

Anti-aliasing and Sampling

© 1996-2020 Josef Pelikán CGG MFF UK Praha

pepca@cgg.mff.cuni.cz
https://cgg.mff.cuni.cz/~pepca/

Alias – artefacts caused by an unsufficient (regular) sampling

Spatial alias

Jagged oblique lines

 regular dense system of lines or stripes on a texture can lead to "Moiré effect"

Interference of fast periodic image changes with a pixel raster

- example picket fence in perspective projection
- too fine or too distant regular texture (checkerboard viewed from distance)

Spatial alias – checkerboard

1 sample per pixel

256 spp (jittering)

Temporal alias

- Shows in slow motion animation
- Blinking pixels on contours of moving objects
 - the whole small objects can blink
- Interference of a periodic movement with a frame frequency
 - spinning wheel seems to be still or even rotating the other direction

© 2017, Tony Davis

Real world

Human visual system has no alias

Alias manifests only mildly in photography

Objects smaller than **resolution of a sensor** are without details (blurry)

 fence from large distance is percieved as an average-colored area (mix of background + foreground colors)

Too fast movement generates fuzzy (blurred) perception

© 1984, Cook et al.

Reconstruction in raster context

Image sampling or computing of image function

- higher frequencies should be reduced/removed from an image before sampling
- <u>low pass filter</u> (convolution window averaging)
- image synthesis can reduce higher frequencies directly (antialiasing by pixel supersampling)

Reconstruction filter is defined by an output device

- e.g. neighbour CRT monitor pixels overlap
- LCD pixels behave differently (almost ideally separated)

Image function with continuous domain and unlimited spectrum

Anti-aliasing filter (function with limited support)

Pixel color [i,j]

$$\mathbf{I}(\mathbf{i},\mathbf{j}) = \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbf{f}(\mathbf{x},\mathbf{y}) \cdot \mathbf{h}(\mathbf{x} - \mathbf{i},\mathbf{y} - \mathbf{j}) d\mathbf{x} d\mathbf{y}$$

Simple variant

Assuming a box smoothing filter and unit square pixel

$$I(i,j) = \int_{j}^{j+1} \int_{i}^{i+1} f(x,y) dx dy$$

(integral average value of the image function on the pixel area)

Quadrature

- Analytic (close form solution)
 - in rare cases (simple image function)
- Numeric solution using sampling
 - finite set of samples [x_i, y_i]
 - integral estimate by the sum

$$\mathbf{I}(\mathbf{i}, \mathbf{j}) = \frac{\sum_{k} f(\mathbf{x}_{k}, \mathbf{y}_{k}) \cdot h(\mathbf{x}_{k}, \mathbf{y}_{k})}{\sum_{k} h(\mathbf{x}_{k}, \mathbf{y}_{k})}$$

stochastic sampling – Monte-Carlo method

Sampling methods

Sampling is a mapping $k \rightarrow [x_k, y_k]$

- sample is selected from the given 2D region (domain)
 - » usually rectangular, square or circular
- sampling in higher dimensions (e.g. dim > 8)

Required **properties** of sampling algorithms

- uniform probability over a domain
- high regularity is not desirable (interference)
- efficient computation

Uniform sampling

Does not reduce **Moire / interference** (interference still appears in <u>higher frequencies</u>)

Random sampling

N independent random samples with uniform probability density (PDF)

Samples tend to form **clusters Too much noise** in a result image

Jittering

K × K **independent** random samples in K × K **equally sized** sub-regions covering the original domain completely

Big clusters are not possible **More regular coverage** of a domain

K × K independent random samples in K × K equally sized sub-regions not covering the original domain

Clusters are impossible but **too** regular (interference)

"Low-cost jittering"
there is exactly one sample in each
row and in each column
Random permutation of a diagonal

Good properties of "jittering" are preserved Higher **efficiency** (especially in high dimension D > 5)

Example – converged

2500 spp (samples per pixel)

Example – 1spp

bad

1 spp

Example – regular

16 spp

Example – random

64 spp

Example – jittering

64 spp

small glitch

64 spp

Example – N rooks

16 spp

64 spp

Hammersley

- + excellent discrepancy
- + deterministic
- + very fast
- difficult adaptive refinement
- bad spatial spectrum

Famous **Halton sequence** is based on similar principles..

