‘e Computer
ic

i Graphi
00 “%e Charles
s, @ University
matfyz o

Ray vs. Bezier Surface
Intersection

© 1996-2020 Josef Pelikan
CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

Bicubic Bezier patch

P; =:xij’yij’zij] Poo P
3
P = Pii] i,j=0

s =B BB
B4 =[Bk(t)]i=o o

@
on P
4= 119 |
Bernstein
i P ®
polynomials 30 b
31

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 2/12

Bernstein polynomials

B, (t) are nonnegative cubic polynomials

for k=0...3 and 0<t< 1

2, B, (t) =1 for arbitrary t

— Cauchy's condition (affine invariance)

If B,(t) are used as weight coefficients (linear blending),

result will be in a convex hull of input data (control polygon
vertices in this case)

- B, (t) are blending coefficients of a convex combination

RayBézier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 3/12

Ray vs. Bezier patch intersection

After converting a bicubic Bezier patch to implicit form we've
got an algebraic surface of the 18" degree!

— 18" degree polynomial to solve

B(u,v) =P, +t |_o'1 is an algebraic system, three equations for
three quantities: t, u, v

— can be solved using 3D Newton iteration (converges only in a
relatively small interval)

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 4/12

Ray vs. Bézier patch Il

System of two algebraic equations for two quantities u, v
— t can be eliminated from the previous system

— let ray be intersection of two planes, planes vs. Bezier patch
are examined

— solution by a 2D Newton iteration

RayBézier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 5/12

3D “Newtonian” iteration

B(u,, v)

tangent plane in B(u,, v,)

V(e Vi) = 25w i

Ut vid) = G5 Ui vid

- !
U, 1 = U+ U
\,k+g|== \,k +‘\,’

Ray x tangent plane
intersection: t,_.,u’, v’

RayBézier 2020

© Josef Pelikan, https://cgg.mff.cuni.cz/~pepca

6/12

Bezier patch subdivision

One Bézier patch B(u,v) [0<u,v<1] can be divided into
four smaller ones

By (uv) [0 u,v <1/2]

B,,(uv) [0Su<1/2,1/2<v<1]

B, ,(uv) [1/2<u<1,0<v<1/2]

B,,(uv) [1/2< u,v <1]

New control points can be computed using recursive
algorithm of P. de Casteljau

— only addition and dividing by two is used in this case!

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 7/12

De Casteljau subdivision (2D)

00.0
?,-.-o-.' o,

original curve

00 1% part

2" part

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca

8/12

Algorithm ideas

We are looking for the closest intersection of the ray with the
set of Bezier patches

Every Bezier patch lies inside a convex hull of its control points

— we will store bounding box for every patch (x_.,x__,y .,y __,
Z

min/ Zmax)

Relevant patch will be subdivided as long as it is intersected by
a ray and too large to start the Newtonian iteration in it

— criterion = small surface curvature

RayBézier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 9/12

Bounding boxes

PO

// Q, Q,,

/' Q,, N

Q,| /

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 10/12

Algorithm outline

O Intersected bounding boxes are maintained in the order of the
intersection (front-to-back) ... heap

® The closest bounding box is selected - if it has proper (low)
curvature, the Newtonian iteration is started in it. If an actual
intersection is found, it is placed into the result set

— the whole algorithm ends if the closest intersection is closer that
the closest unprocessed patch (box)

© The closest patch with high curvature is divided into four parts,
they are re-inserted into the list (heap)

— go backto @

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 11/12

Literature

A. Glassner: An Introduction to Ray Tracing, Academic
Press, London 1989, 99-102

J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer
Graphics, Principles and Practice, 507-528

RayBezier 2020 © Josef Pelikan, https://cgg.mff.cuni.cz/~pepca 12/12

