
1

2

Natalya Tatarchuk
3D Application Research Group

ATI Research, Inc.

Practical Dynamic Parallax Occlusion
Mapping

Practical Dynamic Parallax Occlusion
Mapping

3

OutlineOutline

• Introduction

• Related work

• Parallax occlusion mapping algorithm

• Results discussion

• Conclusions

4

ObjectiveObjective

• We want to render very detailed surfaces
• Don’t want to pay the price of millions of triangles

– Vertex transform cost

– Memory footprint

• Want to render those detailed surfaces accurately
– Preserve depth at all angles

– Dynamic lighting

– Self occlusion resulting in correct shadowing

5

Approximating Surface DetailsApproximating Surface Details

• First there was bump mapping… [Blinn78]

– Rendering detailed and uneven surfaces
where normals are perturbed in some
pre-determined manner

– Popularized as normal mapping –
as a per-pixel technique

6

Approximating Surface DetailsApproximating Surface Details

apparent displacement of the
object due to viewpoint change

• Doesn’t take into account geometric
surface depth
– Does not exhibit parallax

– No self-shadowing of the surface

– Coarse silhouettes expose the actual geometry being drawn

• First there was bump mapping… [Blinn78]

The surface should appear to move correctly with respect to the viewer

7

Parallax Occlusion MappingParallax Occlusion Mapping

• Per-pixel ray tracing at its core
• Correctly handles complicated viewing

phenomena and surface details
– Displays motion parallax
– Renders complex geometric surfaces such as

displaced text / sharp objects
– Uses occlusion mapping to determine visibility for

surface features (resulting in correct self-shadowing)
– Uses flexible lighting model

The effect of motion parallax for a surface can be computed by applying a height
map and offsetting each pixel in the height map using the geometric normal and the
eye vector. As we move the geometry away from its original position using that ray,
the parallax is obtained by the fact that the highest points on the height map would
move the farthest along that ray and the lower extremes would not appear to be
moving at all. To obtain satisfactory results for true perspective simulation, one
would need to displace every pixel in the height map using the view ray and the
geometric normal.

8

Selected Related WorkSelected Related Work

• Parallax mapping [Kaneko01]

• Parallax mapping with offset limiting
[Welsh03]

• [Policarpo05] Real-time relief mapping on
arbitrary surfaces

• Horizon mapping [Max88]

• Interactive horizon mapping [Sloan00]

We would like to generate the feeling of motion parallax while rendering detailed surfaces.
Recently many approaches appeared to solve this for real-time rendering.

Parallax Mapping was introduced by Kaneko in 2001
Popularized by Welsh in 2003 with offset limiting technique

Parallax mapping
• Simple way to approximate motion parallax effects on a given polygon
• Dynamically distorts the texture coordinate to approximate motion parallax effect
• Shifts texture coordinate using the view vector and the current height map value
• Issues:

• Doesn’t accurately represent surface depth
• Swimming artifacts at grazing angles
• Flattens geometry at grazing angles

• Pros:
• No additional texture memory and very quick (~3 extra instructions)

Horizon Mapping:
• Encodes the height of the shadowing horizon at each point on the bump map in a series of

textures for 8 directions
• Determines the amount of self-shadowing for a given light position
• At each frame project the light vector onto local tangent plane and compute per-pixel lighting
• Draw backs: additional texture memory

Offset Limiting
• Same idea as in [Kaneko01]
• Uses height map to determine texture coordinate offset for approximating parallax
• Uses view vector in tangent space to determine how to offset the texels
• Reduces visual artifacts at grazing angles (“swimming texels) by limiting the offset to be at most equal to current height value

• Flattens geometry significantly at grazing angles
• Just a heuristic

9

Our ContributionsOur Contributions

• Increased precision of height field – ray
intersections

• Dynamic real-time lighting of surfaces with soft
shadows due to self-occlusion under varying light
conditions

• Directable level-of-detail control system with
smooth transitions between levels

• Motion parallax simulation with perspective-
correct depth

Our technique can be applied to animated objects and fits well within established art
pipelines of games and effects rendering.
The implementation makes effective use of current GPU pixel pipelines and
texturing hardware for interactive rendering.
The algorithm allows scalability for a range of existing GPU products.