Based on similar principles

Halton, Hammersley, Larcher-Pillichshammer

For a prime number **b** let **n** be positive integer expressed using b-representation

$$n = \sum_{k=0}^{L-1} d_k(n)b^k$$

then there is an unique number from [0,1) range

$$g_b(n) = \sum_{k=0}^{L-1} d_k(n) b^{-k-1}$$

Halton, Hammersley

Famous **Halton** sequence (e.g. $b_1 = 2$, $b_2 = 3$)

$$x(n) = [g_{b_1}(n), g_{b_2}(n)]$$

Hammersley sequence (e.g. b = 2)

$$x(n) = \left[\frac{n}{N}, g_b(n)\right]$$

Larcher-Pillichshammer sequence uses **XOR** operation instead of addition (inside the $g_h(n)$)...

Poisson disk sampling

N random samples meeting condition $|| [x_k, y_k] - [x_l, y_l] || > d$ for given value **d**

Prevents creating **clusters**, imitates **distribution of light-perception cells** in retina of mammals Difficult efficient **implementation**!

Implementation

Rejection sampling

- candidate sample is rejected if too close to any previous accepted sample
- less efficient for higher number of samples

Choice of value d is problematic

maximum number of placeable samples depends on d

Difficult adaptive refinement

additional samples to a existing set of samples

Mitchell's ("best candidate") algorithm

Generates gradually refined sample set (from Poisson

sampling)

- no problems with d
- intrinsic refinement

Compute-intensive algorithm

- sample set can be precomputed and reused
- to reduce dependency between neighbour pixels random rotation and translation can be used

Mitchell's algorithm

- The 1st sample is chosen randomly
- Choice of the (k+1)th sample
 - generate k · q independent candidates (q determines sample-set quality)
 - the most distant candidate (from all previous k accepted samples) is selected and accepted

For higher **q** we get better quality set

- choose q > 10 in demanding situations

Incremental example

Adaptive refinement

Sampling based on **local importance** (importance sampling) or **interest**

- some regions have higher weight (higher probability)
- regions with higher variance should be sampled more densely

"Importance" or "interest" **need not be known in advance** (explicitly)

algorithm has to adopt to intermediate results (adaptability)

Modification of static methods

Initial phase

- compute small set of test samples (1 to 5)
- define refinement criterion based on previous samples

Refinement phase

- sampling is refined in regions of higher need (criterion)
- efficiency we should reuse all generated samples!

Almost every sampling can be reformulated in that way

Refinement criteria

Function values (difference, variance, gradient)

difference between neighbour samples...

Id's of hit solids (Ray-tracing specific)

- higher priority
- textures with repeated patterns use of signatures

Trace tree (recursive ray-tracing)

- topologic comparison of complete or limited trace trees
- tree identifier recursive hash function using solid ld's, texture signatures, shadow / light...

Adaptive resampling example

1 spp

adaptive

1/2 spp

refinement map

Refinement phase

The same procedure is executed in refined regions recursively (up to the declared maximum level)

Result sample set

- phase I
- o phase II
- phase III

Evaluated: 5 + 5 + 9 = 19 samples (from total number of 41)

$$\frac{1}{2}\mathsf{E} + \frac{1}{8}\big[\,\mathsf{A} + \mathsf{B} + \mathsf{C} + \mathsf{D}\big]$$

If the refinement stops in a specific square, its area is split to two triangles (diagonal samples)

Literature

- **A. Glassner:** *An Introduction to Ray Tracing*, Academic Press, London 1989, 161-171
- **A. Glassner:** *Principles of Digital Image Synthesis*, Morgan Kaufmann, 1995, 299-540
- J. Pelikán: Náhodné rozmisťování bodů v rovině (Random point placement), CSGG 2014, slides & paper available online