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Disclaimer and Copyright
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the foregoing, ATI does not make any warranty of any kind that any item based on these
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your respongibility to seek licenses for such intellectud property rights where

gppropriate. ATI shdl not be liable for any damages, (direct, indirect, or otherwise)
arisng out of or in connection with the use of these specifications, including liakility for
lost profit, busness interruption, or any other damages whatsoever. Some jurisdictions do
not alow the exclusion or limitation of liability or consequentid or incidental damage,
therefore the above limitation may not apply to you.
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trademarks and/or registered trademarks of ATl Technologies Inc. in the United States
and other countries. Other product and company names mentioned herein may be the
trademarks and/or registered trademarks of their respective owners.

Copyright 2000 ATl Technologies Inc. All Rights Reserved.



Executive Summary

With its new RADEON graphics processor, ATI isintroducing a host of new
technologies that make possible the god of photoredlistic 3D graphics generated in red
time on aconsumer PC. The main gpplications that are pushing technology forward in the
area of 3D graphics are games. Each of ATI's new technologies contains severd unique
features that alow gpplication devel opers to overcome the existing barriers to truly
immersive 3D graphics.

The Charisma Engine provides features that make 3D characters and environments look
and behave believably. It includes high performance, versatile support in hardware for
transformation, clipping, and lighting (TCL) cdculations. This reduces CPU workload
and alows 3D scenes to contain more polygons and more complex lighting than any
competing technology. The Charisma Engineis dso the only available engine that
accelerates advanced features like 4-matrix vertex skinning and keyframe interpolation.

Pixel Tapestry architecture includes features that add detail to an image, such as
reflections and shadows, without compromising performance. This unique architecture
supports awide array of versdile festures like single pass multitexturing with three
textures, 3D textures, bump mapping (emboss, dot product 3 and environment mapped),
texture transformations, priority buffer support, shadow mapping, and range-based fog.
Since these features can be enabled without impacting frame rates, they can be used more
extengvely to increase the realism of 3D scenes.

HyperZ Technology incorporates innovations that make more efficient use of memory
bandwidth. As graphics chips take over more of the processing duties formerly handled
by the CPU, use more advanced features, and work with larger textures and complex
scenes, memory bandwidth has emerged as the key performance-limiting bottleneck.
HyperZ focuses on optimizing Z-buffer reads & writes, which typicaly consume more
than haf of al the memory bandwidth required by a 3D gpplication. The result isamgor
boost in 3D performance, which trandates into a smoother, more enjoyable experience
for the user.



State of the Industry

The insatiable demands of PC users for applications that do more, look better, and run
faster ensure that there continues to be alarge market for powerful 3D graphics
processors with rapidly increasing performance. 3D graphics capability has become so
important lately that it has caused the speed and complexity of consumer 3D graphics
processors to exceed that of the CPU, which has traditionally been considered the most
complicated and advanced component of a PC. Graphics accelerators now have more
trangstors and higher floating point operation performance than the fastest available
CPU, despite sdlling for afraction of the cost. The end result is graphics that gpproach,
and in some way's exceed, the qudity found on workstations costing tens of thousands of
dallars... available a consumer prices of afew hundred dollars.

Considering that 3D computer games have become the leading drivers of graphics
technology, what can consumers expect? Well, most game devel opers would agree that
their goa isto create a product that looks as good as a big-budget, special effects-laden
Hollywood movie, but isinteractive. That is, users control the action and have as much
freedom as the designer wishes them to have. Idedlly the designer should be able to
"sugpend the disbelief” of the user, o they can temporarily believe they are in another
place. This has not quite been possible to date, but with the introduction of ATI's new
Charisma Engine, Pixd Tapestry, and HyperZ technologies, that will soon change.



Barriersto Immersive, Real-time 3D Graphics

3D computer graphics have certainly come along way since their first appearance on the
desktop PC. There is no question that the graphicsin recent 3D games like Quake 3 and
Unred come much closer to gpproximeating the red world than older games like Doom.
However, even when combining today's most advanced 3D technologies with top quality
artwork and animation, it is quite clear when looking a a moving image that one is not
looking through awindow into aliving, breething world. With currently available
hardware and software technology, it has become possible to create moving images that
appear nearly photoredistic. However, thisis only practica for pre-rendered 3D
sequences. An interactive application requires a 3D scene to be rendered in redl-time,
which requires a tremendous amount of computationa power.