10

Parallax Occlusion MappingParallax Occlusion Mapping

• Introduced in [Browley04]
“Self-Shadowing, Perspective-
Correct Bump Mapping Using
Reverse Height Map Tracing”

• Efficiently utilizes programmable GPU pipeline for
interactive rendering rates

• Current algorithm has several significant
improvements over the earlier technique

11

Encoding Displacement
Information
Encoding Displacement
Information

Tangent-space normal map Displacement values (the height map)

All computations are done in tangent space, and thus can
be applied to arbitrary surfaces

We encode surface displacement information in a tangent-space normal map
accompanied by a scalar height map.
Since tangent space is inherently locally planar for any point on an arbitrary surface,
regardless of its curvature, it provides an intuitive mapping for surface detail
information.
We perform all calculations for height field intersection and visibility determination in
tangent space, and compute the illumination in the same domain.

12

0.0

Polygonal surface

Extruded surface

Parallax DisplacementParallax Displacement

1.0

View rayInput texture coordinate

Displaced point on surfaceResult of normal mapping

toff

The core idea of the presented algorithm is to trace the pixel being currently
rendered in reverse in the height map to determine which texel in the height map
would yield the rendered pixel location if in fact we would have been using the
actual displaced geometry.

13

Implementation: Per-VertexImplementation: Per-Vertex

• Compute the viewing direction, the light
direction in tangent space

• May compute the parallax offset vector (as an
optimization)
– Interpolated by the rasterizer

Compute the parallax offset vector P to determine maximum visual offset in texture-
space for current pixel being rendered.

14

Implementation: Per-PixelImplementation: Per-Pixel

• Ray-cast the view ray along the parallax offset vector

• Light ray – height profile intersection for occlusion
computation to determine the visibility coefficient

• Shading
– Using any attributes

– Any lighting model

• Ray – height field profile intersection as a texture offset
– Yields the correct displaced point visible from the given

view angle

Ray cast the view ray along the parallax offset vector to compute the height profile
– ray intersection point. We sample the height field profile along the parallax
offset vector to determine the correct displaced point on the extruded surface.
Approximating the height field profile as a piecewise linear curve allows us to have
increased precision for the desired intersection (versus simply taking the nearest
sample). This yields the texture coordinate shift offset (parallax offset) necessary to
arrive at the desired point on the extruded surface. We add this parallax offset
amount to the original sample coordinates to yield texture offset coordinates.
If computing shadowing and self-occlusion effects, we can use the texture offset
coordinates to perform visibility computation for light direction. In order to do that,
we ray cast the light direction ray sampling the height profile along the way for
occlusions. This results in a visibility coefficient for the given sample position.
Using the texture offset coordinates and the visibility coefficient, we can shade the
given pixel using its attributes, such as applied textures (albedo, gloss, etc), the
normal from the normal map and the light vector.

15

Height Field Profile TracingHeight Field Profile Tracing

0.0

Polygonal surface

1.0

Extruded surface

View ray

t0

Parallax offset vector

δ

toff

In order to compute the height field-ray intersection we approximate the height field (seen as the light
green curve in this figure) as a piecewise linear curve (seen here as dark green segments),
intersecting it with the given ray (in this case, the view direction) for each linear section. We start by
tracing from the input sample coordinates to along the computed parallax offset vector P . We
perform a linear search for the intersection along the parallax offset vector. We sample a linear
segment from the height field profile by fetching two samples step size δ apart. We successively
test each segments endpoints to see if it would possibly intersect with the view ray. For that, we
simply use the height displacement value from each end point to see if they are above current
horizon level. Once such pair of end points is found, we compute an intersection between this linear
segment and the view ray. The intersection of the height field profile yields the point on the extruded
surface that would be visible to the viewer.

16

Height Field Profile – Ray
Intersection
Height Field Profile – Ray
Intersection

Intersections resulted from direct
height profile query

Intersections due to piece-wise
linear height field approximation

A

B

Other ray tracing-based mapping techniques query the height profile for the closest
location to the viewer along the view direction. In the case presented here, these
techniques would report point A as the displacement point. This results in the stair
stepping artifacts visible in the picture on the left. The artifacts are particularly
strong at oblique viewing angles, where the apparent parallax is larger. We perform
actual line intersection computation for the ray and the linear section of the
approximated height field. This yields the intersection point B. In the figure on the
right, you see the smoother surface rendered using higher precision height field
intersection technique. In both figures the identical number of samples was used
during tracing view direction rays.

17

Dynamic Sampling RateDynamic Sampling Rate

• Sampling-based algorithms are prone to aliasing

One of the biggest problems with the aliasing algorithms exists due to aliasing
artifacts. Here you see the result of our 2004 technique intersecting the height field
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at
the grazing angle. In the [Brawley04] approach we applied perspective bias to fix
this artifact. Unfortunately, that results in strong flattening of the surface details
along the horizon, which is undesirable.

