e, TS Charles
matf\IZ ..;;..-..-"6. University

Advanced GPU techniques

© 2004-2018 Josef Pelikan, Jan Horacek
CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Content

+ advanced lighting
¢ environment maps
+ light maps, irradiance maps, refraction, bump-mapping

+ multi-pass algorithms
* buffers (stencil buffer, depth buffer, accumulate buffer)

+ shadow casting
+ “shadow buffers®, projected shadows, volume shadows

+ CSG rendering
+ non-photorealistic techniques

+ photorealism: BRDFs, sub-surface scattering, ...

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 2/83

Normal map (“bump-map®)

+ “bump-mapping”
* modulation of normal vector (originally from 3D model)

+ imitation of surface imperfections ... rough,
bumpy surface

+ data in regular 2D texture ("R* - R3%, “[s,t | 5> [N,
N,, N, %) - “normal map”

+ “tangent space”
+ axes: tangent T, normal N, binormal B

+ normal map contains “relative” data (normal vector in
tangent space) [N, N , N, |

— 1deal normal [0,1,0]

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 3/83

Normal map in tangent space

tangent space [T,N,B]
P R

dN

world space

> X

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 4/83

Tangent space

+ if there is no need of world space, we can transform all
relevant vectors to the tangent space (vertex process.)

* view vector, light vectors (“half vectors”), ..

+ lighting can be done in tangent space (= normal map
space)

+ or we must stay in world space
* because of some global techniques (“environment
map’)
* “tangent »> world” matrix could be interpolated
(orthogonality issues!?)

+ normal map values have to be transformed back to
the world space

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 5/83

Environment maps

+ concept

+ HW implements six-part texture — six faces of a cube
(“cube-mapping”)

+ addressing by 3D vector (needs not be normalized)

+ static or dynamic data (possibility of preprocessing)

+ popular use
+ perfect mirror reflection (“environment map*)

+ glossy reflection, diffuse component — simulations of
real lighting conditions

+ refraction of light
¢ combination with “bump-mapping”

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 6/83

“Cube-mapping"“

+ other utilization
+ 3D vector normalization, .

* gstorage of any computatlonally demanding functlon
(up to R3 — R3) for shaders

+ “environment mapping”
input 3D vector must be in world coordinate space
transform matrix “model - world® is needed

in shader languages there are support functions for re-
flection and refraction

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 7/ 83

Coordinate spaces

[s,1.0,t] s=Xx/y, t=2]y

N=BXT

world space

Y B

tangent space [T,N,B]
/ -

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 8/83

Enhanced lighting

+ diffuse component
* cube-map is addressed by the normal vector N
+ precomputed incoming light total (integral) using the
“cos a” factor

+ specular component
* exact representation of models with qualitative term
“COS B”
* cube-map is addressed by the reflected vector R
(“reflect()” in GLSL)

* pre-computed environment blur using the “cos™ p”
factor

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 9/83

Lighting-related maps

cos" B

world space

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 10/ 83

Refraction of light

+ simplified approach
* cube-map is addressed by the refraction vector T

+ usually the perfect (not blurred) environment image is
used

— we can use blurred environment “cos® y” as well

+ light dispersion can be simulated

+ variation of index of refraction for different wavelengths
¢ shared environment image

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 11/83

Multi-pass algorithms

+ 3D scene (or its part) is processed on GPU multi-
ple times

+ different GPU settings (buffer setting, depth-test,
stencil-test, rendering parameters)

+ different transformation matrix, projection
+ different shaders

+ data exchange/sharing between passes

¢ GPU buffers (frame buffer, depth-buffer, stencil buf-
fer, accumulation buffer, general-purpose buffers)

+ textures (shadow map, environment map, ...)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 12 / 83

Accumulation buffer, environment

+ accumulation buffer usage:
anti-aliasing

motion blur simulation

depth of field simulation

iterated scene pass with slightly different rendering set-
tings — transform (projection) matrix mostly

¢ ¢ ¢ &

+ dynamic computation of environment image:

¢ we want an animation to be reflected on other objects

* cube-map: we need to do scene rendering 6-times
— reduction based on animation specifics