There are three main barriers that prevent the current generation of PC graphics hardware
from rendering a photoredigtic 3D environment in red-time:

Lifdike Characters

The 3D charactersin today's games suffer from the following problems
Blocky, unnatural gppearance (especialy when viewed up close)
Stiff, robotic movements
Short, repetitive animations without variety
Lack of visble emotions or facia expressons
Too few character models (al characters have the same shape)
Limited number of characters on screen & any giventime

Detailed Objects

The various objects and items that populate a 3D scene have the following limitations.
Low complexity (only smple shapes and forms can be represented)
Lack of texture detail when viewed up close (gppear flat and smooth)
Often fixed and immovable (to avoid having to represent dl sdes and parts of the
object)
Reflections are absent, poorly detailed, or do not reflect changesin the
environment
Do not cast dynamic shadows (must be pre-rendered or not rendered at dl)

Lush Environments

The 3D environments that characters move around in and interact with have the
following issues

Simple architecture with few curves and fine details

Static, cannot be changed or deformed in red time

Do not respond to user's actions

Use 2D representations of 3D effects like rippling waves or billowing clouds



While today's graphics chips can do alot of things to make characters, objects, and
environments more redistic and detailed, they suffer unacceptable losses in performance
that offset these benefits. The result is that the creetivity of game developersis being
congtrained by graphics technology. Developers are forced to spend a great dedl of time
and effort looking for creetive ways to work around hardware limitations, which could be
better used creating compelling content. ATI's RADEON graphics processor is set to

findly overcome these barriers without compromising performance, usng ahost of new
technologies.



Realigtic Charactersand Environments

The heart and soul of any interactive 3D game isthe characters you encounter. Characters
are dynamic, expressve, and unique entities that bring a game to life, whether your god
isto tak to them, admire them, or blow them to smithereens. It's no coincidence that

most game devel opers put such agreet dedl of time and effort into designing, modeling,
and animating 3D characters.

Idedlly, we want the characters in games to look, move, and behave as we would expect
themto in red life, whether they are human beings or fantastic creatures. Take one look
a atypicd 3D gametoday, however, and it will be immediately obvious that this god
has yet to be achieved. Most characters have ablocky or chunky appearance that only
gets worse as you get closer to them. Their motions are mechanica and repetitive, more
like robots or cartoon characters than like living things. The expressions on their faces
flicker suddenly from emation to emotion, if they change a dl.

Characters aren't the only things lacking realism in today's 3D games. Consider the
environments they are moving in. In most cases, the environments gppear even more
blocky and angular than the characters. While the first games are Starting to appear that
use curved surfacesin the environment, designers are ill restricted as to how many
curves they can use, and how smooth they can be. Moreover, the environments are
mogtly static. Many games use animated textures and other tricks to give the illuson of
moving liquids and fabrics, but in redity these objects are not actudly moving or

changing shape.

These problems al arise from the fact that current graphics technology can only
gpproximate redity, not emulate it. Game developers are forced to spend time coming up
with clever tricks to bypass these limitations. The Charisma Engine makes it easier than
ever to produce believable 3D characters and immersive environments.

The CHARISMA ENGINE™

The Charisma Engine takes 3D characters and environments to the next level of redism.
It can perform complex transformation, clipping, and lighting caculations fagter than any
CPU or 3D graphics chip on the market. It dso adds innovative and useful new features
such as 4-matrix vertex skinning and keyframe interpolation that give game developers
more freedom and flexibility than ever before.

Fadt, Flexible Hardware Transformation, Clipping & Lighting (TCL)

A graphics processor is ahighly specidized device that is optimized for the purpose of
cresting graphics and outputting them to a display device. A CPU, by contrast, must be
cgpable of handling amuch wider range of generaized applications and calculations. It
can be said that the CPU is ajack-of-dl-trades, but master of none. Even asthey get
faster and more efficient, and add specid "multimediaingtructions’ that are desgned
with graphical applications in mind, standard CPUs il cannot match the speed and



effidency of dedicated, application-specific processors. Thus, in the quest for higher
graphics performance, it is inevitable that specidized graphics processors take over more
and more of the graphics-related workload from CPUs.

There are other benefits that accrue from transferring work from the CPU to the graphics
processor. In most graphical applications, graphics-related calculations can account for a
large percentage of the CPU's workload. With these cd culations offloaded, the CPU can
use the available time to perform more caculations for other uses. These can include
physics, atificid intelligence, collison detection, etc. Also, because the graphica
cdculations are done in hardware, they need only be dealt with at a high level through an
goplication interface like Direct3D® or OpenGL®. This saves the developer the time and
effort required to write and optimize code to process the ca culations, meaning they can
devote more of their attention to other aspects of the game.

