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Bicubic Bèzier patch
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Bernstein polynomials

Bk(t) are nonnegative cubic polynomials

for  k = 0…3  and  0 t 1

k Bk(t) = 1  for arbitrary t

– Cauchy's condition (affine invariance)

If  Bk(t)  are used as weight coefficients (linear blending), 
result will be in a convex hull of input data (control polygon 
vertices in this case)
– Bk(t) are blending coefficients of a convex combination
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Ray vs. Bèzier patch intersection

After converting a bicubic Bèzier patch to implicit form we've 
got an algebraic surface of the 18th degree! 
– 18th degree polynomial to solve

B(u,v) = P0 + t · p1  is an algebraic system, three equations for 
three quantities:  t, u, v
– can be solved using 3D Newton iteration (converges only in a 

relatively small interval)
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Ray vs. Bèzier patch II

System of two algebraic equations for two quantities u, v
– t can be eliminated from the previous system
– let ray be intersection of two planes, planes vs. Bèzier patch 

are examined
– solution by a 2D Newton iteration
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3D “Newtonian” iteration
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Bèzier patch subdivision

One Bèzier patch  B(u,v)  [ 0 u, v 1 ]  can be divided into 
four smaller ones
B00(u,v)   [ 0 u, v  1/2 ]
B01(u,v)   [ 0 u 1/2, 1/2 v 1 ]
B10(u,v)   [ 1/2 u 1, 0 v 1/2 ]
B11(u,v)   [ 1/2 u, v  1 ]

New control points can be computed using recursive 
algorithm of  P. de Casteljau
– only addition and dividing by two is used in this case!
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De Casteljau subdivision (2D)
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Algorithm ideas

We are looking for the closest intersection of the ray with the 
set of Bèzier patches

Every Bèzier patch lies inside a convex hull of its control points
– we will store bounding box for every patch (xmin, xmax, ymin, ymax, 

zmin, zmax)

Relevant patch will be subdivided as long as it is intersected by 
a ray and too large to start the Newtonian iteration in it
– criterion = small surface curvature
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Bounding boxes
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Algorithm outline

 Intersected bounding boxes are maintained in the order of the 
intersection (front-to-back) … heap

 The closest bounding box is selected – if it has proper (low) 
curvature, the Newtonian iteration is started in it. If an actual 
intersection is found, it is placed into the result set
– the whole algorithm ends if the closest intersection is closer that 

the closest unprocessed patch (box)

 The closest patch with high curvature is divided into four parts, 
they are re-inserted into the list (heap)
– go back to 
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