18

Dynamic Sampling RateDynamic Sampling Rate

• Dynamically adjust the sampling rate for ray tracing as a
linear function of angle between the geometric normal and
the view direction ray

Perspective-correct depth with
dynamic sampling rate

Dynamically scaling the sampling rate ensures that the resulting extruded surface is
far less likely to display aliasing artifacts and certainly does not display any
flattening as in this figure. Therefore the surfaces rendered with our approach
display perspective-correct depth at all angles.
On the latest GPUs we can utilize dynamic flow control instructions to dynamically
scale the sampling rate during ray tracing. We express the sampling rate as a linear
function of the angle between the geometric normal and the view direction ray. This
ensures that we take more samples when the surface is viewed at steep grazing
angles, where more samples are desired.
Other techniques encode the surface information in a distance map, which allows
sampling the height field as a function of the distance from the height field.
However, this utilizes dependent texture fetches which exhibits a higher latency
penalty during rendering. Additional texture memory cost can also be prohibitive in
real-time production environments, which steered us away from similar approaches.
Additionally, we optimize our ray tracing techniques by accurately computing the
length of the parallax vector and only sampling along this vector.
Note that the sampling interval δ is a function of the sampling rate (for n number of
samples, δ = 1 / n). We provide control over the sampling interval to the artists by
exposing the range for dynamic sampling rate. The accuracy of this technique
corresponds to the sampling interval δ and, therefore, on the number of samples
during ray tracing.

19

0.0

Polygonal surface

Self-Occlusion ShadowsSelf-Occlusion Shadows

Extruded surface

View ray

Light ray toff

The features of the height map can in fact cast shadows onto the surface. Once we
arrive at the point on the displaced surface (highlighted here) we can compute its
visibility from the any light source. For that, we cast a ray toward the light source
in question and perform horizon visibility queries of the height field profile along the
light direction ray. If there are intersections of the height field profile with the light
vector, then there are occluding features and the point in question will be in
shadow. This process allows us to generate shadows due to the object features’
self-occlusions and object interpenetration.

20

Soft Shadows ComputationSoft Shadows Computation

• Simply determining whether the current feature is
occluded yields hard shadows

[Policarpo05]

While computing the visibility information, we could simply stop at the first
intersection blocking the horizon from the current view point. This yields the
horizon shadowing value specifying whether the displaced pixel is in shadow. Other
techniques, as seen in this picture, use this approach. This generates hard
shadows which may have strong aliasing artifacts as you can see in the high-
lighted portion

21

Soft Shadows ComputationSoft Shadows Computation

• Simply determining whether the current feature is
occluded yields hard shadows

• We can compute soft
shadows by filtering the
visibility samples during
the occlusion computation

• Don’t compute shadows for
objects not facing the light

N ● L > 0

In our algorithm, we continue sampling the height field along the light ray past the
first shadowing horizon until we reach the next fully visible point on the surface.
Then we filter the resulting visibility samples to compute soft shadows with smooth
edges. We optimize the algorithm by only performing visibility query for areas which
are lit by the given light source with a simple test.

22

Light
source

Penumbra Size ApproximationPenumbra Size Approximation

0.0

1.0

Light
vector

h1
h2

h3
h4

h5
h6

h0

h7
ws

Blocker

Surface

db
dr

wp

• The blocker heights hi allow us to
compute the blocker-to-receiver ratio•

wp = ws (dr – db) / db

We sample the height value h0 at the shifted texture coordinate toff. The sample h0 is
our reference (“surface”) height. We then sample n other samples along the light
ray, subtracting h0 from each of the successive samples hi . This allows us to
compute the blocker-to-receiver ratio as in figure.
We note that the closer the blocker is to the surface, the smaller the resulting
penumbra. We compute the the visibility coefficient by scaling the contribution of
each sample by the distance from the reference sample. We apply this visibility
coefficient during the lighting computation for generation of smoothly soft shadows.
In combination with bi- or trilinear texture filtering in hardware, we are able to obtain
well-behaved soft shadows without any edge aliasing or filtering artifacts present in
many shadow mapping techniques.

23

Illuminating the SurfaceIlluminating the Surface

• Apply material attributes sampled at the
offset corresponding to the displacement
point

• Any lighting model
is suitable

Since we have already computed the parallax offset, the shifted texture coordinates
toff and the visibility coefficient, in order to shade the current pixel, we can now
perform any lighting computation. For example, to compute Phong shading, we can
sample the normal map for the surface normal matching the extruded surface at
that location, sample the other associated maps (albedo, specularity, etc) and
compute the Phong illumination result using standard formulas.
Other illumination techniques are equally applicable.