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 13/ 83

Shadow casting

+ several approaches

+ sharp shadows (one pass)
+ soft shadows (more “passes”, accumulation of results)

+ single shadow-receiving plane
+ simple approach, not generally usable

+ shadow mapping
+ shadow “depth-buffer”, supported in HW

+ shadow volumes
* precise but very computationally intensive

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 14 /83

Shadow-receiving plane

+ sharp shadows ... point light source

+ use of stencil buffer and multiple scene passes
+ stencil prevents shadow duplication

+ simple algorithm
+ single shadow-receiving plane

* shadow could be opaque (destroying the original sur-

face color) or transparent (only reducing the amount
of light)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 15/ 83

Shadow casting to single plane .7

+ projection matrix (math sense of the word) from
3D world into shadow-receiving plane

shadow casters

™

flat shadow objects

shadow-receiver stencil
(stencil = 1)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 16 / 83

Shadow CaSting toa plane °o

+ procedure

1. the whole scene is rendered using ordinary projection
— shadow-receiver sets stencil to 1
— all the other objects zero this bit

2. all potential shadow-casters are rendered to the shad-
ow-receiving plane

— depth-test is off
— special transformation matrix
— shadows are drawn only to the (stencil==1) pixels

— if semi-transparent shadows are required, the first write
into the frame-buffer should also zero the stencil

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 17 / 83

1. scene is rendered from the light-source viewpoint

* no need to modify frame buffer, only depth-buffer has to
be updated

2. depth-buffer is moved into a texture (“shadow map”)
* regular projection according to the camera
+ use of projective texture coordinates

*+ GPU can test actual distance of a fragment from the light
source (in the world space) against the pre-computed val-
ue stored in the shadow-map texture:

float4 shadow = tex2Dproj(shadowMap, texCoordProj);

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 18 / 83

Shadow mapping

shadow
buffer

B
Z = dB < dA \\\

(shadow)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 19 /83

Shadow volumes

+ every shadow-caster casts an infinite “shadow vol-
ume” (shadow solid)

+ lateral faces of a shadow solid are considered, but
invisible, virtual quadrilaterals
+ virtual ray from the camera is tested against these faces

® GPU can rasterize the virtual faces and “draw” them into
the stencil buffer (no need to change frame buffer)

+ at the end stencil butfer values define shadows in the

scene
+ this has to be done separately for each point light
source

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 20 / 83

Shadow volumes |

+ common first phase: rendering of the real scene
* writing to the depth-buffer, lighting: “ambient”

+ shadow face is either front-facing or back-facing

¢ shadow volumes do not modify depth-buffer (but
are tested against it)

+ second phase: only lateral shadow volume faces are
rasterized:

* front-facing visible face increments the stencil
* back-facing visible face decrements the stencil

+ third phase: stencil==0 means “light”
¢ contribution of the light source is added

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 21/ 83

Shadow volumes |

AdvancedGPU 2018

{]

@ .
.00 , %o
'@ .. -

e *
'@°.... * XX
0. e: 20
@e°:-. e
0@ oi?
0o g
c0.9e®

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 23 / 83

Shadow volumes I

+ camera can be placed anywhere

+ shadow solid is perfectly sealed using “caps”: one is
formed by an illuminated part of an object, the second
one lies in infinity

+ second phase: lateral shadow faces and both “caps®

+ front-facing invisible face decrements the stencil
+ back-facing invisible face increments the stencil

+ third phase: stencil==0 means “light”
+ contribution of the light source is added

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 24 / 83

Shadow volumes |

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 25/ 83

Shadow volumes Il - correct

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 26 / 83

Vertices in infinity

+ lateral faces in the back “cap” need to have vertices
in infinity
+ more distant than any other objects in a scene
+ vertex projection [X, y, z, 1] to infinity: [X, y, z, O |

¢

+ projection matrix for value “far = o«

2n r+1 n t+b
4= p_I o 53
r—I r—1 {—b t—b
4 0 o0 o]
0 C 0 0
M —
(n,00,7r,1,t,b) 2 oh 1
0 0 —-2n 0

