ma tf\[Z ..":;: . ;.‘.;5' University

Data for real-time graphics

© 2005-2018 Josef Pelikan
CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Content

+ boundary representations, triangle meshes
* efficient CPU — GPU transfer

+ scene hierarchies
+ articulated hierarchy, skeleton

+ “Level of Detail” (LLoD)

* discrete and continuous LoD
* terrain LoD (height-map based)

+ billboards, imposters, point-sprites

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 2 /52

3D scene representation

+ in general there are more approaches ..
+ .. but in real-time graphics boundary representa-
tion (B-rep) is most popular
+ only object surface

* the simplest forms: triangle meshes or point-based
surfaces (colored 3D points)

+ geometry + topology
+ vertex coordinates + primitive assembly
+ vertices are shared among adjacent faces

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 3/52

Triangle mesh |

V] V2

\£ Fi Vi,Va4,Vs
\(v F, Vi,Va,Va

Vs ° F3 V2,V3,V;
‘ Fa VaVaVs

+ similar to a relational database

+ vertex table (V, ,vertex”), [edge table (E, ,edge”)],
face/triangle table (F, ,face”) are interconnected

* each entity can have additional attributes (vertex:
normal vector, color, .., face: texture, material, ..)

x,Y,Z,W
x,Y,Z,W
x,Y,Z,W
x,Y,Z,W
x,Y,Z,W

¢+ references = indices (int or uint)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 4/ 52

Triangle mesh |l

+ edges are rarely used (not in HW)

+ GPU-efficient data access:
+ pre-loaded vertex array (server-side “VBO”, “VAO”)
+ vertices are referenced by integer indices (“index buffer”)

* HW-friendly primitives: “triangle strips
“trlangle fans”

% @NS@

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 5/52

Smooth shape approximation

+ large number of triangles is often needed for a
good appearance

+ hundreds faces for a sphere, tens of thousands for a hu-
man body

+ shading techniques can help a little
+ color interpolation, normal vector interpolation

+ distant objects need not be in full detail !
* ... “Level of Detail” (LoD)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 6 /52

Smooth shape approximation

+ even this accuracy might not be sufficient
* see contours of these “smooth” solids

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 7/ 52

Hierarchies

+ scene consists of objects

® objects consist of components

— components consist of parts
» parts consist of ...

Hierarchical modeling is natural and efficient
* object/component databases to choose from

+ additional features:

— optional attributes associated with individual scene
nodes (inheritance, parameterization)

— relative transformation matrices (ancestor <> descen-
dant connection)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 8/52

Scene tree

Suitable for storage, net transfers (memory efficiency)
+ multiple references have to be unfolded in memory

T, (robot)

(head) m arm) arm) (leg) (leg)
Ty \Ts PR N R
(eye](eye] (shoulder) (elbow)l wrist |

PR TN
(thumb) (finger]) (fingerZ)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 9/ 52

Relative transformations

Scene leaf node (triangle mesh) is transformed into world
coordinates by a sequence of relative transformations

* matrix transformations are computed on a GPU

(robot)
v Ts
(arm)
\T7
(wrist)
\ T

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 10 / 52

Skeletal animation

+ “bone hierarchy” (perceived as coord-system hier.)

¢+ relative transformations — rotation relative to an an-
cestor + translation (matrix, quaternion): R.(t)

+ global translation (the whole object): T(t)

+ total transformation: n
M) =|11R.())T()
O i=1
T<t>\
Aj R3(t)
R, () R,(V)

oL

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 11/ 52

Level of detail (LoD)

Optimal rendering efficiency:

* details of distant objects (~pixel size) need not be
drawn

* the closest objects (and/or user focus) need the best
available visual quality

+ dynamic level of detail
+ rendering system adjusts individual rendering accuracy

+ global parameter definition (e.g. total approximate
number of drawn triangles)

+ advance data preparation: discrete LoD levels / continu-
ous LoD pre-processing..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 12 / 52

Discrete LoD

+ fixed LoD levels are prepared in advance
* shape approximations with different accuracy

+ can come from the finest model — generalization (can
be time consuming)

+ rendering — choosing appropriate LoD level:
¢ according to object-camera distance

+ according to bounding object projection size

— or even exact object projection — errors perpendicular to
viewing direction are most noticeable

* object importance, “player focus’, ..

