the cellular telephone category are also in
the telephone category. We kept such models in the former category.
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8.2 Data Conversion

Classification methods use different input representations,
therefore we have to convert meshes to voxels, images,
and point clouds. Examples of different conversion method
outputs are presented in the supplementary material.
Voxel occupancy grids are created from ModelNet40 and
ShapeNetCore meshes by voxelization using the OpenVDB
library [177]. Each object may be voxelized multiple times
with the source mesh rotated along the vertical axis as an
augmentation method proposed by [25]. Voxelization for the
O-CNN and Adaptive O-CNN networks is done using the
authors-provided tools.
Images for the multi-view image-based neural networks
are rendered in twelve rotation steps, following [44]. In
our evaluation, the same set of images is used for each
classification method to ensure a fair comparison. We render
two kinds of images: shaded and depth images produced by
the code by Su et al. [13].
Point clouds are constructed from 3D meshes by sampling
points on the mesh surface. We experiment with different
sampling methods: uniform, Lloyd and Poisson. A point in
uniform sampling is generated by first selecting a polygon
with a probability proportional to its area and choosing a
point within the polygon by generating random barycentric
coordinates. To reduce point clustering, we employ Lloyd’s
algorithm [178] from Point Cloud Utils library [179], which
samples the mesh more regularly. We also use Poisson-
sampled point clouds similar in distribution to the data
provided by Qi et al. [132], which were generated by farthest
point sampling of a dense, uniformly-sampled point cloud,
and which we use as reference. Following [132], all point
clouds contain 2048 points. Training and evaluation use all
points, except in the replication experiments marked -qi1024
using only 1024 points.

Visualizations of outputs of the used conversion meth-
ods and the discussion on their impact on the achieved
accuracy are in the supplementary material.

8.3 Testing Scope

We limit the scope of our testing in the following ways. We
only consider single-object classification, although several of
the networks can be extended to perform part segmentation
as well as new shape generation. We do not test any large
ensembles of networks [27, 28, 58] as our focus is to compare
the individual methods’ performance. We also consider only
networks with publicly available code as implementing all
the different techniques is beyond the scope of this work.

To compare with previously reported results, we com-
pute overall (per-instance) classification accuracy as a main
performance metric. We report the accuracy on test set at
the epoch number where the validation accuracy was the
highest. We also include the highest accuracy achieved on
the test set and the validation set as separate data points.

8.4 Technical Setup

We conduct all our experiments on Linux machines with
AMD RYZEN 1950X or two Intel Xeon E5-2680 v3 CPUs,
128 GB of RAM and NVIDIA GeForce GTX 1080 Ti GPUs
with driver version 440.44. We only use one GPU per

network to compare the training time of different models
since only some support multi-GPU training. To reduce
software dependencies of our framework, we use Docker
[180] to enclose the networks and their dependencies into
self-contained containers. Thus, every neural network and
data conversion tool is an independent piece of software,
which can be run on any system with Docker and NVIDIA
Container Toolkit15 installed. For information about the
prerequisites and structure of our framework, please consult
the manual of our code.

9 RESULTS

In this section we present the replication results of selected
classification approaches (see Table 1) as we run training
experiments on ModelNet40. Besides, we evaluate how
rotational alignment impacts the accuracy of the methods.
We extend the training to a larger dataset (ShapeNetCore)
to see how the approaches generalize to a dataset with more
categories and more training examples. The datasets are
described in Section 8.1.

For the evaluation, we selected networks which are
significant by either being the first to process a given shape
representation or those which achieved high reported accu-
racy and the author’s implementation was available.

Voxel-based approaches are represented by a 3D con-
volutional network with residual connections Voxception-
ResNet [27]16 (vrn), and octree-based approaches O-CNN
and Adaptive O-CNN [34, 110] (octree and octree adaptive).
From multi-view approaches, we use mvcnn2 [13], rotnet
[51], seq2seq [50], and vgg, our MVCNN-like network imple-
mentation based on VGG19 extractor-classifier [181] with
voting among the views. Selected point cloud-based ap-
proaches are PointNet by Qi et al. [61] (pointnet), Point-
Net++ [63] (pointnet2), Kd-networks [65] (kdnet) and SO-Net
[64] (sonet).