The last mgor revolution in the computer graphics industry occurred when 3D graphics
functions started getting accelerated by the graphics processor. This enabled the firgt true
3D games to Sart gppearing, which provided a quantum legp in visud quaity compared
to earlier 2D and "pseudo-3D" games. The revolution going on today involves the
transformation, clipping, and lighting calculations required to render any 3D scene. The
number of caculations that need to be done in these three steps is directly related to the
number of polygons present in the scene. The Charisma Engine not only accelerates al of
these functions at gpeeds much faster than any existing CPU, but it accelerates more
features than any exigting hardware T& L engine. This means 3D scenes and characters
can contain many more polygons, which will result in the next big legp in visud qudlity.
Look &t the charactersin theillustration below:
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The character on the left is composed of about 900 polygons, which putsit on the high
end of polygon count for today's latest games. The character on the right is composed of
gpproximately 10 times as many polygons as the one on the left. Notice how much
smoother it appears. The silhouette of the character on the right is rounded naturdly,
while the outline of the character on the left is composed of straight lines and angles. The
fingers, toes, and facid features of the character on the right look much more detailed and
redigtic. Even though both characters use the same vertex lighting technique, the lighting
looks much better on the character on the right. Thisillustrates the advantages of using
vertex lighting (which is hardware accelerated) on character models with more polygons.

Fast polygon processing and lighting caculations don't just improve character qudity.
Today's games tend to use alimited number of polygons to represent environmental
features (Structures, items, landforms, etc.) since they are usudly in the background
relative to the 3D characters. The result is objects that are angular and smplidtic. With
high-speed transform and lighting, objects can have more complex shapes and curves.
Small objects like crates, stones or shrubs can be modeled in 3D rather than drawn into
the background, alowing them to be moved and manipulated. In short, environments can
become much more redigtic, dynamic, and interactive.

While increasing the number of polygons and lights that can be included in ascene hasa
magor impact on visua qudlity, it is not quite enough to truly bring charactersto life.
Character animation is equally important in this regard, sinceit defineshow aredigic a
character's movements and behaviors appear. The Charisma Engine includes accel erated
support for unique features that take character animation to the next leve. These features
and their benefits are described below.

Skeletal Animation and Skinning

Most 3D characters today are modeled using agroup of attached polygons, sometimes
referred to as amesh of vertices. To change the "pose” of a character, the positions of the
vertices in the model must be changed and stored, creating aframe of animation. A
character can then be made to move by quickly cycling through severa frames of
animation. Thisworks fairly well, but many 3D game developers are starting to use an
exciting new technique known as skdetd animation. Thisinvolves defining character
modds using aseries of "bones’, to which is attached a"skin" congsting of amesh of
vertices or polygons. The position of each vertex can be influenced by the movement of
one or more bones, according to a given weighting vaue. Thus, a character modd can be
animated by smply defining the movement of its skeleton, and the movements of the
vertices that define the skin can be generated mathematically. Skeletal animation nat only
smplifies the animation process, but Ao requires far less memory than traditiona
animation methods. Thisis because the position of every vertex in the mode does not
need to be stored for every frame of animation. Only theinitid vertex positions and
weights need to be stored, as well as the movement of the bones for each frame. The
extramemory freed up using this technique can be used to make animations longer and
more detailed, or to include awider variety of character models and animations.



One weakness of skeletd animation isthe way it handles joints between bones. Each
boneisrigid, and its movement is defined by atransform. If the transforms cause the
joint to bend, an unsightly gap can be created.

P o
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This weakness is overcome using a technique caled skinning, which adjusts and blends
the pogitions of the vertices around the joint to create a continuous, flexible skin.

skin

——
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Vertex Skinning With Up To 4 Matrices

In order to compute the location of each vertex in each frame of a skeletd animation,
matrix transformations are required. Matrix transformations are mathematica functions
that are used to caculate the position of an object in 3D space. A separate matrix
transformation is required for each bone that influences a given vertex. The weghtings of
each matrix can vary for each vertex, which isimportant for vertices located near the
joints between bones. In order to make joints that flex naturaly, the matrix weightings for
each vertex around ajoint must blend gradudly from one bone to another. This technique
is cdled vertex skinning.

