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Bicubic Bezier patch
Py =|%ipVipzi|  p_ Po
P=[R,,
Pluv)=Bu'-P-BV
Bt =[Bd(t],
B,(1) = (3] t{1-9*

Bernste_in P, D ° o
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Bernstein polynomials

+ B,(t) are nonnegative cubic polynomials for
k=0..3 and 0<t<1

¢ Zk B,(t) =1 for arbitrary t

— Cauchy's condition (affine invariance)

- if B,(t) are used as weight coefficients (linear

blending), result will be in a convex hull of input
data (control polygon vertices in this case)

— B,(t) are blending coefficients of a convex combination
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Ray vs. Bézier patch intersection .7

¢ after converting a bicubic Bezier patch to implicit form
we've got an algebraic surface of the 18™ degree !

— 18™ degree polynomial to solve

e B(uv)=P,+t- B: is an algebraic system, three
equations for three quantities: t, u, v

— can be solved using 3D Newton iteration (converges
only in a relatively small interval)
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Ray vs. Bezier patch Il

* system of 2 algebraic equations for 2 quantities u, v:
— t can be eliminated from the previous system

— let ray be intersection of two planes, planes vs. Bezier
pach are examined

— solution by a 2D Newton iteration

F(uv) =0
Fy(uv) =0
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3D “Newtonian” iteration

B(u,,v)

~

Ray X tangent plane
V( uk,vk) — %: uk,vk) intersection: t,,, u’, v’

tangent plane in B(u,,v,)

_ OB
U i Vi) = 20t vid ket = Uy + U
Vk+1 — Vk + V'
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Bezier patch subdivision

* one Bezier patch B(u,v) [0 <u,v<1] can be divided
into four smaller ones:
By(u,v) [0 u,v <1/2]
B, (uyv) [0<u<1/2,1/2<v<1]
B, (u,v) [1/2<u<1,0<v<1/2]
B,,(uyv) [12< uyv <1]

= new control points can be computed using recursive
algorithm of P. de Casteljau

— only addition and dividing by two is used in this case!
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De Casteljau subdivision (2D)

IntBezier 2018
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Algorithm ideas

* we are looking for the closest intersection of the ray
with the set of Bezier patches

* every Bezier patch lies inside a convex hull of its
control points

— we will store bounding box of every patch (x
ymin? ymax’ Zmin? Zmax)

X

min? ““max’

= relevant patch will be subdivided as long as it is
intersected by a ray and too large to start the
Newtonian iteration in it

— criterion: small surface curvature
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Bounding boxes

PO
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Algorithm outline

9 intersected bounding boxes are maintained in the
order of the intersection (front-to-back) .. heap

® the closest bounding box is selected: if it has proper
(low) curvature, the Newtonian iteration is started in
it. If an actual intersection is found, it is placed into the
result set.

— the whole algorithm ends if the closest intersection is
closer that the closest unprocessed patch (box)

© the closest patch with high curvature is divided into
four parts, they are reinserted into the list (heap)

— go back to @
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