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Bicubic Bezier patch
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Bernstein polynomials

B, (t) are nonnegative cubic polynomials

for k=0...3 and 0<t< 1

2, B, (t) =1 for arbitrary t

— Cauchy's condition (affine invariance)

If B,(t) are used as weight coefficients (linear blending),

result will be in a convex hull of input data (control polygon
vertices in this case)

- B, (t) are blending coefficients of a convex combination
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Ray vs. Bezier patch intersection

After converting a bicubic Bezier patch to implicit form we've
got an algebraic surface of the 18" degree!

— 18" degree polynomial to solve

B(u,v) =P, +t |_o'1 is an algebraic system, three equations for
three quantities: t, u, v

— can be solved using 3D Newton iteration (converges only in a
relatively small interval)
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Ray vs. Bézier patch Il

System of two algebraic equations for two quantities u, v
— t can be eliminated from the previous system

— let ray be intersection of two planes, planes vs. Bezier patch
are examined

— solution by a 2D Newton iteration
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3D “Newtonian” iteration
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Bezier patch subdivision

One Bézier patch B(u,v) [0<u,v<1] can be divided into
four smaller ones

By (uv) [0 u,v <1/2]

B,,(uv) [0Su<1/2,1/2<v<1]

B, ,(uv) [1/2<u<1,0<v<1/2]

B,,(uv) [1/2< u,v <1]

New control points can be computed using recursive
algorithm of P. de Casteljau

— only addition and dividing by two is used in this case!
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De Casteljau subdivision (2D)
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Algorithm ideas

We are looking for the closest intersection of the ray with the
set of Bezier patches

Every Bezier patch lies inside a convex hull of its control points

— we will store bounding box for every patch (x_.,x__,y .,y __,
Z

min/ Zmax)

Relevant patch will be subdivided as long as it is intersected by
a ray and too large to start the Newtonian iteration in it

— criterion = small surface curvature

RayBézier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 9/12



Bounding boxes
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Algorithm outline

O Intersected bounding boxes are maintained in the order of the
intersection (front-to-back) ... heap

® The closest bounding box is selected - if it has proper (low)
curvature, the Newtonian iteration is started in it. If an actual
intersection is found, it is placed into the result set

— the whole algorithm ends if the closest intersection is closer that
the closest unprocessed patch (box)

© The closest patch with high curvature is divided into four parts,
they are re-inserted into the list (heap)

— go backto @
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