+ global balancing (declared number of triangles to draw)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 13 /52

LoD transitions

+ simple switching o—
* hysteresis must be introduced !
(against unwanted “popping”)

+ blending neighboring LoD levels

¢ drawing both neighboring levels using transparency
— linear combination (blending, “transition”)

¢ another option
— current LoD level is opaque

— additional semitransparent new LoD (“over” a operation)
— “z-writing” enabled only for the current LoD level

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 14/ 52

Incremental LoD

+ reduce popping
® ~ continuous transition: number of elementary transit.
¢ time-consuming preparation

+ elementary operations on triangle meshes:

+ edge collapse (collapses two incident triangles as well)
— 1vertex is eliminated together with 3 edges, 2 triangles

* vertex split (inverse operation)
— new vertex + 3 edges, 2 triangles

® transition animation: remaining vertex <> edge center

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 15/ 52

Elementary operations |

+ edge collapse vs. vertex split:

edge collapse

om—

vertex split

* possibility of transition animation

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 16 / 52

Elementary operations |

+ one vertex can remain in its position:

half-edge
collapse

om—

vertex split

¢+ form of vertex removal (see later)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 17 / 52

Elementary operations Il

+ triangle collapse vs. vertex split:

Data 2018

triangle
collapse

om—

vertex split

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 18 / 52

Elementary operations IV

+ vertex removal vs. vertex add:
¢ re-triangulation of the polygon

vertex
removal

om—

vertex add

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 19 / 52

Cell collapse

+ grid of cells: all vertices sharing the same cell

will collapse into one (in the cell center)

+ induced topological changes

/S

=

AY4

[\

—

\

A\

N

 —

AN
]

\

7

P

/

N\\V '

<

/

Data 2018

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

cell
collapse

—>

(hierarchy .. octree)

N/
/1) /}\;
A/ \
R
\
//
o~
20 / 52

Generating LoDs

+ top-down approach

* based on the simplest shape representation (low-poly),
additional details are introduced

* less frequent (subdivision surfaces..)

+ bottom-up
+ starts with detailed (most accurate) model

* gradual simplification / generalization (data reduction)

+ various optimizations
* “finest” representation using fixed number of faces
+ global optimization is NP-complete

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 21/ 52

Optimization for creating LoDs .

+ w/o optimization (e.g. cell collapse)

+ “greedy” algorithms
¢ criterion function — error metric

+ all simplification possibilities are considered (many
evaluations of a metrics)

+ “lazy evaluation”
* greedy approach with reduced computation

+ after a local change neighborhood is marked as ”dirty”
but metrics is not recomputed yet ..

+ less nice results, but more efficient, ..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 22 / 52

Optimization for creating LoDs .

* “metric estimation”
® faster metric estimation

+ can be combined with lazy evaluation, three states:
— dirty (not re-computed)
— estimate (approximate value)
— exact value

+ independent simplification

+ set of independent elementary operations (do not
interfere, can be processed in parallel)

+ hierarchy - logarithmic number of levels (previous
methods were all linear)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 23 / 52

Error metrics

+ strictly 3D geometry based
* not accounted: view direction, projection parameters

+ based on projection (on result — “target driven”)
+ more efficient — directly connected to visual error
* contours are more important than shape interior

* considering changes in contrast texture mapping

+ attribute error metrics
+ color (frequently improperly interpolated)
+ normal vector (affects shading)
+ texture mapping

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 24 / 52

Concrete metrics |

+ vertex to vertex distance
* for cell collapse
* for approximation of more advances metrics

+ vertex to plane distance (SP — Ronfard, 1996)
v d=p-v=nxvx+nyvy+nzvz+D

* “supporting planes” (SP): in original mesh — planes
of all faces incident with the given vertex

+ edge collapse: SP of the new vertex = union of SPs of
the original vertices

¢+ maximum of all SP: Err = max (p - v)?

