Content

Homogeneous coordinates, matrix transformations
 – coordinate-system conversions

Coordinate systems, projections, frustum

Orientations
 – Euler angles, quaternions
 – orientation interpolation

Smooth interpolations and approximations
 – spline functions, natural spline, B-spline
 – Hermite-type interpolations
 – KB spline, Catmull-Rom…
Geometric transformations in 3D

Cartesian 3D coordinate vector \([x, y, z]\)

Multiplying by a \(3\times3\) matrix

- **row** vector multiplied **from the right** (DirectX)

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = \begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
\]

- **column** vector multiplied **from the left** (OpenGL)

Transform matrices \(3\times3\) have serious drawback – **cannot do translations!**
Homogeneous coordinates

Homogeneous coordinate vector \([x, y, z, w]\)

Transformation: multiplying by a \(4\times4\) matrix

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix}
\]

Homogeneous matrix is able to do translations and perspective projections
Coordinate conversions

From **homogeneous coordinates** \([x, y, z, w]\) into Cartesian coordinates: by division (\(w \neq 0\)) \([x/w, y/w, z/w]\)

Coordinate vector \([x, y, z, 0]\) does not correspond to any real point in space

- can be interpreted as a **directional vector** (point in infinity)

From **Cartesian coordinates** to homogeneous: trivial extension \([x, y, z] \ldots [x, y, z, 1]\)
Elementary transformations

Affine transformation

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & 0 \\
 a_{21} & a_{22} & a_{23} & 0 \\
 a_{31} & a_{32} & a_{33} & 0 \\
 t_1 & t_2 & t_3 & 1
\end{bmatrix}
\]

Upper left submatrix \([a_{11} \text{ to } a_{33}]\) defines scaling, orientation and shear

Vector \([t_1, t_2, t_3]\) defines translation

- translation is performed as the last step
Normal vector transformation

Normal vectors must not be transformed by regular matrices (like point positions are)
- exception: M is rotational (orthonormal)

Normal-vector transformation matrix N:

\[
N = (M^{-1})^T
\]
Coordinate systems in OpenGL

- **Object space** (object modeling)
 - \([x, y, z, w]\)

- **Eye space** (camera space)

- **Modeling transform** (scene composition)

- **View transform** (camera position & view)

- **Projection transform** (perspective/orthographic)

- **World space** (simulation)

- **Clip space** (frustum = homo cube)
Coordinate systems in OpenGL

Clip space (frustum = homo cube)

Perspective divide (hardwired)

Normalized Device Space (frustum = cartesian cube)

Viewport transform (3D scaling & translation)

Window space (actual pixel coords)

[latex] [x, y, z, w] \rightarrow [x, y, z] \rightarrow \text{viewport transform} \rightarrow [x, y, z] \rightarrow [x, y, z] \rightarrow \text{clip space} \rightarrow \text{perspective divide} \rightarrow \text{normalized device space} \rightarrow \text{window space}\[/latex]

OpenGL: [-1, -1, -1] to [1, 1, 1]

DirectX: [-1, -1, 0] to [1, 1, 1]

[x, y] actual screen coordinates (fragments)

z depth value compatible with actual depth-buffer
Coordinate systems in OpenGL

Object space
- modeling of individual objects, modularity
- 3D modeling software (3DS Max, Blender, Rhino…)

World space
- absolute (real) coordinates in simulated virtual world
- object instantiation, collision detection, AI planning…

Camera space
- the whole virtual world transforms into coordinates relative to a camera
- center of projection: origin, view direction: -z (or z)
Coordinate systems & transformations

Transformation “model → camera”
- altogether – “model-view” matrix
- world coordinates are not directly used in rendering pipeline

Projection transformation
- defines visible volume = frustum [l, r, b, t, n, f]
- front & back clip distances: n, f
- result: homogeneous coordinate (before clipping)

“Clip space”
- mandatory output coordinate of vertex shader!
Projection transform (perspective)

Far point f can be in infinity

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2n}{t-b} & 0 & 0 \\
\frac{r+l}{r-l} & \frac{t+b}{t-b} & \frac{f+n}{f-n} & 1 \\
0 & 0 & \frac{-2fn}{f-n} & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{2n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2n}{t-b} & 0 & 0 \\
\frac{r+l}{r-l} & \frac{t+b}{t-b} & 1 & 1 \\
0 & 0 & \frac{-2n}{0} & 0
\end{bmatrix}
\]
Coordinate systems & transforms

