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Abstract1

Interconnect quality is very important in distributed high-performance computing. We were 
interested in efficiency of Microsoft's implementation of Message-Passing Interface (MPI-2) 
included in Compute Cluster Server 2003. An experimental distributed application (master-
slave model) was implemented and executed on a 20-core cluster equipped with Gigabit 
Ethernet interconnect. Using different configurations and setups we were able to estimate 
some parameters of real-world network traffic: overhead of single MPI-message, maximum 
network load on master node and speedup factors for our well-parallelizable problem.
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Introduction
Efficient parallel programming is very important objective today, when physical limits are 
limiting growth of single-core computing power. Therefore CPUs with more cores-on-die are 
manufactured and SIMD architectures or multi-node computer systems are used in high 
performance computing for a while..

We will be concentrating on multi-node (distributed) computing. Outline of the architecture 
is simple: there is number of processors (nodes), each of them has its own memory. Nodes 
are connected together by an “interconnect” (IC) network, grid or ring topologies (to mention 
the most important) are being used. Nodes need not have similar computing power or even 
the equal architecture. Google is one of well known users of massive heterogenous distributed 
computing systems.

Throughput of an IC appears to be most crucial attribute, influencing overall effectivity of the 
computation. Of course there are job classes more sensitive to IC efficiency (needing more 
inter-node communication), on the other hand many problems are well-parallelizable 
without intensive communication needs. Software architect should know technical 
parameters of distributed system and its IC in both cases.

There are several software libraries helping developers write programs for distributed 
systems efficiently and comfortably [1]. PVM (Parallel Virtual Machine) and MPI (Message-
Passing Interface) are two main systems based on asynchronous message-passing between 
computing nodes. We will focus on MPI [2], especially on Microsoft's implementation of 
MPI-2 included in Compute Cluster Server 2003 [3].

One model for parallel programming of convenient problems is called “master-slave” (for 
details see any parallel-programming textbook or [4]). One node (“master”) controls the 
computation and distributes work (“work units”, WU) to identically operating “slave” nodes. 
There might be one type of WU, several WU types on the same level, or even complicated 
system of WU-s connected in a dependence graph. But this is not too important for our 
further research.

1 Internal report describing technical research made in summer of 2007 on Tyan PSC T-630 cluster 
placed at Silicon Hill in Prague, 15 Nov 2007
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A simple “master-slave” system must perform following actions in one WU-cycle ({m} stands 
for “master”, {s} for “slave”, {n} for “network”):

1. {m} assembly of input data (WU), concrete slave is defined
2. {n} WU is transferred to the slave
3. {s} WU is executed/computed by the slave
4. {n} results are transmitted back to the master
5. {m} result processing/merging, if applicable

Note that in case of asynchronous network transfer, master needs only to initiate the 2., other 
part of master's code will be waken at the end of the 4. Properly implemented master code 
should be busy in 1. and 5. only, slave code should be utilized in 3., then it initiates the 4. 
transfer. Details of one concrete problem will follow.

Distributed SHA-1 digest
We had chosen simple and well-parallelizable problem: distributed computing of SHA-1 
digest (for hash functions see [5]). 32GB of randomly generated data were divided into 1 
million working units, 32KB each. But input data volume (transferred over a network) is only 
4MB, full input data is reconstructed on the slave's side. After decoding input data, slave 
computes SHA-1 digest using well known algorithm [6]. Result in form of 20-bytes long 
binary array is transferred back to the master, where it is accumulated (using binary XOR) 
into global result array. Thanks to commutativity of the XOR operation, order of result 
accumulation does not matter.

Latter method is the least effective one used in our measurements. SHA-1 digest of 32KB 
array takes only 200μs, which is comparable to message-passing overhead or network 
latency. Thus sending single WU in one MPI message is not very effective. We were 
introducing “working batches” containing 1, 2, 4, 10 or 100 WU-s. Input data size for one 
batch are 4, 8, 16, 40 or 400 bytes. Output (returning) data packet is always 20 bytes long, 
partial XOR is computed on the slave's side. Comparing computation efficiency of different 
batch sizes will allow us to estimate several IC parameters (single message overhead, 
latency).

Schematic code of the used master-worker system follows. Master pseudocode:

  while ( anything-to-compute )

  {

    MPI_Recv( slave, resultFromSlave );

    if ( resultFromSlave != GREETING_RESULT )

      mergeResult( resultFromSlave );

    prepareUnit( newUnit );

    MPI_Send( slave, newUnit );

  }

  for ( i = 1; i < numberOfNodes; i++ )

    MPI_Send( i, QUIT );

  MPI_Finalize();

Slave pseudocode:

  MPI_Send( master, GREETING_RESULT );

  while ( true )

  {

    MPI_Recv( master, unitToProcess );

    if ( unitToProcess == QUIT )

      break;
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    result = computeUnit( unitToProcess );

    MPI_Send( master, result );

  }

  MPI_Finalize();

The actual C++ code was included into open-source VUCAKO Bench project [7]. Standalone 
test #64 can be compiled from “mpi64.cpp” source, binary executable is named “mpi64.exe” 
and should be deployed on Windows Compute Cluster Server [3] by command

job submit /numprocessors:12 /workdir:\\mscluster\<usr>$\ 
/stdout:out.txt mpiexec mpi64.exe -b <b>

where <usr> is actual login name and <b> batch size (1, 2, 4, 10, 100, ..). After job finish 
output text files will contain run-time statistics and timings.