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 27 / 83

Projection to infinity

+ projection of an intrinsic point (including
homogeneous division):

fA—B,XC—D,l—EQ}

Z Z Z

x,y,z,1 |'M =

+ projection of an extrinsic point:

x,y,2,0]- M =

Z Z

ﬁA—B,lC—D,l}

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 28 / 83

Front face / back face

+ from the point of view of camera

* GPU can filter (“face cull®) according to vertex order
in NDS:

glEnable(GL_CULL_FACE);
glFrontFace(GL_CCW);
glCullFace(GL_BACK); // draw front faces only

+ from the point of view of light source
+ computed on CPU (normal vectors)

¢+ programmable GPU can help (vertex processing)

— elimination of incorrect primitives (degeneration, clipping)
— drawback: all potential primitives have to be sent to GPU

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 29 / 83

Face elimination techniques

+ there is no good way of canceling a primitive in
old-fashioned OpenGL
* geometry shader can do the job (clip-distance, cull-
distance /OpenGL >4.5/)

+ every primitive would be supplied with information
useful for the elimination

+ normal vector of the face

+ example of primitive elimination

+ all coordinates can be setto [2, 0, 0, 1] (outside of the
NDS frustum)

+ vertex sharing among primitives must not be used !

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 30/83

Face elimination example

front (lit)

back (in shadow)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 31/83

Shadow volume surface

+ infinite quadrangles projected from contour edges
of shadow solid

* “contours” according to light source (front / back faces)

+ iftheedge[x,y,,z,1]1-[X,,y,,Z,,1]1s on the con-
tour, infinite quad will be generated:
[X19 y1, ZI, 1]) [X2, yz) Z2, 1], [X2) y2, Z2> O]a [X1> yl) Zl) O]

+ contour edge decision on the GPU

+ every “edge” has additional 4 vertices (waste..)
+ normal vectors of two incident faces must be present

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 32/83

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 33/83

Soft shadows (occlusion interval maps)

+ special method for static scene and light source
moving along static curve

* e.g.: static exterier scene and the Sun

+ precomputed occlusion intervals for every surface
point in the scene!

+ indicator function for the light (dependent on time)

* time consuming (stochastic Ray-tracing — 256 rays/px)

+ result map stored in special texture (beginnings and
ends of time intervals)

+ soft shadows are interpolated in real-time on the GPU

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 34 /83

Occlusion intervals

+ light source is moving along a static path:

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 35/ 83

Blurring the occlusion map

+ to obtain soft shadows, original occlusion map
should be blurred (fragment shader on the GPU):

t, t, t ot t ot
dt

t
t, t, t ot t ot

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 36 /83

Efficient interpolation

+ beginnings (“R.” - rise) and ends (“F,” - fall) of the
intervals are stored separately in 2 textures:

1
Vi 8) = [V poind @) W (£ — 1)

V, (t) = Z; %°max(0, min(H—lEdt, Fl.)—max(t—%dt, R)))

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 37/83

Fragment shader for interpolation

+ R.and F; passed in two textures (up to 4 intervals)
+ “t-dt/2% “t+dt/2” and “1/dt" are uniforms
half softShadow (sampler2D riseTex,

sampler2D fallTex,
float2 texCoord,

uniform half intStart, // t-dt/2
uniform half intEnd, // t+dt/2
¢ uniform half intInvwidth) // 1/dt
half4 rise = h4tex2D(riseTex, texcCoord);
half4 fall = h4tex2D(fallTex, texCoord);
half4 minT = min(fall, inteEnd);
half4 maxT = max(rise, intStart);

return dot(intInvwidth, saturate(minT - maxT));

}

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 38/83

Results

© 2004, W. Donelly,
NVIDIA

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

CSG rendering on the GPU

+ elementary solids converted to polyhedra

+ set operations evaluated on the GPU:
¢ wunion is trivial (default depth-buffer based rendering)

¢+ intersection and subtraction: use of stencil buffer,
considering front vs. back faces

+ 1989: Goldfeather et al.