Perspective division

– just converts homogeneous coordinates into cartesian

Normalized coordinates (“NDS”)

– standard-sized cube/cuboid
– OpenGL: \([-1, -1, -1]\) to \([1, 1, 1]\)
– DirectX: \([-1, -1, 0]\) to \([1, 1, 1]\)

Window coordinates (“window space”)

– result of linear adjustment to window size in pixels
– used in rasterizer and all fragment processing
Rigid body transformation

Preserves shapes, alters orientation & position

- translation and rotation
- conversion between coordinate systems (e.g. between world-space and camera-space)

left-handed = clockwise (“pravotočivý” in Czech)
Conversion between two orientations

Coordinate system has an origin O and is defined by three unit vectors $[s, t, u]$

$$M_{stu \rightarrow xyz} = \begin{bmatrix} s_x & s_y & s_z \\ t_x & t_y & t_z \\ u_x & u_y & u_z \end{bmatrix}$$

$$M_{xyz \rightarrow stu} = M_{stu \rightarrow xyz}^T$$

$$[1, 0, 0] \cdot M_{stu \rightarrow xyz} = s$$

$$[0, 1, 0] \cdot M_{stu \rightarrow xyz} = t$$

$$[0, 0, 1] \cdot M_{stu \rightarrow xyz} = u$$
Euler transformation

Arbitrary rotation decomposed into three components

- Leonard Euler (1707-1783)

\[E(h, p, r) = R_y(h) \cdot R_x(p) \cdot R_z(r) \]

h (head, yaw): plan view direction
p (pitch): forward/backward pitching
r (roll): rolling around the view vector
Euler transformation II

Result matrix of rotation

\[
E = \begin{pmatrix}
 c(r)c(h) - s(r)s(p)s(h) & s(r)c(h) + c(r)s(p)s(h) & -c(p)s(h) \\
 -s(r)c(p) & c(r)c(p) & s(p) \\
 c(r)s(h) + s(r)s(p)c(h) & s(r)s(h) - c(r)s(p)c(h) & c(p)c(h)
\end{pmatrix}
\]

s(x) \ldots \sin(x), \ c(x) \ldots \cos(x)

Backward matrix \rightarrow angles computation h, p, r

- p \ldots e_{23}
- r \ldots e_{21}/e_{22}
- h \ldots e_{13}/e_{33}
Rotations: different conventions

Main convention
- 1. rotation around z by φ
- 2. rotation around x' by θ
- 3. rotation around z'' by ψ

X-convention
- 1. rotation around z
- 2. rotation around original x
- 3. rotation around original z

More systems (24): aeronautics, gyroscopes, physics…
Quaternions

Sir William Rowan Hamilton, 16 Oct 1843 (Dublin)
- $i^2 = j^2 = k^2 = ijk = -1$
- usage in graphics since 1985 (Shoemake)
- generalization of complex numbers in 4D space

$q = (v, w) = i x + j y + k z + w = v + w$ sometimes $(w, v)!$

Imaginary part $v = (x, y, z) = i x + j y + k z$

$i^2 = j^2 = k^2 = -1, \ jk = -kj = i, \ ki = -ik = j, \ ij = -ji = k$
Quaternions: operations I

Addition

\[-(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)\]

Multiplication

\[-q r = (v_q \times v_r + w_r v_q + w_q v_r, w_q w_r - v_q \cdot v_r)\]

\[
i(q_y r_z - q_z r_y + r_w q_x + q_w r_x),
\]

\[
j(q_z r_x - q_x r_z + r_w q_y + q_w r_y),
\]

\[
k(q_x r_y - q_y r_x + r_w q_z + q_w r_z),
\]

\[
q_w r_w - q_x r_x - q_y r_y - q_z r_z
\]
Quaternions: operations II

Conjugation
- \((v, w)^* = (-v, w)\)

Norm (squared absolute value)
- \(||q||^2 = n(q) = q q^* = x^2 + y^2 + z^2 + w^2\)

Unit
- \(i = (0, 1)\)

Reciprocal
- \(q^{-1} = q^* / n(q)\)

Multiplication by a scalar
- \(s q = (0, s) (v, w) = (s v, s w)\)
Unit quaternions

Every unit quaternion \((x^2 + y^2 + z^2 + w^2 = 1)\) can be expressed as

- \(q = (u_q \sin \phi, \cos \phi)\)
- for some unit 3D vector \(u_q\)

