mat f\[Z ;‘:: . :.;' University
.

Ray X Bezier surface
intersection

© 1996-2018 Josef Pelikan
CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
http://cgg.mff.cuni.cz/~pepca/

Bicubic Bezier patch
Py =|%ipVipzi| p_ Po
P=[R,,
Pluv)=Bu'-P-BV
Bt =[Bd(t],
B,(1) = (3] t{1-9*

Bernste_in P, D ° o
polynomials 31 32

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 2 /12

20:0'0'0
o
o @
=0

Bernstein polynomials

+ B,(t) are nonnegative cubic polynomials for
k=0..3 and 0<t<1

¢ Zk B,(t) =1 for arbitrary t

— Cauchy's condition (affine invariance)

- if B,(t) are used as weight coefficients (linear

blending), result will be in a convex hull of input
data (control polygon vertices in this case)

— B,(t) are blending coefficients of a convex combination

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 3/12

Ray vs. Bézier patch intersection .7

¢ after converting a bicubic Bezier patch to implicit form
we've got an algebraic surface of the 18™ degree !

— 18™ degree polynomial to solve

e B(uv)=P,+t- B: is an algebraic system, three
equations for three quantities: t, u, v

— can be solved using 3D Newton iteration (converges
only in a relatively small interval)

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 4 /12

Ray vs. Bezier patch Il

* system of 2 algebraic equations for 2 quantities u, v:
— t can be eliminated from the previous system

— let ray be intersection of two planes, planes vs. Bezier
pach are examined

— solution by a 2D Newton iteration

F(uv) =0
Fy(uv) =0

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 5/ 12

3D “Newtonian” iteration

B(u,,v)

~

Ray X tangent plane
V(uk,vk) — %: uk,vk) intersection: t,,, u’, v’

tangent plane in B(u,,v,)

_ OB
U i Vi) = 20t vid ket = Uy + U
Vk+1 — Vk + V'

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 6/12

00:0'8'
.......

Bezier patch subdivision

* one Bezier patch B(u,v) [0 <u,v<1] can be divided
into four smaller ones:
By(u,v) [0 u,v <1/2]
B, (uyv) [0<u<1/2,1/2<v<1]
B, (u,v) [1/2<u<1,0<v<1/2]
B,,(uyv) [12< uyv <1]

= new control points can be computed using recursive
algorithm of P. de Casteljau

— only addition and dividing by two is used in this case!

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 7 /12

De Casteljau subdivision (2D)

IntBezier 2018

original curve

© Josef Pelikan, http://cgg.mff.cuni.cz/~pepca

2" part

8/12

Algorithm ideas

* we are looking for the closest intersection of the ray
with the set of Bezier patches

* every Bezier patch lies inside a convex hull of its
control points

— we will store bounding box of every patch (x
ymin? ymax’ Zmin? Zmax)

X

min? ““max’

= relevant patch will be subdivided as long as it is
intersected by a ray and too large to start the
Newtonian iteration in it

— criterion: small surface curvature

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 9/12

<@° %o,

Bounding boxes

PO

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 10/ 12

Algorithm outline

9 intersected bounding boxes are maintained in the
order of the intersection (front-to-back) .. heap

® the closest bounding box is selected: if it has proper
(low) curvature, the Newtonian iteration is started in
it. If an actual intersection is found, it is placed into the
result set.

— the whole algorithm ends if the closest intersection is
closer that the closest unprocessed patch (box)

© the closest patch with high curvature is divided into
four parts, they are reinserted into the list (heap)

— go back to @

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 11/ 12

20:0'0'0
B
o @
=0

References

A. Glassner: An Introduction to Ray Tracing,
Academic Press, London 1989, 99-102

J. Foley, A. van Dam, S. Feiner, J. Hughes:

Computer Graphics, Principles and Practice, 507-
528

IntBezier 2018 © Josef Pelikan, http://cgg.mff.cuni.cz/~pepca 12 /12