¢+ normalization of a CSG tree — decomposition to union
of “products” (intersections and differences)

+ implementation uses several depth-buffers and a
stencil buffer (needs to copy depth-buffers)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 40 / 83

Sequential convex subtraction

+ 2000: Stewart et al. — Sequenced Convex Subtraction
(“SCS*)
does not need depth-buffer copying, complex depth-tests
all elementary solids have to be convex
O(n) - intersection of n solids
O(m?) — difference of n solids (O(kn) limited occlusion)

v ¢ ¢ <&

+ algorithm phases

1. preprocessing (CSG normalization, sorting of subtrac-
tion sequences /front-to-back/)

2. depth-buffer processing (for every product + merge)
3. final rendering to frame-buffer

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 41/ 83

Intersection of n solids

+ Init: depth = near; stencil = 0;

+ passing through front faces of individual solids
if (front > depth) depth = front;

+ passing through back faces (occlusions)
if (back > depth) stencil++;

+ removing pixels with occlusion number < n
if (stencil < n)

{
stencil = 0;
y depth = far;

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 42 / 83

Intersection — example

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 43 /83

Subtracting sequences

+ determining correct subtracting sequence
+ front-to-end subtraction
* e.g. X— A — B isreplaced by universal X —-A—-B — A
+ A ,B,A is a correct universal subtracting sequence
* see “sequences containing all occlusion permutations®

+ subtracting from the front: passing all subtr. solids

if (front < depth) stencil 1;
else stencil 0;

+ every back-face is processed immediately as well

if (back > depth && stencil == 1)
depth = back;

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 44 / 83

< @° %o,
0@ [° . %,
. . .

Subtraction - step |

Advance dGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 45/ 83

Subtraction - step Il

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 46 / 83

Subtraction - step lil

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 47/ 83

Subtraction - result

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 48 /83

Completely subtracted parts

+ removing parts of common intersection, which
were eliminated completely:

+ 1Init: stencil = 0;

+ passing through all intersection solids (back faces
only — looking for empty results)

if (back < depth) stencil = 1;

+ elimination of completely subtracted parts

if (stencil == 1) depth = far;
stencil = 0;

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 49 / 83

Merging products & final rendering

+ product result = its "depth buffer”

+ merging results of one product (i.e. union operation)
if (depth < depth_..,) depth = depth;

tota total

+ final rendering
+ different logic for intersections and subtractions

+ intersected solid (for every pixel):
if (front == depth_. ..,) draw(front);

+ subtracted solid (for every pixel):
if (back == depth__.,) draw(back);

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 50 /83

Non-photorealistic rendering (NPR)

+ goal: results similar to human 2D graphics
contour emphasis

pen-and-ink drawing simulation (hatching)
imitation of painting techniques (oil, watercolor)

¢ ¢ ¢ ¢

“cartoon-style” shading

+ approaches (techniques)
+ special textures (coarse shading tones, ..)
+ procedural textures (fragment shader)
* post-processing (for specific painting techniques)
® + combinations

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 51/83

NPR examples

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 52 /83

Contours, silhouettes

+ very important for human vision system

+ Dborderline between front-facing and back-facing parts

+ often connected to a hatching system (emphasizing
curvature, slope of the surtace or just for shading)

* purely geometric information (for polyhedra)

+ contouring methods
* edges between front-faces and back-faces
+ discontinuities of the depth-buffer (post-processing)

* discontinuities (edges) in other output data (see de-
ferred shading, multiple output targets, ..)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 53/ 83

Simple contouring method

+ no need for explicit definition of contours

* solids have to be regular (closed)
® two phases

1. front-facing faces only
* no special rendering style
* using “depth-buffer”
* see “glEnable(GL_CULL_FACE)“, “glCul1Face()*

2. edges of back-facing faces only

+ more thick line (“gILinewidth()“) — contour lines will
stick out

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 54 /83

Image processing contours

+ post-processing of regularly rendered 3D scene
* source: depth buffer, normal map, combinations, ..