It represents a rotation (orientation) in 3D

- ambiguity: both \(q\) and \(-q\) represent the same rotation! \((\phi + \pi)\)
- identity (zero rotation): \((0, 1)\)

Power, exponential, logarithm

- \(q = u_q \sin \phi + \cos \phi = \exp (\phi \ u_q), \quad \log q = \phi \ u_q\)
- \(q^t = (u_q \sin \phi + \cos \phi)^t = \exp (t\phi \ u_q) = u_q \sin t\phi + \cos t\phi\)
Rotation using a quaternion

Unit quaternion

- $\mathbf{q} = (u_q \sin \phi, \cos \phi)$
- u_q ... axis of rotation, ϕ ... angle

Vector (point) in 3D: $\mathbf{p} = [p_x, p_y, p_z, 0]$

Rotation of vector (point) \mathbf{p} around u_q by angle 2ϕ

$$\mathbf{p}' = \mathbf{q} \mathbf{p} \mathbf{q}^{-1} = \mathbf{q} \mathbf{p} \mathbf{q}^*$$
Quaternion ↔ matrix conversions

Quaternion \mathbf{q} converted to a matrix

$$
\mathbf{M} = \begin{bmatrix}
1 - 2(y^2 + z^2) & 2(xy + wz) & 2(xz - wy) \\
2(xy - wz) & 1 - 2(x^2 + z^2) & 2(yz + wx) \\
2(xz + wy) & 2(yz - wx) & 1 - 2(x^2 + y^2)
\end{bmatrix}
$$

Reverse conversion is based on equations

$$
egin{align*}
m_{23} - m_{32} &= 4wx \\
m_{31} - m_{13} &= 4wy \\
m_{12} - m_{21} &= 4wz \\
\text{tr } \mathbf{M} + 1 &= 4w^2
\end{align*}
$$

($)$
Matrix → quaternion II

1. “matrix_trace+1” has large enough absolute value

\[w = \frac{1}{2} \sqrt{\text{tr} M + 1} \quad x = \frac{m_{23} - m_{32}}{4w} \]
\[y = \frac{m_{31} - m_{13}}{4w} \quad z = \frac{m_{12} - m_{21}}{4w} \]

2. … otherwise compute a component with largest absolute value first and then apply $\$

\[4x^2 = 1 + m_{11} - m_{22} - m_{33} \]
\[4y^2 = 1 - m_{11} + m_{22} - m_{33} \]
\[4z^2 = 1 - m_{11} - m_{22} + m_{33} \]
Spherical linear interpolation (slerp)

Two quaternions \(q \) and \(r \) \((q \cdot r \geq 0, \text{ else take } -q)\)

Real parameter \(0 \leq t \leq 1 \)

Interpolated quaternion

\[
\text{slerp}(q, r, t) = q \left(q^* r \right)^t
\]

\[
\text{slerp}(q, r, t) = \frac{\sin(\phi(1-t))}{\sin \phi} \cdot q + \frac{\sin(\phi t)}{\sin \phi} \cdot r
\]

\[
\cos \phi = q_x r_x + q_y r_y + q_z r_z + q_w r_w
\]

The shortest spherical arc
between \(q \) and \(r \)
(quaternion splines will be explained later)
Rotation between two vectors

Two vectors \(s \) and \(t \)

1. normalization of \(s, t \)

2. unit rotation axis

\[u = \frac{(s \times t)}{||s \times t||} \]

3. angle between \(s \) and \(t \)

\[e = s \cdot t = \cos 2\phi \]

\[||s \times t|| = \sin 2\phi \]

4. final quaternion

\[q = \left(u \cdot \sin \phi, \cos \phi \right) \]

\[q = (q_v, q_w) = \left(\frac{1}{\sqrt{2(1+e)}}(s \times t), \frac{\sqrt{2(1+e)}}{2} \right) \]
Slerp of rotational matrices (theory)

Two rotational matrices Q and R

Real parameter $0 \leq t \leq 1$

Interpolated matrix $\text{slerp}(Q, R, t) = Q (Q^T R)^t$

Technical problem – how to do power operation on matrices?