The results are shown in Figure 6. A larger figure, a
table with exact values, and additional training details are
available in the supplementary material.

9.1 Replication

When training, we did not reach the reported accuracies
in some cases. The accuracy decrease can be partially at-
tributed to using a less data for training as a part of the
dataset is used as validation subset. We preferred to use the
same data conversion method for as many networks as pos-
sible within a shape representation type, for a meaningful
comparison of networks. To measure the impact of different
data conversion, we also train on the original datasets for
comparison, if provided by the authors.

Different dataset conversion methods impact the clas-
sification accuracy. This is most clearly visible for point
cloud-based networks where using Poisson-sampled point
clouds yielded ModelNet40 and ShapeNetCore test set ac-
curacies 0.7 pp and 0.51 pp, respectively, higher than uni-
form sampling. When using the ModelNet40 point clouds

15. https://github.com/NVIDIA/nvidia-docker
16. Due to high computation demands of training we chose a single

architecture: Voxception-ResNet with the highest reported accuracy.

https://github.com/NVIDIA/nvidia-docker
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Fig. 6. The measured accuracies on different datasets. The bars show the test set accuracy at the epoch with the best validation accuracy and
same-colored Υ and • mark the highest achieved accuracy on the test and validation subsets on the same dataset, respectively. ◦ marks accuracies
reported on ModelNet40 and Υ marks the replicated test set accuracy on the point clouds provided by Qi et al. [61] using 1024 points (qi1024).

provided by Qi et al. [61]17, the achieved accuracies on the
provided test set are comparable to the reported accuracies
and also comparable to our accuracies on the validation
set. The maximum test accuracy being always lower for
ModelNet40 (but not ShapeNetCore) than the maximum
validation accuracy could indicate a different distribution
of the 3D shapes present in the official train and test subsets
of ModelNet40. We have not verified whether the data
from [61] use the official train/test split. Image-based data
conversion may differ in the used renderer or rasterizer,
camera or lighting settings, material or shading. However,
despite using the authors’ provided rendering tools [13], we
reach a maximum ModelNet40 test set accuracy of only
91.53% for mvcnn2 instead of the reported maximum of
95.0%. By replicating volumetric grid-based networks, we
reach on average 1.14 pp lower maxima than reported. In
the case of vrn we use a different voxelization library; other
networks use authors’ provided conversion tools.

Apart from input data size, quality, and dataset split,
the results may be influenced by non-determinism of the
training (weights optimization) process. This includes ran-
dom initialization of the network weights, possibly different
random order of training examples and variations in hy-
perparameters such as batch size, leading to different mini-
batches, as well as non-determinism caused by hardware
parallelism. All these factors may lead the optimization
process to find a different local minimum or plateau of
the loss function. The impact of these non-determinism
causes can be trivially reduced by running each experiment
multiple times; unfortunately, we did not have the necessary
computational capacity.

Note that there were also some hyperparameter and
input differences to the training made due to unclear train-
ing or evaluation procedure or data compatibility. For vrn,
the exact training process was not described. The authors
report their best-performing models were first trained on

17. Different sampling of points and post-processing: sampling 10k
points, then farthest point sampling to select fewer points with better
coverage of the surface.

12 voxelization views and then fine-tuned on 24 views.
We trained a 12-view to match the authors-provided data.
For the point-cloud networks which accept normal vectors
(pointnet2 and sonet), we do not provide them to the network
so we can compare performance on exactly the same point
clouds for all point-cloud methods. In kdnet, we use the
shallower network variant with 10 layers.

9.2 Overall Results

On average, using all datasets in our experiments, multi-
view image-based approaches reached the highest classifi-
cation accuracy (91.40% ± 1.27 pp and 91.76% ± 1.11 pp
at the best test and train epoch, respectively), followed
by volumetric grid-based approaches (88.79% ± 1.00 pp
and 89.21% ± 1.28 pp) and point cloud-based approaches
(88.23% ± 1.84 pp and 88.71% ± 1.50 pp).

