
Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18

Shadow casting

© 1996-2017 Josef Pelikán

 CGG MFF UK Praha

 pepca@cgg.mff.cuni.cz

 http://cgg.mff.cuni.cz/~pepca/

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 2 / 18

Methods
 multiple visibility computation

– visibility from a light source's viewpoint, proper
shadow representation, common visibility algorithm

– shadow buffer (shadow depth-buffer)

 shadow volumes
– shadow is a 3D solid, need for intersection computation
– shadow solid can be represented by a BSP

 direct shadow computation
– scanline methods (scene lit from above)
– ray-based rendering (ray-tracing, path-tracing)

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 3 / 18

Shadow buffer (shadow map)
 depth-buffer from a lightsource viewpoint

– only depths will be used (z[x,y] matrix)

 common visibility for regular scene rendering
– pixel-oriented algorithm
– for every displayed 3D point (pixel) there is world-space

distance to the point light source d
– in projection plane we already have z = z[x,y]
– if z < d, current pixel is in shadow (there was different

3D point closer to the light source)

➨ neighbours in z[x,y]  better shadow accuracy

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 4 / 18

Shadow-buffer (shadow map)

 shadow
 buffer

A

B

z = dA

z = dB < dA

(shadow)

z

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 5 / 18

Shadow volumes

shadow
volume

 object face intersects
 shadow volume side

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 6 / 18

Shadow volumes
 shadow solid representation options:

➨ set of polyhedra
– only side faces are needed
– regular faces are processed in front-to-back order

according to light source
– individual shadow “cones“ must be joined at the end

➨ BSP-representation of shadow volume
– BSP-representation of regular faces
– we add virtual faces defined by the light source and lit

object edges

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 7 / 18

Volumetric shadows
 every lit object casts infinite shadow (set of shadowed

points = “shadow volume“)

 side faces of a shadow volume are invisible (virtual)
infinite quadrangles
– ray from the camera to a rendered point is tested against

such faces
– GPU can rasterize these virtual faces into a “stencil buffer”

and use this buffer for realtime shadowing..

 stencil buffer defines lit and shadowed part of a
scene
– the whole process must be iterated for more light sources

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 8 / 18

Volumetric shadows I
 common first phase – regular visible scene is drawn

– depth-buffer is updated, lighting is set to “ambient”

 (virtual) side faces of a shadow body – forward or
backward
– virtual faces do not update depth-buffer (but are tested

against it!)

 second phase – only virtual faces are processed:
– forward visible face increments stencil value
– backward visible face decrements stencil value

 third phase – lit parts of the scene have zero stencil
value (contribution of the light source must be added)

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 9 / 18

Shadow volumes I

1

+1
+1

+1
+1

-1

1

1

0

0

 0 … light

 1 … shadow

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 10 / 18

Shadow volumes I - flaw

-1

0

 0 … light

 1 … shadow

0

-1

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 11 / 18

Shadow volumes II
 camera can be anywhere (even in a shadow)

– shadow volume are perfectly closed by “caps”
– one additional “cap” is a lit part of an object, the second

one is in infinity

 second phase – virtual side faces and “caps” are
processed
– forward invisible face decrements stencil value

– backward invisible face increments stencil value

 third phase – lit parts of the scene have zero stencil
value (contribution of the light source must be added)

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 12 / 18

Shadow volumes II

1

+1
+1 +1

+1
-1

1

1

0

0

 0 … light

 1 … shadow

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 13 / 18

Shadow volumes II – correct

+1

 0 … light

 1 … shadow

0

1+1

1

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 14 / 18

 side faces and “caps” have infinite vertices
– more distant from a camera than anything else

 projection of [x, y, z, 1] to infinity: [x, y, z, 0]

 projection matrix with value far = ∞:

Vertices in infinity

A =
2n
r−l

B =
r l
r− l

C =
2n
t−b

D =
tb
t−b

M n ,∞ , r , l , t , b = [
A 0 0 0
0 C 0 0

−B −D 1 1
0 0 −2n 0

]

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 15 / 18

 projection of regular 3D point (including w-
division):

 projection of infinite (extrinsic) point:

Projection of infinite points

[x , y , z , 1]⋅M = [xz A−B ,
y
z
C−D , 1 −

2n
z]

[x , y , z , 0]⋅M = [xz A−B , yz C−D , 1]

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 16 / 18

Scanline algorithm
➨ 3D scene lit from above

– the same direction as scanline order

➨ potentially shadowers (edges) are projected to
currently rendered face
– these edges were already processed (or are currently

processed)
– only lit edges (parts) are used

 further improvement (Bouknight a Kelley, 1970)
– preprocessing (projection froma a light source) gives us

an estimate, which are able to shadow at all

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 17 / 18

Scanline algorithm

 current line

Shadows 2017 © Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 18 / 18

References

 J. Foley, A. van Dam, S. Feiner, J. Hughes:
Computer Graphics, Principles and Practice,
745-753

 Jiří Žára a kol.: Počítačová grafika, principy a
algoritmy, 361-363