Need to compute axis and angle $Q^T R$
(not very efficient)

See “RotationIssues.pdf” for details (D. Eberly)
Rotation representation – summary

Rotational matrix
+ HW support, efficient point/vector transformation
– memory (float[9]), other operations are not so efficient

Rotational axis and angle
+ memory (float[4] or float[6]), similar to quaternion
– inefficient composition and interpolation

Quaternion
+ memory (float[4]), composition, interpolation
– inefficient point/vector transformation

See “RotationIssues.pdf” for details (D. Eberly)
Approximation and interpolation

Approximation (e.g. B-spline)
- needs not to pass through control points

Interpolation (e.g. Catmull-Rom)
- curve passes through control points

Curve continuity
- G^n – geometric continuity of the n^{th} order (G^0 – simple continuity, G^1 – tangent, G^2 – curvature…)
- C^n – analytical continuity of the n^{th} order, n^{th} derivative continuity (C^1 – speed, C^2 – acceleration), superior to geometric continuity
History

Curves in modeling industry

- Paul de Faget de Casteljau, Citroën (1959)
- Pierre Bèzier (Renault 1933-1975, UNISURF)
 » late start, but his results were more popular
- application of spline function theory – mostly in USA (James Ferguson, 1964, Boeing, C^2 spline curves)

Spline function theory

- B-spline: Isaac Jacob Schoenberg, (ballistics, Aberdeen, MD, 1946)
- theory: Carl de Boor (also worked for General Motors)
- Gordon, Riesenfeld united Bèzier and B-spline curves (1972)
“Free-form“ curves I

Defined by a sequence of control points
- “control polygon”
- approximation or interpolation
- boundary conditions can be different

Controllability
- sometimes tangent vectors added in control points (Hermit)
- interpolation \rightarrow closer control

Locality
- change of single control point (one tangent vector) induces change in a restricted neighborhood only
“Free-form” curves II

Parametric expression \((0 \leq t \leq 1)\)

\[P(t) = \sum_{i=0}^{N-1} w_i(t) P_i \]

Convex hull property
- curve lies in convex hull of its control polygon

Cauchy condition for blending functions
- sufficient for convex hull property
- ensures affine transformation invariancy

\[\sum_{i=0}^{N-1} w_i(t) = 1 \]
Splines

© Jay Greer

© Edson International
Spline functions

Named after elastic ruler used in ship design (pinned in several points by “ducks”)

Definition: **spline function of degree n**
- piece-wise **polynomial** (of degree n)
- **maximum-smoothness connection:**

C^{n-1} – continuity of n-1th derivative (polynomial of degree n)

- **global parametrization** u, \(u_0 \leq u \leq u_N \) \[u_0, u_1, \ldots u_N \]
- individual parts are often uniformly parametrized – **uniform spline**

\[t_i = (u - u_i) / (u_{i+1} - u_i), \quad 0 \leq t_i \leq 1 \]
Polynomial curve

Matrix notation

\[P(t) = TC = [t^n, t^{n-1}, \ldots, t, 1] \cdot \begin{bmatrix} x_n & y_n & z_n \\ x_{n-1} & y_{n-1} & z_{n-1} \\ \vdots & \vdots & \vdots \\ x_1 & y_1 & z_1 \\ x_0 & y_0 & z_0 \end{bmatrix} \]

Basis matrix \(M \) and vector of geometric conditions \(G \)

\[C = MG = \left[m_{ij} \right]_{i=n, j=1}^{0, k} \cdot \begin{bmatrix} G_1 \\ \vdots \\ G_k \end{bmatrix} \]

\[P(t) = TMG \]
Matrix notation of a curve

\[P(t) = T \ C = T \ M \ G \]

- separation of a parameter vector \((T)\) from polynomial basis \((M)\) and geometric control conditions/points \((G)\)
- differentiation (tangent, curvature) restricted to \(T\)
- control polynomial \(TM\) times “geometry” \(G\)

Cubic: \(n = 3, \ k = 4\)

\[
Q(t) = \begin{bmatrix} t^3, t^2, t, 1 \end{bmatrix} \cdot \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} \cdot \begin{bmatrix} G_1 \\ G_2 \\ G_3 \\ G_4 \end{bmatrix}
\]
Hermite cubic curve

Ferguson curve (cubic)

Geometry: endpoints and tangent vectors

- beginning \((P_0)\) and end \((P_1)\) of a curve
- tangents in beginning \((T_0)\) and ending \((T_1)\) points

\[
F(t) = [t^3, t^2, t, 1] \cdot \begin{bmatrix} 2 & -2 & 1 & 1 \\ -3 & 3 & -2 & -1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_0 \\ P_1 \\ T_0 \\ T_1 \end{bmatrix}
\]
Hermite cubic – examples
More curves