+ restricted Sobel filter works well (2 directions only):

1 0 -1 (1 2 1
S, =12 0 -2 S, =10 0 0
1 0 -1 -1 -2 -1

Edge ~ \/Hz—I—V2

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 55/ 83

Examples - depth and normals .

depth normal vector
discontinuity discontinuity

-

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 56 /83

Cartoon-style

+ light model similar to “Blinn-Phong® 1.0

* diffuse term “cos a“
* optional specular term “cos™ 3¢ 0.7

+ diffuse term indexes simple “ramp —
texture” 03

+ only small number of color tones
* no texture filtering for sharp outlines!

0.0
+ optional specular term with priority

* thresholding for white-color highlight

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 57/ 83

BRDF (local reflectance)

(“Bidirectional Reflectance Distribution Function®)
N Li(®)

/
V4
4 7
/
,/
< do.
1

OL.(w,)
L.(w,) cosd, 0w,

l

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 58/ 83

Example of more complex BRDF .

+ 1977: Lafortune introduces efficient reflectance
function representation using “lobes*

* based on term similar to “cos™ B¢
» a “lobe” is represented by a function “s(w,,0_)

+ lobe direction can be derived from incoming and re-
flected vector, “C” vector is used for the definition

+ tangent coordinate space [t,n,b] is used
* exponent “n“ defines lobe width

f(wi_)w0> — pd+zj ps,j.Sj<wi’(D0)

S((Dl-,(k)0> — (thi,two,t_l_cnwi,nwo,n_l_cbwi,bmo,b

n

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 59 /83

© 2004, David McAllister,
NVIDIA

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 60 / 83

Lobe orientations

+» C=C =-1,C =1
+ usual Phong lobe (rotated by 180° around normal)

» C.=C
+ isotropic BRDF (surface orientation does not matter)
» |C | <|C

¢ mnon-mirror specular maximum (closer to tangent)
+» C>0,C >0
+ back-reflection (see Oren-Nayar model)
+ sign(C,) +sign(C,)
+ anisotropic reflection (brush strokes, rifts, grinding)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 61/83

Implementation

+ reflection factors (~“albedo®) p are [R,G,B] triples
+ stored separately for each term (one texture per term)

+ four lobe parameters [C, C , C , n | in one texture
+ one to three lobes sufficient for realistic BRDF

+ environment map

¢ environment image can be blurred in pre-processing
phase, using exponent n = 0, 1, 4, 16, 64 and 256

* in different MIP-map levels or in a 3D texture

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 62 / 83

Ambient occlusion

+ constant “ambient term* is not good enough
¢ does not consider occlusion (even self-occlusion)
* “ridges” are equally lighted as “valleys”

+ pre-computed average (potential) contribution
of surround light to the surface point

AN

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 63 /83

Ambient occlusion example

© 2004, Matt Pharr,
Simon Green, NVIDIA

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 64 /83

Pre-processing: accessibility

+ for every surface point compute:

+ percentage of unoccluded rays from an environment
(self-occlusion elimination) - “accessibility coefficient”

* dominant light direction (“best lit from*) — “B*

* technique: Ray-tracing or special GPU computation

23%

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 65 /83

Accessibility map utilization

+ accessibility coefficient

* multiplication factor for ambient light approximation
(instead of the "k ,“ constant)

+ dominant vector “B*

* addressing for the “environment light map*
— map should be blurred in advance (“cos a“)

+ texture data are multiplied by the accessibility
coefficient as well

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 66 / 83

Accessibility example |

Phong shading Accessibility coefficient

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 67/ 83

Accessibility example Il (normals)

Model normals Average unoccluded ray B

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 68 /83

Accessibility example Ill (environment)

Phong shading Environment lighting

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 69 /83

Subsurface scattering

+ very important for “photo-realism*
¢ human skin (“Shrek 2%, “Finding Nemo*)
+ other transcluent materials (wax, milk, marble, amber,..)