The matrix transformations required for vertex skinning are very computetionaly
intensve, and the complexity increases with each additiona matrix used. The powerful
Charisma Engine can accderate vertex skinning with up to 4 matrices in hardware,
alowing 3D animations that are more complex and believable than has ever been seen
before - without requiring any extra CPU work.

Theillugrations below demondrate the qudity improvements that can be redized usng
additiona transformation matrices for vertex blending. Each color represents the
weightings of different matrices (red/blue for the 2-matrix case, red/blue/green for the 3-
matrix case). Notice how the weighting of each matrix blends across the shoulder joint.
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The 3-matrix example above uses the extra (green) matrix to control the "bulge’ of the
joint, making it look more redigtic. Extra matrices can dso dlow accurate modding of
more complex joints involving more than two bones. Existing transform & lighting
engines that support only 2-matrix blending cannot accel erate these types of animations.
The only way they can achieve a comparable effect isto use an entirdly software-based
solution, which kills performance.

Keyframe Interpolation (Vertex Morphing)

Even with skeletdl animation techniques, animating a 3D modd can be a difficult and
time-consuming process. The smoother the animation isto be, the more frames must be
created, and animations with high frame counts can quickly gobble up large amounts of
memory. Thisiswhat prevents the character animations in today's games from being as
smooth and lifdike as they could be. In addition, certain complex animations, such as
redidtic facid expressions or rippling muscles, can be difficult to mode accurately using
bones, even with 4-matrix transformations. Y et these kinds of subtle animations are what
truly make a 3D mode come dive.

Thisis where the Charisma Engine's keyframe interpolation feature comes into play,
providing asmple yet powerful method of overcoming these issues. It works by
interpolating between successve frames of animation (caled keyframes), automatically
generating new framesto fill in the gaps. The pogitions of the modd verticesin the first
keyframe are seamlessly morphed into their positions in the second keyframe. The
number of interpolated frames can be scaed as necessary, with more frames providing
smoother animation and less frames providing better performance. Using the example of
aface, say you want to take a frowning face and make it smile. With keyframe
interpolation, al you would need istwo keyframes of animation: one with avertex mesh
defining afrowning face, and one defining a smiling face. The Charisma Engine could
then smoothly morph oneinto the other, creating as many additional frames as desired,
without any additional CPU overhead (see illudtration below). The incredible effect of
thisfeature isimpossible to capture in till screen shots. .. it must be seen in motion to be
fully gppreciated!
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Keyframe interpolation makes character animations scalable, meaning that their level of
detail can be adjusted to trade off speed vs. qudity. For example, if agame using this
technique began to run too dowly and fell below a certain frame rate threshold, the
gpplication could detect this and compensate by reducing the number of frames of
animation used. In addition to adding scaability to character animations, keyframe
interpolation makes them less time-consuming to generate, and reduces their memory
storage requirements. The Charisma Engineis the first technology to provide hardware
acceleration for keyframe interpolation.



Visual Details- Getting the M ost Out of Every Pixe

They say the devil isin the detalls. Thisis definitely the case when creating redistic 3D
objects and environments. There are so many small, subtle things that can betray an
object's artificid nature. The way bright light glances off a shiny surface. The way your
face isreflected in abrass doorknob. The subtle shadows cast by every object from every
light source. The fine, detailed textures of wood, cloth and stone. These details might
seem inggnificant, but they are the kinds of things that you only notice when they arent
there.

3D games are gradudly increasing the level of graphica detail they support. The amount
of processng done on each pixd in a scene has been risng sgnificantly. Unfortunatdly,
the performance sacrifices that need to be made to achieve these high detall levels have
limited their practicality. ATI's unique Pixel Tapestry architecture makes it easy to
include unprecedented levels of detail on 3D objects and environments, without trading
away performance.

PIXEL TAPESTRY ™ architecture

ATI's next-generation graphics products will utilize the most advanced and flexible
texturing system available. Pixd Tapestry isthefirg and only graphics architecture to
include three independent texture units in each rendering pipeline. This unique
architecture opens up awhole range of new possibilities for making 3D surfaces look
more redlistic and detailed than ever before.

Three Filtered Textures Per Pixd - At Full Speed

Current generation graphics processors have just one or two texture units per rendering
pipdine. They are cgpable of gpplying up to two texturesto apixel in asingle clock
cycle, but with one texture unit per pipeline this requires using two rendering pipelinesto
generate asingle pixel. Thus, thefill rate of these productsis effectively cut in haf when
multitexturing with two textures per pixd. In order to add athird texture to a pixd, these
chips must use a second clock cycle, which cuts thefill ratein haf again. Thus, it takes
maost current generation processors four times as long to gpply three textures to a pixel
than it doesto gpply a single texture. Even those that have two texture units per pipdine
take twice aslong to apply three textures per pixel. Thus, the number of rendering passes
required to output asingle pixd is becoming increasingly critica to providing acceptable
graphics performance.

