
RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 1 / 12

Ray vs. Bèzier Surface
Intersection

© 1996-2020 Josef Pelikán
 CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 2 / 12

Bicubic Bèzier patch

P01 P02P00

P23

P13

P03P12

P22

P32
P33

P11

P21

P31

P10

P20

P30

 P x y zij ij ij ij , ,

  


Pij i j, 0

3

     P u v u vT,    

     t B tk k


0

3

   B t k t tk
k k 


  3 1 3

Bernstein
polynomials

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 3 / 12

Bernstein polynomials

Bk(t) are nonnegative cubic polynomials

for k = 0…3 and 0 t 1

k Bk(t) = 1 for arbitrary t

– Cauchy's condition (affine invariance)

If Bk(t) are used as weight coefficients (linear blending),
result will be in a convex hull of input data (control polygon
vertices in this case)
– Bk(t) are blending coefficients of a convex combination

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 4 / 12

Ray vs. Bèzier patch intersection

After converting a bicubic Bèzier patch to implicit form we've
got an algebraic surface of the 18th degree!
– 18th degree polynomial to solve

B(u,v) = P0 + t · p1 is an algebraic system, three equations for
three quantities: t, u, v
– can be solved using 3D Newton iteration (converges only in a

relatively small interval)

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 5 / 12

Ray vs. Bèzier patch II

System of two algebraic equations for two quantities u, v
– t can be eliminated from the previous system
– let ray be intersection of two planes, planes vs. Bèzier patch

are examined
– solution by a 2D Newton iteration

 
 

F u v

F u v

1

2

0

0

,

,





RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 6 / 12

3D “Newtonian” iteration

   
   

V u v u v

U u v u v

k k
B
v k k

k k
B
u k k

, ,

, ,










p1P0

n

tk+1

uk,vk

 tangent plane in B(uk, vk)

U(uk, vk)

V(uk, vk)

B(uk, v)
tk

B(u, vk)

v’
u’

Ray × tangent plane
intersection: tk+1, u’, v’

u u u
v v v

k k

k k





  
  

1

1

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 7 / 12

Bèzier patch subdivision

One Bèzier patch B(u,v) [0 u, v 1] can be divided into
four smaller ones
B00(u,v) [0 u, v 1/2]
B01(u,v) [0 u 1/2, 1/2 v 1]
B10(u,v) [1/2 u 1, 0 v 1/2]
B11(u,v) [1/2 u, v 1]

New control points can be computed using recursive
algorithm of P. de Casteljau
– only addition and dividing by two is used in this case!

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 8 / 12

De Casteljau subdivision (2D)

P0

P1

P2

P3

P00

P01

P02
P03= P10

P11
P12

P13

1st part 2nd part

original curve

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 9 / 12

Algorithm ideas

We are looking for the closest intersection of the ray with the
set of Bèzier patches

Every Bèzier patch lies inside a convex hull of its control points
– we will store bounding box for every patch (xmin, xmax, ymin, ymax,

zmin, zmax)

Relevant patch will be subdivided as long as it is intersected by
a ray and too large to start the Newtonian iteration in it
– criterion = small surface curvature

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 10 / 12

Bounding boxes

Q0

Q1

Q2

Q3

Q10 Q11 Q12

Q13

p1

P0

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 11 / 12

Algorithm outline

 Intersected bounding boxes are maintained in the order of the
intersection (front-to-back) … heap

 The closest bounding box is selected – if it has proper (low)
curvature, the Newtonian iteration is started in it. If an actual
intersection is found, it is placed into the result set
– the whole algorithm ends if the closest intersection is closer that

the closest unprocessed patch (box)

 The closest patch with high curvature is divided into four parts,
they are re-inserted into the list (heap)
– go back to 

RayBèzier 2020 © Josef Pelikán, https://cgg.mff.cuni.cz/~pepca 12 / 12

Literature

A. Glassner: An Introduction to Ray Tracing, Academic
Press, London 1989, 99-102

J. Foley, A. van Dam, S. Feiner, J. Hughes: Computer
Graphics, Principles and Practice, 507-528