While vgg reached the maximum (test set) accuracy of
92.84% and 93.06% at the best validation and test epochs,
respectively, with averages 90.94% ± 2.05 pp and 91.46% ±
1.68 pp, mvcnn2 yielded the highest average accuracies of
91.83% ± 0.98 pp and 92.16% ± 0.81 pp among multi-view
image-based networks. The rotnet’s respectable average ac-
curacy of 91.38% ± 0.71 pp and 91.67% ± 0.73 pp is achieved
with approximately half the computational and memory
cost. The classification accuracy of seq2seq is similar to vgg
from which it uses extracted features: on average better (by
0.50 pp and 0.29 pp) but with lower maximum accuracy
in some cases. This shows the benefit of view fusion using
RNN being more robust than a simple max pooling.

In the volumetric grid-based networks, octree achieved
the best accuracy: both maximum (89.91% and 90.65%) and
on average (89.37% ± 0.75 pp and 90.02% ± 0.89 pp).
The vrn and octree-adaptive networks reached slightly lower
average accuracies (88.95% ± 1.14 pp and 89.43% ± 1.61 pp
for vrn and 88.03% ± 1.12 pp and 88.18% ± 1.18 pp for octree-
adaptive, respectively), while being two orders of magnitude
faster to train – see the time and memory measurements in
the supplementary material.



19

Among point cloud-based methods, pointnet2 yields the
highest maximum accuracy of (90.71% and 90.73% on the
best validation and test epoch, respectively) and the best av-
erage with the lowest standard deviation (89.67% ± 0.76 pp
and 89.67% ± 0.56 pp). It is closely followed by sonet (88.95%
± 1.26 pp and 89.25% ± 1.17 pp with maxima of 90.46%
and 90.71%) and pointnet (87.80% ± 2.23 pp and 88.67%
± 1.45 pp with maxima of 89.86% and 90.20%) The kdnet
network, which appears to behave better with larger point
clouds in our experiments, has in this case lower average
accuracy of 86.50% ± 1.23 pp and 86.98% ± 0.67 pp.

9.3 The Impact of Dataset Size
Comparing the training performance on ShapeNetCore to
the ModelNet40 dataset, most networks’ accuracy improves
(on average by 1.64 pp and 1.24 pp for test accuracies
at the best validation and test epoch, respectively) with
two volumetric grid-based methods as exceptions: octree-
adaptive and vrn networks achieve a lower accuracy on the
larger dataset with more object categories, possibly due to
limited capacity or because their hyperparameters may have
been optimized by the authors for the smaller ModelNet40
dataset. Image-based multi-view networks show the most
consistent increase in accuracy (+1.85 pp and +1.7 pp).
These networks have the capacity to internally learn more
features as the image-based models are largest of all the
representations.

10 CONCLUSIONS

We surveyed 76 neural networks which process 3D shapes,
created a taxonomy to categorize them based on the type of
shape representation they process, and grouped individual
approaches by common ideas. We observe a rise mainly
in the point cloud-based method research. Xie et al. [85]
show possible performance improvements using transfer
learning for point cloud methods. This may bring significant
performance improvements seen in image-based transfer
learning also to 3D shape representation learning. We expect
to see more research in this direction.

For evaluation, we selected 11 classification approaches
and compared them on two datasets converted by differ-
ent conversion methods. We saw that the data conversion
method (e.g., point cloud sampling or image rendering
method) can have a large impact on the achievable classi-
fication accuracy. We observe multi-view image-based rep-
resentations yielding the best classification accuracy.

The code we used to convert the datasets, train the
networks, and evaluate their performance is packaged to
minimize the software prerequisites and is available on our
project’s website.18 We believe this work provides a useful
overview of existing methods and will simplify running
machine learning experiments on 3D shapes.
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