Texture Units Per Rendering Pipeline
Textures Per Picel One T Thres
1 Bilinear 1pass lpass 1p=ss

1 Trilinear 1-2 passes 1pass 1pass
2 Bilinear - 1pass 1pass
1 Bilinear+ 1 Trilinear 1-2 pass ez 1pass
2 Bilinear 1p=ss




One of the most talked about factors for determining graphics performance today is
"peek fill rat€’. This refers to the maximum number of pixels a graphics product can
render to the screen per second. However, peek fill rate is calculated with the assumption
that each pixd has only a single, unfiltered texture applied. In redity, 3D games today
make heavy use of filtering and multitexturing, and future games will use these
techniques even more extensively. The result isthat graphics architectures that do not
fully take multitexturing requirements into account will suffer rgpidly decreasing
performance as more textures are gpplied to each pixd. Asthe following chart illudtrates,
including more texture units per rendering pipeline alows a graphics chip to maintain
high performance even with large numbers of textures per pixel.

Texture Units Per
Rendering Pipeline

Parcentage of Peak Rendering
Parformance

Three
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This dready sounds bad, but memory bandwidth issues compound the problem even
further. Every time an extratexture is applied to a pixd, the pixe must first be written to
the frame buffer, and then read back to be blended with the new texture. This consumes
large amounts of precious memory bandwidth, which could better be used in preparation
to draw the next pixe in the pipeline.

The primary benefit of Pixel Tapedtry isthat it alows up to three filtered textures to be
gpplied to every pixd in a scene with virtudly no performance drop. With three texture
units per rendering pipeline, additiond textures can be gpplied to a pixe without
requiring additiond clock cycles, tying up a second rendering pipeline, or wasting
memory bandwidth on unnecessary frame buffer reads & writes.

Texture 1 Tecdure 2 Tewxtare 3

zouraud " Base Ernvironment or izloss Map Final Object
Texture Specular Map



Most recent 3D games dready make extensve use of multitexturing. In addition to the
base texture on an object, gpplications can add light maps, shadow maps, reflections,
bump maps, specular maps, detail textures, and more. On current high-performance
graphics processors, every additiona texture added to a surface beyond the base texture
doubles the rendering time. Each additiona texture adds another level of redlism and
detall to the surface, but adding more than one or two will bring the performance of even
the fastest chip to acrawl. With Pixel Tapestry, however, you get two additiond textures
without asignificant impact on performance.

3D Textures

3D texture support is an exciting new feature of ATI's Pixel Tapestry architecture.
Although polygons are traditionally used to represent 3D objects, each polygon is

actualy a 2D surface. Thus, dl existing mainstream graphics hardware to date has used
2D texturesto apply to these 2D surfaces. These 2D textures are like stickers applied to a
polygon's surface. A 3D texture is avolume of texelsjust like a 2D texture isaplane or
"sheet" of texds. Even though it "occupies' volumein 3D space, it is ill atexture and
therefore is only visble where it intersects polygon surfaces.

3D textures have awide variety of applications that add to the realism of a 3D scene. One
example isto use atransparent or tranducent sphere-shaped texture to define a™globe" of
light around a light source. The texture would be brightest in the center of the sphere and
dimmer toward the edges. Any polygon surfaces that intersect the sphere, including those
making up walls, objects or characters, would be appropriately lit according to how far
away from the light source they are. Thisisafar more Smple, eegant, and flexible
method of modeing dynamic light sources than using light maps as many present-day
goplications. It makesit easy to vary the texturein red time, to make flickering or

pulsing light sources. It dso alows accurate moddling of light sources with extent (i.e.
non-point light sources). The illugtrations below demongtrate how a cylindrical light
source modeled with 3D textures lights a scene differently from a point light source (note
the softer shadows cast by objectsin the image on the right):




3D textures can aso be used to great effect with dynamic or proceduraly generated
geometry. Imagine, for example, a cube of marble. The cube could be defined with a
smple geometric model, and have a cube shaped 3D texture applied. If an gpplication
then dtered the cube mode to take chunk out of one side, the 3D texture would dlow the
marble veins running through the cube to be clearly visble. With treditiona 2D textures,
new textures would have to be generated or pre-defined to achieve asmilar effect. The
illugtration below shows how this technique can be used for medica imaging:

3D Teohme Used For Volune Visualization of MRI Data of 2 Human Head

The examples above just scratch the surface of the kinds of benefits that can be redized
with 3D textures. Game developers will be certain to come up many more inventive uses
for this cgpability. 3D textures are aready supported in OpenGL® 1.2, and will likely be
supported in future versons of DirectX®.

