
Point-Based Global Illumination
for Movie Production

Per Christensen

Pixar Animation Studios

SIGGRAPH 2010 Course

Overview

• Point-based global illumination
– generating direct illumination point cloud

– rendering GI using point cloud

• Examples of use in movies

• Variations and extensions

• What’s next?

Related work

• Method is inspired by Bunnell’s point-based
GPU method

• Related to clustering radiosity and point-
based subsurface scattering

Point-based global illumination

• Fast, low memory, no noise

• Handles complex geometry (including
dense polygon meshes, hair, leaves,
displacement), many light sources,
complex surface shaders, ...

• Movie-production friendly

• Part of Pixar’s RenderMan renderer

Point-based global illumination

• Three steps:

• Generate point cloud of directly
illuminated surface colors (radiosity)

• Organize points into octree; larger
points and spherical harmonics

• Render: compute diffuse/glossy
global illumination at each shading
point

A point cloud

• Each point: position, normal, radius, color
= a colored disk

• Terminology: “point” or “disk” or “surfel”?

point cloud
point cloud

Generate point cloud

• Render direct illumination image

• Generate point cloud file at same time

point cloud, 560K points (various views)rendered image

Generate point cloud

• Point cloud files from “Up”

key light fill lights

Organize points into octree

• Organize points into octree

• Each cluster of points is represented
by a larger point or a spherical
harmonic representation of directional
light distribution

Compute global illum at a point

• Basic idea: add up color from all other
points!

Compute global illum at a point

• For efficiency: use cluster of points for
distant points

• For higher accuracy: ray trace close
points

Compute global illum at a point

• Problem: if all points are added up, even
points “hidden” behind other points will
contribute

Compute global illum at a point

• Solution: rasterize colors contributing to
a point -- world “as seen” by that point

• Raster cube examples:

point on teapot lidpoint on ceiling

Compute global illum at a point

• Multiply all raster pixel colors by
reflectance function (BRDF); add

• Result is diffuse / glossy reflection at
point

Global illumination result

direct illum (9 sec) direct illum + diffuse GI +
glossy GI (21 sec)

Use in movies

• Implemented in Pixar’s RenderMan

• Integrated into lighting pipeline at ILM,
Pixar, Disney, DNeg, MPC, ...

Use in movies

• Pirates of the Caribbean 2 & 3, Eragon, Surf’s Up,
Spiderman 3, Harry Potter 5 & 6, Chronicles of
Narnia, Fred Claus, Beowulf, Spiderwick
Chronicles, Ironman 1 & 2, Indiana Jones, 10,000
BC, Batman: Dark Knight, Quantum of Solace,
Cloverfield, Doomsday, Hellboy 2, Inkheart, Wall-E,
Bolt, Star Trek, Terminator 4, The Boat that
Rocked, Fast & Furious 4, Angels and Demons,
Night at the Museum, Up, Transformers 2, 2012,
Sherlock Holmes, Percy Jackson, The Green Zone,
Prince of Persia, Toy Story 3, ...

Sony: “Surf’s Up” ambient occlusion

“Surf’s Up” test (Courtesy of Rene Limberger, Sony)

ILM: Davy Jones

“Pirates of the Caribbean: Dead Man’s Chest”
(Courtesy of Industrial Light & Magic)

(Courtesy of Dale Mayeda, Disney)

Disney: special effects on “Bolt”

“Up” example without global illum

“Up” example with global illum

“Up” example without global illum

“Up” example with global illum

“Toy Story 3” examples

“Toy Story 3” examples

“Toy Story 3” examples

“Toy Story 3” examples

“Toy Story 3” examples

“Toy Story 3” examples

Variations and extensions

• Area light sources

• Environment illumination

• Multiple light bounces

• Final gather for photon maps

• Ambient/directional/reflection occlusion

• Volumes

Area light sources + soft shadows

• Treat area light sources the same as
surfaces: generate point cloud with color
data

• Light sources can have arbitrary shape and
colors

• Also write (black) points for shadow-casting
objects

Area light sources + soft shadows

area light illumination

area lights

Environment illumination -- IBL

• Use environment color for raster pixels not
covered by points

HDRI env map

raster cube

Multiple light bounces

• Run the algorithm n times

• (For efficiency: first n-1 times can be
computed at fewer points)

n = 0 n = 1 n = 2 n = 3

Final gather for photon mapping

• Final gather step is usually done with ray
tracing; slowest part of photon mapping

• Use point-based method instead

Final gather for photon mapping
direct illum

photon map

radiance est

pt-based GI

Special case: Ambient occlusion

• Fraction of hemisphere above a point
that’s covered

• Similar to shadows on overcast day

• Values between 0 and 1

Ambient occlusion

• Generate point cloud with only position,
normal, radius (no colors)

Ambient occlusion

Ambient occlusion (and reflections)

NEW: Image-based relighting

• In addition to ambient occlusion, also
compute directional visibility: spherical
harmonic coeffs. at each point

• Compute SH coeffs for environment map

• (Re-)rendering is just multiplying SH
coefficients -- 9 or 25 mults/point. Fast!

NEW: Image-based relighting

Special case: reflection occlusion

• As ambient occlusion, but narrow cone of
directions (around reflection direction)

Global illumination in volumes

• Points don’t have normals: spheres,
not disks

• Illumination from all directions: entire
raster cube

• surface volume

• volume volume

Global illumination in volumes

surface to volume volume to volume

Optimization: interpolation

• If the color bleeding varies only a little in
an area (<2%), we simply interpolate it

• Technique known from ray tracing
(“irradiance cache”)

Optimization: interpolation

• Compute color bleeding at the 4 corners of
surface patch

• Is the difference between 4 values small?
– yes: interpolate on patch

– no: split patch in 2; recurse

surface patch

Parallel computation

• Global illumination at each point is
independent

• Ideal for parallel execution

• Observed speedups:
– 4 cores: ~3.6

– 8 cores: ~6.6

More information

• M. Bunnell, “Dynamic ambient occlusion
and indirect lighting”, GPU Gems 2

• P. Christensen, “Point-based approximate
color bleeding”, Pixar tech memo #08-01

• T. Ritschel et al, “Micro-rendering for
scalable, parallel final gathering”,
SIGGRAPH Asia 2009

Summary

• Point-based diffuse and glossy global
illumination is fast and can handle complex
production scenes

• Also works for area lights, env. map
illumination, multiple bounces, ambient
occlusion, reflection occlusion, volumes

• In Pixar’s RenderMan

• Widely used in production

What’s next?

• “Up” and “Toy Story 3”: 1-bounce PBGI was
used in addition to all the traditional lights

• Next:
– reduce number of traditional lights?

– multiple bounces?

What’s next?

• Implementation improvements:
– improved accuracy in rasterization?

– baking micropolygon grids?

– GPU implementation?

Acknowledgments

• RenderMan team: Dana Batali, ...

• Mike Bunnell, Rene Limberger, Christophe
Hery

• Pixar: Max P, P Sumo, JC, Stefan, Guido, ...

• Dale Mayeda (Disney), Philippe Leprince
(DNeg), Anders Langlands (MPC), ...

Thanks!

Questions?