24

Adaptive Level-of-Detail
System
Adaptive Level-of-Detail
System

• Compute the current mip map level

• For furthest LOD levels, render using
normal mapping (threshold level)

• As the surface approaches the viewer,
increase the sampling rate as a function of
the current mip map level

• In transition region between the
threshold LOD level, blend between the
normal mapping and the full parallax
occlusion mapping

We designed an explicit level-of-detail control system for automatically
controlling shader complexity. We determine the current mip map level
directly in the pixel shader and use this information to transition between
different levels of detail from the full effect to simple normal mapping. We
render the lowest level of details using regular normal mapping shading. As
the surface approaches the viewer, we increase the sampling rate for the
full parallax occlusion mapping computation as a function of the current mip
level. We specify an artist-directable threshold level where the transition
between the parallax occlusion mapping and the normal mapping
computations will occur. When the currently rendered surface portion is in the
transition region, we interpolate the result of parallax occlusion mapping
computation with the normal mapping result. We using the fractional part of
the current mip level computed in the pixel shader.
As you can compare between these two figures, there is no associated visual
quality degradation as we move into a lower level of detail and the transition
appears quite smooth.

25

ResultsResults

• Implemented using DirectX 9.0c shaders (separate
implementations in SM 2.0, 2.b and 3.0)

RGBα texture: 1024 x 1024,
non-contiguous uvs

RGBα texture: tiled 128 x 128

We use different texture sizes selected based on the desired feature resolution.
Notice perspective-correct depth rendering and lack of aliasing artifacts.
We found that depending on selected number of samples range and the size of
features in the normal / height map texture aliasing artifacts are possible, as our
linear search may miss features. However, in practice with a large selection of
texture maps we found this to be not the case.

26

Parallax Occlusion Mapping
vs. Actual Geometry
Parallax Occlusion Mapping
vs. Actual Geometry

An 1,100 polygon object rendered with
parallax occlusion mapping

A 1.5 million polygon object
rendered with diffuse lighting

We applied parallax occlusion mapping to an 1,100 polygon soldier character
displayed on the left.
We compared this result to a 1.5 million polygon soldier displayed on the right used
to generate normal maps for the low resolution model.
We use the same lighting model on both objects.

27

Parallax Occlusion Mapping
vs. Actual Geometry
Parallax Occlusion Mapping
vs. Actual Geometry

An 1,100 polygon object rendered with
parallax occlusion mapping (wireframe)

A 1.5 million polygon object
rendered with diffuse lighting
(wireframe)

We applied parallax occlusion mapping to an 1,100 polygon soldier character
displayed on the left.
We compared this result to a 1.5 million polygon soldier displayed on the right used
to generate normal maps for the low resolution model.
We use the same lighting model on both objects.

28

Parallax Occlusion Mapping
vs. Actual Geometry
Parallax Occlusion Mapping
vs. Actual Geometry

-1100 polygons with parallax occlusion Frame Rate:
mapping (8 to 50 samples used) - 255 fps on ATI

- Memory: 79K vertex buffer Radeon hardware
6K index buffer - 235 fps with skinning

13Mb texture (3Dc)
(2048 x 2048 maps)

Total: < 14 Mb

- 1,500,000 polygons with diffuse Frame Rate:
lighting - 32 fps on ATI Radeon

- Memory: 31Mb vertex buffer hardware
14Mb index buffer

Total: 45 Mb

We apply a 2048x2048 RGBα texture map to the low resolution object. We render
the low resolution soldier using DirectX on ATI Radeon X850 at 255 fps.
From 8 to 50 samples were used during ray tracing as necessary. The memory
requirement for this model was 79K for the vertex buffer and 6K for the index buffer,
and 13Mb of texture memory (we use 3DC texture compression).
The high resolution soldier model rendered on the same hardware at a rate of 32
fps. The memory requirement for this model was 31Mb for the vertex buffer and
14Mb for the index buffer.
However, using our technique on an extremely low resolution model provided
significant frame rate increase with 32Mb memory saving at comparable quality of
rendering. Notice the details on the bullet belts and the gas mask for the low
polygon soldier. We also animated the low resolution model with a run cycle using
skinning in vertex shader rendering at 235 fps on the same hardware.
Due to memory considerations, vertex transform cost for rendering, animation, and
authoring issues, characters matching the high resolution soldier are impractical in
current game scenarios.

29

Parallax Occlusion MappingParallax Occlusion Mapping

Demo

Implemented using DirectX 9.0c shaders (separate implementations in SM
2.0, 2.b and 3.0)

30

Difficult CasesDifficult Cases

The improvements to the earlier parallax occlusion mapping technique provide the
ability to render such traditionally difficult displacement mapping cases such as
raised text or objects with very fine features. In order to render the same objects
interactively with equal level of detail, the meshes would need
an extremely detailed triangle subdivision (with triangles being nearly pixel-small),
which is impractical even with the currently available GPUs.
This demonstrates the usefulness of the presented technique for texture-space
displacement mapping via parallax occlusion mapping.