Bump Mapping

Bump mapping refersto arange of techniques that use multitexturing to create the

illuson of three-dimensiona detail on a surface, without changing the geometry of the
object or requiring additiona polygons. There are three methods commonly used to
accomplish this effect, each of which is more ussful in some gpplications and less useful

in others. While existing graphics architectures support only one or two of these methods,
ATI's Pixd Tapestry architecture isthe first to support al three. This gives developersthe
ability to use whichever method is most gppropriate for their particular application.

Emboss

The amplest and easiest, but dso least redistic method is cadled emboss bump mapping.
This effect is accomplished using a height map texture, in which the "color” of each texd

is used to represent bump height. Thistexture is shifted one or more pixels away from the
light source, then subtracted from the origina un-shifted texture to produce a bump map.
The bump map is then combined with the base texture to produce the find effect. Emboss
bump mapping is the easiest to implement because it does not require that specid texture
formats be used like other bump mapping methods.



Dot Product 3

A more accurate and flexible verson of bump mapping is Dot Product 3. It works by
using a specidly formatted bump map texture. Each pixel in the texture includes a 3D
vector that represents the dope of the surface. A vector is then generated pointing from
each pixd in the bump map to the light source, and a dot product operation is performed
between this vector and the vector contained in the bump map to determine which
direction light will be reflected off of the surface. This method alows control of the
bump map down to the individud pixed leve, which can give the gppearance of ahighly
detailed surface when light is gpplied.

Environment Mapped Bump Mapping (EMBM)

The mogt detailed and flexible variation of bump mapping is Environment Mapped Bump
Mapping (dso referred to as EMBM or Perturbation Bump Mapping). Embaoss and Dot
Product 3 bump mapping are suitable for most matte objects, but they do not work well
on glossy, shiny, or reflective surfaces like metals, plastics, or liquids. They aso lack the
flexibility to change the height map in red-time, which can be used to create effects like
rippling waves. EMBM adds these capabilities at the expense of additional computational
and texture requirements. Like Dot Product 3 bump mapping, EMBM requires the use of
gpecialy formatted textures as bump maps, and aso requires a separate environment map
to provide the reflections. The bump map is used to "perturb” the environment map
before blending it with the base texture, and make it appear both shiny and bumpy.

A comparison of the three types of bump mapping supported by Pixel Tapestry is shown
below:

Envhoss Bunap happing Dot Froduc 3 Bunp Mapping Envircnanent Bump hMapping

Texture Transfor mations

Creating detailed textures is only part of the process required to bring objectsto life.
There are dso many different ways to gpply a texture to a surface, each of which can be
used to achieve a specific effect. This group of effectsis accomplished using texture
transformations. These transformations involve applying various mathemetical formulae
to generate texture coordinates. All of the techniques listed below can be accomplished
using software, but they involve complex caculations that devour CPU time and hurt



performance. As aresult, most current games use them sparingly, if a al. ATI's Pixe
Tapestry architecture changes dl that by implementing hardware acceleration for texture
transformations. With Pixel Tapestry, widespread use of these features becomes practica
- and it looks grest!

Environment Mapping

Environment mapping involves the use of textures that mirror the environment. These
textures can then be transformed and applied to any surface to give accurate reflections.
There are severd variations of this technique, the most common of which are detailed
bel ow. OpenGL® supports spherical, dua- paraboloid, and cubic environment mapping,
while DirectX® 7 only directly supports the cubic method. ATI's Pixel Tapestry
accderates dl forms of environment mapping in hardware.