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 25 / 52

Concrete metrics I

+ quadric error (Garland & Heckbert, 1997)

Err=X(p-v)?=X VTQpV=VTQanV

? Qp symmetrical 4x4 matrix (10 different values) repre-
senting plane p

» quadrics (matrices) can be summed together (Q_;)

+ vertex to surface distance
+ complicated, can be simplified by surface sampling

+ surface to surface distance
® approaches: geometry, texture, bounding volumes, ..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 26 / 52

Constant frame rate |

+ elementary reducing operations (e.g. edge collapse)
+ elementary refining operations (e.g. vertex split)

» dynamic reducing (merge) and refining (split)
lists (based on chosen error metrics)

reducing list: the detail level is no more needed
2 higher priority (reduces fill-rate)

@ refining list: more detail is needed (appearance)
@ “temporal disjunction” with the reducing list

@ total data volume should be checked while processing
this list

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 27/ 52

Constant frame rate |l

+ possible multi-thread implementation

* thread #1: scene rendering and perhaps executing ac-
tual LoD operations (reducing, refining)

* thread #2: asynchronous list maintenance (metrics re-
computations, reducing/refining suggestions)

* thread #3 [optional]: rendering support, executing LoD
list operations

» feedback from rendering engine:
» fine-tuning metrics parameters
» total (maximal) number of triangles

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 28 / 52

Continuous LoD

+ Progressive meshes (Hugues Hoppe, 1996)

+ initial triangle mesh + sequence of elementary opera-
tions

* uses previously published optimization techniques

+ suitable for progressive data transfer (Internet) or ge-
ometry compression

+ View-dependent PM (Hugues Hoppe, 1997)
+ possibility of independent adaptive mesh refinement

* not based on pre-computed linear refinement sequence

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 29 / 52

Progressive Meshes |

+ elementary edge operations:

edge split

e

edge swap vertex split
~hedge collapse

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 30/ 52

Progressive Meshes I

+ triangle mesh representation

+» Initial mesh M o

» sequence of “vertex split” operations vs_, vs , ..

» each operation must store: [V_,V,,V ;A]

(reference to three old vertices* and attribute: positions
of two new vertices)

+ “geomorphs”
* possibility of transitional animation (one vs)

+ two new vertices are gradually “detaching” from the
original vertex

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 31/ 52

Progressive Meshes I

¥+ selective refinement

+ initial (current) mesh can be refined by using different
sequence Vs; ,VS. , ..

+ “out-of-order® operation can be executed if the three
relevant vertices (V_, V,, V) are already present

+ order of the refinement is controlled by a metrics
— e.g. visibility of a vertex or its presence in a object outline
polygon
+ if a critical place does not meet the “dependency” re-
quirement = consider induced refinements
— dependency graph can be too large..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 32 /52

View-dependent Refinement of PM |

+ selective systematic refinement based on PM

.-----"

v, v, V3
/"-x__—f--/“ \ "--/--x--.~‘
0

Vs : Vs Vs " Vo \‘ Vio Vi :
z/ \:' ,’_.'r-l-ﬂ‘\i \< .-.--YL-\J

’ \ I *
I Ve Vo 1 Viel [Vizl ol Viz| [Vis | 0 | Vial | Vis

x \ '

S G

Data 2018

refine ?

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 33 /52

View-dependent Refinement of PM Ii

+ currently displayed mesh form a graph-cut-like
set (“active vertices®)

¢ graph node = mesh vertex
* edge = “vertex split“ (opposite .. “edge collapse®)

+ local refinement of a drawing ... “cut” moves down
local reduction/generalization ... “cut” moves up

+ real-time rendering
» cyclic passing through active vertices
» evaluation: where a refinement/reduction is needed

» amortization: mesh update can be asynchronous (dedi-
cated thread)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 34 /52

Vertex hierarchy

+ pre-computed vertex hierarchy
* concept of a “proxy vertex"”

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 35/ 52

Terrain - Earth's surface

+ very extensive data

* USGS (U.S. Geological Survey): 1km net — 2 billion
triangles for the whole Earth's surface

+ other resolutions: up to 3m (1/9 arc second) !