Interpolating cubics derived from Hermite
- general: **Kochanek-Bartels** (KB-spline, TCB cubic)
- special: **cardinal** spline, **Catmull-Rom** spline
- **Akima** interpolation ("Akima spline", not C^2)
- **D-spline** cubic

Another popular curves
- **Bèzier** curves
- **B-spline** curve, **Coons** spline (approximation)
- **natural** spline (interpolation)
Kochanek-Bartels cubic (KB-spline, TCB)

Derived from Hermite cubic (3DS Max, Lightwave)

- **tangent vectors** are derived from control points
- three additional scalar parameters (**zero** by default)
 - **“tension”** t: sharpness of a curve passing control point (absolute value of a tangent vector)
 - **“continuity”** c: in control points
 - **“bias”** b: tangent direction in control point

Left and **right** tangent (T_0 and T_1 in local sense):

\[
L_i = \frac{(1-t)(1-c)(1+b)}{2} \cdot (P_i - P_{i-1}) + \frac{(1-t)(1+c)(1-b)}{2} \cdot (P_{i+1} - P_i)
\]

\[
R_i = \frac{(1-t)(1+c)(1+b)}{2} \cdot (P_i - P_{i-1}) + \frac{(1-t)(1-c)(1-b)}{2} \cdot (P_{i+1} - P_i)
\]
Cardinal spline, Catmull-Rom spline

Special cases of KB-spline

cardinal spline
- parameter a only (in fact relates to “t”, $c = b = 0$)

$$T_i = a \cdot (P_{i+1} - P_{i-1}) \quad 0 \leq a \leq 1$$

Catmull-Rom spline
- $a = t = 1/2$

$$T_i = \frac{1}{2} \cdot (P_{i+1} - P_{i-1})$$

$$MG = \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_{i-1} \\ P_i \\ P_{i+1} \\ P_{i+2} \end{bmatrix}$$
Akima interpolation

Alternative definition of **tangent vectors** for Hermite cubic:

- **non-\(C^2\)!**

\[
\begin{align*}
\text{P}_{i-2} & & \text{P}_{i-1} \\
\text{P}_i & & \text{P}_{i+1} \\
\text{P}_{i+2} & & \\
\end{align*}
\]

\[
\text{A}_i & & \text{B}_i & & \text{C}_i \\
\text{T}_i & & \\
\end{align*}
\]

\[
| \text{T}_i | = | \text{P}_{i+1} - \text{P}_{i-1} |
\]
D-spline cubic

One more variant of Hermite cubic

- tangent vector computed by the “D-interpolation”

\[
P_i - P_{i-1} = \frac{T_{i+1} - T_i}{b_{i-1} - b_i}
\]

\[
P_i + P_{i+1} = \frac{T_i - T_{i-1}}{b_i - b_{i-1}}
\]
Bèzier curves I

Polynomial curve of degree N
- N+1 control points
 » boundary control points define endpoints of a curve
 » boundary control-point pairs define tangent vectors
- parametric expression using Bernstein polynomials
- easy G^1 or C^1 connection
- spline-join is also possible, but much more complicated

Bernstein polynomials:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i} \quad 0 \leq i \leq n, \ 0 \leq t \leq 1$$
Bèzier curves II

Cauchy condition

⇒ convex combination of control points

\[\sum_{i=0}^{n} B_i^n(t) = 1 \quad \text{for} \quad 0 \leq t \leq 1 \]

\[MG = \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} P_0 \\ P_1 \\ P_2 \\ P_3 \end{bmatrix} \]
Joining Bézier curves I

G^1 connection (co-linear tangents)

\[
\overrightarrow{P_3 P_4} = k \cdot \overrightarrow{P_2 P_3}
\]
Joining Bèzier curves II

C^1 connection (equal tangent vectors)

$$\overrightarrow{P_3 P_4} = \overrightarrow{P_2 P_3}$$
Joining Bèzier curves III

Quadratic spline from Bèzier segments

$$P_1 \rightarrow P_2 = P_2 \rightarrow P_3 \quad P_3 \rightarrow P_4 = P_4 \rightarrow P_5 \quad \ldots \quad P_{2k-1} \rightarrow P_{2k} = P_{2k} \rightarrow P_{2k+1}$$
Joining Bèzier curves IV