Spoherical Environment Mapping

Spherica environment mapping uses asingle texture as areflection map. To understand
how thistexture is cregted, imagine you are Stting dill in one pogition, but moving your
head around. Depending on which direction you look, you will see something different.
Now imagine everything you seeis not red, but is actudly projected on to a sphere, with
you at the center. If the image on the sphere was captured and unwrapped <o thet it
became aflat, two-dimensond sheet, this would be the spherica reflection texture or
environment map. This environment map can then be wrapped around any three-
dimensiond object to create accurate reflections, as shown in the illustration below:

Environment Map

This environment mapping method issmple, but has afew drawbacks. Most
importantly, it assumes the viewpoint isfixed. If the viewer (at the center of the sphere)
moves, the whole texture must be re-created. Also, like any sphericd projection, it can
introduce sgnificant digtortion to the reflection, Snce it is difficult to accuratdly portray
the surface of a sphere on atwo-dimengond plane. Spherical environment mapping is
useful for creating specular highlights on fixed, shiny objects, and it workswell in
conjunction with environmert mapped bump mapping. It dso consumes the least
memory of al the environment mapping techniques.



Dual-Paraboloid Environment Mapping

Dual-paraboloid environment mapping is more complex than the spherica method and
uses two textures as environment maps (one representing the environment in front of the
object, the other representing the environment behind). These textures are square, but
mathematicaly distorted into a paraboloid shape. Dud- paraboloid environment mapping
has the advantage of being viewpoint independent. This means that, unlike with spherical
environment mapping, the reflection map textures do not have to be updated if the
viewpoint moves. Instead, the texture co-ordinates are updated and the textureis re-
gpplied. The downside of this method is that because the textures have to be distorted,
they are harder to generate and harder to update on the fly than the textures used in cubic
environment mapping. The dud- paraboloid technique is useful for complex reflections
that do not need to be dynamicaly updated, Snce it requires less memory than the cubic
technique.

Environment Maps

Back

Frant

Cubic Environment Mapping
Cubic environment mapping is the most flexible and the most complex method of

environment mapping. It uses Six environment map textures, each representing one face
of acube with the viewer at the center. Thisisillusirated below:



Environment Maps

This environment mapping method has severd advantages. Because the reflection
textures used are Smple 2D squares, they are easy to generate and update in redl time.
The method is dso viewpoint independent, so the viewer can move around but the
reflection textures only need to be updated i the reflected sceneitself changes. The
disadvantage of this technique is that it requires a substantial amount of memory to store
the six required textures. However, it enables dick effects that were never before
possible, like being able to see yoursalf moving in the reflection on an object.

Projective Textures

As mentioned before, standard 2D textures work like stickers attached to the surface of a
polygon. Texture transformations, however, dlow textures to be projected onto a surface,
much like the way a dide projector projects an image on a screen. A texture can be
"beamed" from any location, and al or part of it will gppear on any polygon surfacesiit
contacts. The following screen shots illudtrate the difference this makes. Note how the
gtandard texture on the left is warped on to the curtain surface, while the projected texture
on theright stays square:



Projectifiil

Projective textures work much like spatlights, but they have dl the capabilities of

textures, including filtering and animation capabilities. For example, a movie projector

could be set up that projected a moving image (Sored as an animated texture or video
texture) onto awall. If a character then passed between the projector and the wall, part of
the movie would appear on the character, and an appropriate shadow would be cast on the
wall. One of the mogt exciting uses for projective texturesis shadow mapping, which is
described later in this document.

Priority Buffers

Y et another innovation included in the Pixdl Tapestry architecture is support for priority
buffers. A priority buffer stores polygons and/or objects according to priority, whichis
determined by how close the object isto the viewpoint. The closest object or polygon
would be assigned avaue of 1 in the priority buffer, the next closest avaue of 2, and so
on. Thisissmilar to adepth buffer or zbuffer, with the difference that object order is
more important than distance from the viewpoint. Priority buffering can be performed in
software, but for 3D scenes with more than afew objects or polygonsit istoo dow to be
useful. Pixel Tapedtry isthe firgt architecture to provide priority buffer supportin
hardware. Although priority buffers can be used for a variety of purposes, they are best
used in combination with projective textures to perform shadow mapping. This next-
generation capability is described below.

Shadow Mapping

Shadows are a very important aspect of a 3D image. They make lighting appear more
redigtic and help convey a sense of depth. Generating accurate 3D shadows can be very
difficult, especidly in a dynamic environment with many moving objects and light
SOUrces.

Most of today's games, if they implement shadows at dl, use pre-rendered shadows.
These can look highly redigtic and naturd, but have the mgor disadvantage that they

can't be used with moving light sources or character models. A few games employ amore
advanced method to create volumetric shadows. Thisinvolves creating additiona
polygons that extrude behind a character or object to create a shadow volume. This



shadow volume is then used with a stencil buffer to create dynamic shadows. While
much more flexible than pre-rendered shadows, volumetric shadows till have serious
drawbacks. Every shadow in a scene creates additional geometry to be transformed and
processed, which severdly impacts geometry. Also, complex cases like objects casting
shadows on to themsalves (e.g. a character's arm casting a shadow on its torso) or on to
complex curved surfaces are prohibitively difficult to implement using this method.