+ regular topology
+ most frequently used (implementation simplicity)
® square or rectangular grid

* rarely — hexagonal grid (equilateral triangles)

+ triangular irregular network (“TIN”)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 36 /52

DEM example (from USGS)

National Elevation Dataset (NED)

A Coordinate conformance:
North American Datum 1983 (NADG83)

T, __‘*’;‘, Horizontal resolution:
' St A 1-arc-second (~30m)
1

F o

."
'
-
i

| 1/3-arc-second (~10m)
- 1/9-arc-second (~3m)

Vertical resolution:
Im

Binary data format:
single file covering 15x15-arc-min area

Pixel resolution (example):
105770 x 65098

http://nationalmap.gov/elevation.html

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 37/ 52

+ recursive subdivision of regular rectangular mesh
* 4g-way (quad-tree) or 2-way (bintree)

+ Quad-tree:

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 38 /52

Triangle bintree

+ isosceles right-angled triangles
+ contains T-vertices (just as quad-tree)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 39/ 52

Cracks and T-vertices

+ caused by different levels of subdivision

* crack can be eliminated by moving the vertex to the cen-
ter of the incident edge

+ T-vertex can still be problematic (color interpolation) ...
recursive induced subdivision of neighbors

crack

T-vertex —

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 40 / 52

Lindstrom 1996

+ algorithm based on triangle bintree (DEM)

+ initial most fine-grain terrain mesh
* metrics: projection of vertex shift to screen space (1px)

+ T-vertices eliminated by induced subdivision

+ compact representation: 32 bits per vertex (h, 6,

flags)
A

vertex shift

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 41/ 52

ROAM algorithm (Duchaineau 1997)

+ based on triangle bintree (needs not be DEM)

+ neighbor triangles with common hypotenuse are
merged/split

+ dynamic simplification and subdivision (screen error)
* priority split queue
+ priority merge queue

Split

>

-

Merge

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 42 / 52

Lindstrom & Pascucci 2001

+ simple approach independent on a metrics

+ regular square mesh (Digital Elevation Model)

+ hierarchical system — parent node is introduced
prior to descendant nodes (crack elimination)

Data 2018

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

43/ 52

Geometry Clipmaps (2004)

+ Losasso, Hoppe (2004)
+ built over a regular square mesh

+ hierarchical system a la “MIP-map*
* pre-computed coarse-grained levels

e efficient GPU implementation is possible:

+ base grid remains unchanged (VBO, virtualization ...
loading)

+ viewer position change = index-buffer change

+ relatively simple scheme based on viewer-terrain dis-
tance (pyramid)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 44 / 52

Geometry Clipmaps

o Pudt
=

e

Point sprites

3

+ point-like object is rendered using a small texture
(sprite)

¢+ {ransparency

+ applications: particle systems, point-based surfaces

+ texture mapped on a small rectangle parallel to the
projection plane

* point size is still used

* fragment shader receives coordinates of a fragment
within a point-sprite (gl_PointCoord)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 46 / 52

Billboards

+ “Billboard” — semitransparent texture showing
more complicated object/scenery

+ texture is usually mapped on a rectangle

+ often perpendicular to view direction

+ .. following the viewer — special transform matrix

+ rotation around vertical axis only (unsightly from above)

+ usage

¢ trees and bushes (even unoriented billboards & multi-
billboards)

* complex inscriptions, 2D graphics, HUD, lens flare..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 47 [52

Imposters

+ “Imposter” — billboard created dynamically (as nec-
essary) in a rendering engine

cache of complex scenery (not very dynamic)
complex object/scenery (geometric or color complexity)
for distant objects mostly

hierarchy, LoD, multiple instances of the (almost) same
object..

¢ ¢ ¢ &

+ technique: HW render-target textures (pbuffer)

+ trees, bushes
+ imposters might be oriented along main branches..

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 48 / 52

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 49 / 52

Examples Il

© Silvador Rapid (Blsim)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 50 /52

Sources

+ Tomas Akenine-Moller, Eric Haines: Real-time
rendering, 2™¢ edition, A K Peters, 2002, ISBN:
1568811829

+ D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Wat-
son, R. Huebner: Level of Detail for 3D Graphics,
Morgan Kaufmann, 2002, ISBN: 0321194969

* J.Zara, B. Benes, J. Sochor, P. Felkel: Moderni
pocditacova grafika, 2™ edition, Computer Press,
2005, ISBN: 8025104540

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 51/ 52

Sources
+ http://vterrain.org/LOD/Papers/

(Terrain LOD: Runtime Regular-Grid Algorithms)

+ http://research.microsoft.com/~hoppe/
(Hugues Hoppe — LoD methods)

+ http://www.geometrictools.com/
(Dave Eberly)

Data 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 52 /52