31

– Higher precision height field – ray intersection computation
– Self-shadowing for self-occlusion in real-time
– LOD rendering technique for textured scenes

ConclusionsConclusions

• Powerful technique for rendering complex surface
details in real time

• Produces excellent lighting results

We have presented a novel technique for rendering highly detailed surfaces under
varying light conditions.
We have described an efficient algorithm for computing intersections of the
height field profile with rays with high precision.
We presented a algorithm for generating soft shadows during occlusion
computation.
An automatic level-of-detail control system is used by our approach to control
shader complexity efficiently.
A benefit of our approach lies in a modest texture memory footprint, comparable
to normal mapping. It requires only an grayscale texture in addition to the normal
map.
Our technique is designed to take advantage of the GPU programmable pipeline
resulting in highly interactive frame rates.
It efficiently uses the dynamic flow control feature to improve resulting visual
quality and optimize rendering speed.
Additionally, this algorithm is designed to easily support dynamic rendering to height
fields for a variety of interesting effects.
Algorithms based on precomputed quantities are not as flexible and thus are limited to the
static height fields

32

ConclusionsConclusions

• Efficiently uses existing pixel pipelines for highly
interactive rendering

• Powerful technique for rendering complex surface
details in real time

• Produces excellent lighting results

• Has modest texture memory footprint
– Comparable to normal mapping

• Supports dynamic rendering of height fields and
animated objects

We have presented a novel technique for rendering highly detailed surfaces under
varying light conditions.
We have described an efficient algorithm for computing intersections of the
height field profile with rays with high precision.
We presented a algorithm for generating soft shadows during occlusion
computation.
An automatic level-of-detail control system is used by our approach to control
shader complexity efficiently.
A benefit of our approach lies in a modest texture memory footprint, comparable
to normal mapping. It requires only an grayscale texture in addition to the normal
map.
Our technique is designed to take advantage of the GPU programmable pipeline
resulting in highly interactive frame rates.
It efficiently uses the dynamic flow control feature to improve resulting visual
quality and optimize rendering speed.
Additionally, this algorithm is designed to easily support dynamic rendering to height
fields for a variety of interesting effects.
Algorithms based on precomputed quantities are not as flexible and thus are limited to the
static height fields

33

ReferencesReferences

• [Blinn78] Blinn, James F. “Simulation of wrinkled surfaces”, Siggraph ’78
• [Max88] N. Max “Horizon Mapping: shadows for bump-mapped surfaces”,

The Visual Computer 1988
• [Sloan00] P-P. Sloan, M. Cohen, “Interactive Horizon Mapping”,

Eurographics 2000
• [Welsh04] T. Welsh, “Parallax Mapping with Offset Limiting: A Per Pixel

Approximation of Uneven Surfaces”, 2004
• [Wang03] L. Wang et al, “View-Dependent Displacement Mapping”,

Siggraph 2003
• [Doggett00] M. Doggett, J. Hirche, “Adaptive View Dependent

Tessellation of Displacement Maps”, Eurographics Hardware Workshop
2000

• [Kaneko01] Kaneko et al., “Detailed Shape Representation with Parallax
Mapping”, ICAT 2001

34

References (cont.)References (cont.)

• [Brawley04], Z. Brawley, N. Tatarchuk, “Parallax Occlusion Mapping:
Self-Shadowing, Perspective-Correct Bump Mapping Using Reverse
Height Map Tracing”, ShaderX3, 2004

• [Oliveira00] M. Oliveira et al, “Relief Texture Mapping”, Siggraph 2000

• [Policarpo05] F. Policarpo, M. M. Oliveira, J. L. D. Comba, “Real-Time
Relief Mapping on Arbitrary Polygonal Surfaces”, ACM Symposium on
Interactive 3D Graphics and Games, 2005

• [Yerex04] K. Yerex, M. Jagersand, “Displacement Mapping with Ray-
casting in Hardware”, Siggraph 2004 Sketch

• [Donnely05] W. Donnelly, “Per-Pixel Displacement Mapping with
Distance Functions”, GPU Gems2, 2005

35

AcknowledgementsAcknowledgements

• Zoe Brawley, Relic Entertainment

• Dan Roeger, Abe Wiley, Daniel Szecket and
Eli Turner (3D Application Research Group,
ATI Research) for the artwork

• 3D Application Research Group

36

Questions?Questions?