+ precise implementation is very expensive (see
“Participating media” term in photorealistic graphics)

+ simplified approaches in real-time graphics
* “wrap lighting“ — lighting extends “around the corner*
* absorption simulation using “depth map”
¢ absorption computed in tangent space

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 70 / 83

Wrap lighting

+ naive method
+ ignores shape and thickness of the object
* does not try to compute light diffusion at all

+ modifies the diffuse term “cos a“ — extends its influ-
ence to adjacent not illuminated parts of the sur-
face (behind the “terminator”)

¢ simple linear transform of the dot product L-N
+ tint of the transition can be added (reddish for skin)

A
]
, COS X+ wrap
Diff = max| 0, ~ -
i (1 +wrap e 1
wrap

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 71/ 83

Wrap lighting example

Regular shading Light wrap Tinted wrap

© 2004 Simon Green,
NVIDIA

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 72 / 83

Absorption using depth-maps

+ HW-implemented “depth-map”
1. “depth-map” from the point of view of light source

2. solid thickness is known in render-time (fragment-
shader)

+ thickness is used for attenuation approximation

+ simple exponential dependency (can be cached in 1D

texture)
A

. 1 \
Scatter = C,,, - e~

>

0 dist

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 73 /83

o 0.

«@° ®e.,
@e . .
.......
o . .

.

Depth-map attenuation

2. regular view

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 74 / 83

02.06 o ®
o l-0a’ .)
o9::® ¢ . To

° . . . ®

Depth-map example

© 2004 Simon Green,
NVIDIA

-

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 75/ 83

Texture-space approaches

+ 1% pass: primary lighting, results are written to a tex-
ture [s, t] (see GPU technique “render targets™)

+ vertex shader must provide texture coordinates and
transform them into the NDS =[-1, 1]?

+ good quality parametrization of the surface !
+ fragment shader needs regular 3D coordinates as well

+ subsequent passes: light-map processing (digital
image filtering), computing capabilities ?

+ the last pass: regular rendering
+ light map is used as a texture

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 76 / 83

Light map

N

~_

2. light-map

T—

1. unwrap the surface

processing

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 77 / 83

Displacement mapping

+ concept by Ken Perlin (1989, “hypertexture®,
rendered using new “ray marching”“ method)
+ surface point position is modulated by a “displacement
function®
* actual modification of point position (vs. “bump map*)

+ fragment position is computed by "sphere tracing*”
(Hart 1996) — originally for implicit surfaces (point-
surface distance)

Distance volume implementation .7

+ ray casting in texture coordinates
+ 3D tangent space with unit = 1 texel
+ init: direction vector computation (“dir®)

+ “distance map“: each point receives distance to the
closest real-surface point (“R3 —- R%)

* pre-computation (Danielsson 1980 — O(n) time)

float3 dir = normalize(in.tanEyevec);
float3 texCoord = in.texCoord;

for (int 1 = 0; i < NUM_ITERATIONS; i++)
{

float dist = fltex3D(distanceTex, texCoord):
texcoord += dist * dir;

}

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 79 / 83

Finishing

+ after N iteration steps we have the result:

* the ray hitted the surface (normal vector, lighting, ..)

+ the ray missed the surface (completely transparent
fragment is returned)

— virtual “GPU geometry” should be bigger than simulated
shape

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 80 /83

Parallax mapping/occlusion example

© QMEGA, YouTube (from Skyrim)

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 81/83

Sources |

+ Tomas Akenine-Moller, Eric Haines: Real-time
rendering, 2™ edition, A K Peters, 2002, ISBN:
1568811829

+ Randima Fernando, Mark J. Kilgard: The Cg Tuto-
rial, Addison-Wesley, 2003, ISBN: 0321194969

¢ OpenGL ARB: OpenGL Programming Guide, 4™
edition, Addison-Wesley, 2004, ISBN: 0321173481

+ ed. Randima Fernando: GPU Gems, Addison-Wes-
ley, 2004, ISBN: 0321228324

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 82 /83

Sources |l

+ William Donelly: Generation Soft Shadows Using
Occlusion Interval Maps, GPU Gems, Ch 13

+ FEric Lafortune et al.: Non-Linear Approximation
of Reflectance Functions, SIGGRAPH 1997

+ David McAllister: Spatial BRDFs, GPU Gems, Ch 18

+ Matt Pharr, Simon Green: Ambient Occlusion, GPU
Gems, Ch 17

+ Simon Green: Real-Time Approximations to
Subsurface Scattering, GPU Gems, Ch 16

AdvancedGPU 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 83/ 83