Cubic spline from Bèzier segments

\[\overrightarrow{P_2 P_3} = \overrightarrow{P_3 P_4} \]
\[\overrightarrow{P_5 P_6} = \overrightarrow{P_6 P_7} \]
\[\ldots \]
\[\overrightarrow{P_{3k-1} P_{3k}} = \overrightarrow{P_{3k} P_{3k+1}} \]
De Casteljau (de Boor) algorithm

Geometric construction of Bèzier curve

- used as “subdivision” scheme or for computation of a specific point...
Using [S]LERP operation

Linear interpolation LERP (SLERP for quaternions)

\[\text{LERP}(A, B, t) = A \cdot (1 - t) + B \cdot t \]

Cubic Bèzier

\[Q_i = \text{LERP}(P_i, P_{i+1}, t) \]
\[R_i = \text{LERP}(Q_i, Q_{i+1}, t) \]
\[S_i = \text{LERP}(R_i, R_{i+1}, t) \]
[S]LERP for quadratic interpolation

Quadratic Bèzier

\[Q_i = \text{LERP}(P_i, P_{i+1}, t) \]

\[R_i = \text{LERP}(Q_i, Q_{i+1}, t) \]
Cubic spline

Function assembled from **cubic polynomials**
- neighbor polynomials have C^2 joint
- elastic “spline-ruler” (see construction)

Interpolating cubic spline
- in knot points $x_0, x_1, \ldots x_n$ function values $y_0, y_1, \ldots y_n$ are prescribed

$$S(x) = S_k(x) = s_{k,0} + s_{k,1}(x-x_k) + s_{k,2}(x-x_k)^2 + s_{k,3}(x-x_k)^3$$
$$x \in [x_k, x_{k+1}], \quad k = 0, 1, \ldots, n-1$$

Condition A:
$$S(x_k) = y_k \quad k = 0, 1, \ldots, n$$
Interpolating cubic spline

Condition B (C^0 continuity):

$$S_k(x_{k+1}) = S_{k+1}(x_{k+1}) \quad k = 0, 1, \ldots, n-2$$

Condition C (C^1 continuity):

$$S_k'(x_{k+1}) = S_{k+1}'(x_{k+1}) \quad k = 0, 1, \ldots, n-2$$

Condition D (C^2 continuity):

$$S_k''(x_{k+1}) = S_{k+1}''(x_{k+1}) \quad k = 0, 1, \ldots, n-2$$

Natural cubic spline has an additional condition **E**:

$$S''(x_0) = S'''(x_n) = 0$$
Natural cubic spline

Interpolating spline

- **uniquely determined** by the conditions (solution of linear system of equations \(s_{k,l} \))
- **has no local property** (the whole curve changes after altering one control point)

Open spline

- conditions \(A, B, C, D \) are not sufficient, two more DoF
- additional condition \(E \) (second derivatives at endpoints)

Closed (cyclic) spline: \(x_0 = x_n \)

- \(C \) and \(D \) give us missing conditions for \(x_0 \)
B-spline (basis spline)

“Free-form” curve

- shape is defined by a sequence of control points
- parametric form using basis/blending functions (dependency of a curve point on control polygon)
- local property (only local change after altering one CP)

Uniform cubic B-spline (Coons curve)

- unified set of basis functions (cubic polynomials)

Nonuniform B-spline

- more complicated definition using knot vector \([t_i \])_i \quad 0 \leq t_i \leq 1
Coons B-spline

- continuity C^2
- sharing 3 CP between neighbours
- altering one CP induces change in closest 4 segments

\[MG = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_{i-1} \\ P_i \\ P_{i+1} \\ P_{i+2} \end{bmatrix} \]
Spline interpolation of quaternions

Subsequent interpolation by a sequence of orientations
\[q_0, q_1, \ldots q_n \]
- \(\text{slerp}(q_i, q_{i+1}, t) \) has not sufficient continuity (\(C^0 \) only)

\[\text{slerp}(a, b, t) = \text{slerp}(\text{slerp}(p, q, t), \text{slerp}(a, b, t), 2t(1-t)) \]

\[\text{squad}(p, a, b, q, t) = \text{slerp}(\text{slerp}(p, q, t), \text{slerp}(a, b, t), 2t(1-t)) \]

\[s_i(t) = \text{squad}(q_i, a_i, b_i, q_{i+1}, t) \]

\[a_i = b_{i-1} = q_i \exp\left[-\frac{\log(q_i^{-1}q_{i-1}) + \log(q_{i+1}^{-1}q_i)}{4}\right] \]
Literature

http://www.geometrictools.com/ (Dave Eberly)