The code of test #64 would probably run on other systems/MPI implementations as well. But 
we were tested it only on Windows CCS so far.

Test setup
We were using Tyan PSC T-630 cluster [8] installed at Silicon Hill (other details can be found 
in [9]). Some basic technical facts:

● 5 nodes (boards) connected together by dedicated Gigabyte Ethernet interconnect
● each board has two Intel XEON 5148 dual-core processors installed, clock: 2.33GHz
● each board has 2GB of DDR II/667MHz DRAM modules installed
● each board has a 80GB SATA-II hard drive attached (not used in our problem)
● operating system on head node: Microsoft Windows Compute Cluster Server 2003 

[3], other nodes have regular Microsoft Windows Server Standard installed

Our experimental C++ code was compiled using Microsoft Visual Studio 2005 Professional, 
with help of additional libraries from the CCS installation (MPI communication). We had 
also performed many benchmark tests to rank single-core efficiency of the installed 
processors. VUCAKO Bench suite was used here too, detailed results can be found on its 
WWW pages [7].

For comparison purposes we will show a couple of benchmark results here (only CPU-related 
and memory-related ones, for details see [7]). Less numbers are better:
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Distributed computing
Distributed SHA-1 digest was used for measuring practical efficiency of the interconnect. The 
“mpi64” task from VUCAKO Benchmark was compiled using Microsoft Visual Studio 2005 
Professional and deployed several times in configurations with batch size 1 to 100 and 
utilizing 1 to 19 slave processes (100-batch configuration was considered to be “low-network-
traffic” etalon, as it uses only hundreds of messages per second in average). Overall times in 
seconds were measured, averaged original times were:

1-batch 2-batch 4-batch 10-batch 100-batch

1 slave (single chip) 212.5 209.1 206.5 205.5 203.3 

3 slaves (single board) 70.8 69.7 68.9 68.4 67.7 

7 slaves (two boards) 46.8 40.0 36.4 36.1 29.5 

19 slaves (whole cluster) 27.3 20.3 17.1 15.4 11.7 

100-batch configurations achieved parallel speedups: 3.00, 6.89, 17.43 (for 3, 7, 19 slaves) 
which is close to theoretical value for 4‰ of non-parallelizable code (Amdahl's law in [10]). 
Communication overhead is more pronounced in configurations with more than 3 slaves 
(when Ethernet interconnect has to be used).

Overview of network traffic for individual configurations (average number of MPI messages 
from master to all slaves per second : average incoming-message processing time on the 
master):

1-batch 2-batch 4-batch 10-batch 100-batch

1 slave 4744:211μs 2410:415μs 1220:819μs 490:2039μs 50:20ms 

3 slaves 14230:70μs 7233:138μs 3658:273μs 1473:679μs 149:7ms 

7 slaves 21522:46μs 12594:79μs 6923:144μs 2789:359μs 342:3ms 

19 slaves 36958:27μs 24775:40μs 14698:68μs 6563:152μs 864:1ms 

Next table contains MPI-overhead estimates (total overhead in seconds : overhead per single 
MPI message in μs). Total overhead times were computed by comparing total computation 
time of a configuration to the “100-batch” standard:

1-batch 2-batch 4-batch 10-batch 100-batch

1 slave 9.1 : 5μs 5.7 :  6μs 3.2 :  6μs 2.2 : 11μs 0.0 : 0μs 

3 slaves 3.1 : 2μs 2.0 :  2μs 1.2 :  2μs 0.7 :  4μs 0.0 : 0μs 

7 slaves 17.3 : 9μs 10.5 : 10μs 6.9 : 14μs 6.6 : 33μs 0.0 : 0μs 

19 slaves 15.6 : 8μs 8.7 :  9μs 5.5 : 11μs 3.7 : 18μs 0.0 : 0μs 

Comparing 4-batch and 10-batch to 100-batch case, we can see that the master is able to 
process effectively 10.000 of MPI messages per second (Mps) regardless of slaves' location 
(the same chip/board/different boards).

MPI overhead can be estimated to be less than 6μs per message for single-board 
configurations (≤3 slaves). Overhead ratio in such cases will be less than 4% of total 
computation time.

If interconnect had to be used (>3 slaves), one must expect much bigger communication 
overheads. Typical values measured in our experiments were between 8μs and 20μs per 
message. Overhead ratios can claim up to 50% of total computation time. Nevertheless we 
observed peak 37k Mps (27μs/message) throughput in this (least propitious) case.
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Conclusions
Everyone recommends to keep number of MPI-messages as low as possible, but MPI 
implementation in CCS seems be quite effective even in non-ideal conditions (thousands of 
messages per second from single slave to the master). Intra-board communication seems to 
be quite effective as well, so one has no great need to optimize the application in a “hybrid-
parallelization” way, except for special algorithms which can take big advantage from sharing 
memory between worker threads.

We can expect network overhead to be as low as 10μs per message even in cases with fully 
loaded master processes (thousands of MPI-messages per second per slave).

Future work: equivalent tests will be performed on a 80-processor blade server equipped 
with an InfiniBand interconnect [11]. After that we will be able to give more complete study of 
MPI efficiency and influence of interconnect technology to overall effectivity of a master-slave 
solution.
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