Shadow mapping is a much easer and more degant method that can be implemented
using priority buffers. Using alight source as a viewpoint, a sceneis rendered to a

priority buffer so that the closest shadow casting object has the highest priority, the next
closest has the second- highest priority, and so on. Background objects that do not cast
shadows have the lowest priority. A shadow texture is then generated by rendering
Slhouettes of each shadow casting object, in the order defined by the priority buffer.
Finaly, the shadow texture is projected on to the scene from the light source, and blended
with light maps and existing base textures to produce the find image. This processis
illustrated below.

Shadow Map

a= wiered from light sourze)

Light Map

Inmuamid Shadow Mapping

Shadow mapping has many advantages over existing solutions that make it much more
practical. Because it is accomplished using a single texture per light source, rather than a
large number of polygons, it requires much less computation than volumetric shadows.

By using hardware-accel erated texture transformations, it can easily handle multiple
moving light sources, and accurately warps shadows over other objects. The priority
buffer dso makes it much easier to creste modd s that cast shadows on to themsalves, just
likered life.

Range-Based Fog

Fog isagreat environmenta effect that can be used for avariety of purposes. Most
graphics chips use asmpligtic implementation of fog that increases its "thickness'
according to an object's depth (i.e. the distance from the viewer's "plane’ to the object).
The Pixel Tapestry architecture depicts fog more redigticaly by varying thickness



according to an object's range (i.e. the direct distance between the viewer and the object).
The following diagram demonstrates the advantage of range-based fog:

I mproved Anisotropic Filtering

Texture filtering is an important technique that has been included in the past few
generations of 3D graphics acceerators. While 3D objects are composed of polygons that
can easily be scaled up in Size as you get closer to them, the textures gpplied to the
surfaces of these polygons are bitmaps of fixed resolution. Without filtering, the color of
each pixd on the surface is determined by sampling asingle texel, a technique known as
point sampling. As you gpproach atextured surface in a3D environment with point
sampling, it beginsto suffer asevereloss of detail and gppears blocky and unattractive.
The firg filtering method used to overcome this problem is known as bilinear filtering,
which smooths out the blockiness by sampling the two nearest texelsin the vertical and
horizontal dimensions (4 texel samples dtogether) and blending them together using a
welghted average to determine the color of each pixel.
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Bilinear filtering generdly does a decent job of improving image quaity when used on
textures that are square or dmost square. However, it doesn't work so well on surfaces
that are doped at a steep angle to the user. In this case, the texture must be " stretched”
horizontaly or vertically, meaning its resolution must be greatly reduced in one

dimension relative to the other. The result is that textures gppear sharp and detalled on the
part of the surface that is close to the viewer, but blurry and indistinct on the part that is
farther away. To ded with this Stuation, a more advanced form of filtering called
anisotropic filtering must be used. It worksjust like bilineer filtering, except thet it uses
more texel samplesin the direction of the siretch to retain detail on dl parts of the

surface.
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The effectiveness of a particular anisotropic filtering dgorithm is determined by the
maximum "degree of anisotropy” it dlows. Thisisaratio which determines how far a
texture can be stretched before its image qudity starts to degrade. The Pixel Tapestry
architecture isthe firgt to alow amaximum degree of anisotropy of 16:1, much higher
than any existing graphics product. This ensures that textures stay sharp and clear no
meatter what angle they are viewed at. Thisis particularly important for text, as
demondrated in the following examples:

16:1 Anisotropic Filtering Bilinear Filtering
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Anti-Aliasing Effects

Anti-aliasgng effects such as full-scene anti-diasing, motion blur, depth of fidd, and soft
reflections have received alot of attention recently as means for improving the redlism of
3D scenes. They are dl related by the fact that they are implemented using some form of
an accumulation buffer to blur or smooth parts of the scene. While enabling these effects
tends to be detrimental to graphics performance, they are certainly of interest to game
developersfor certain applications, including working with low resolution displays, 3D

cut-scenes, and limited specid effects. For thisreason, ATI's Pixel Tapestry architecture

includes support for dl of these effects.



Full-Scene Anti-Aliasing

Aliasing specificdly refersto aset of visud atifacts thet result from limited display
resolution. These include jagged "dtaircase” effects on the edges of objects, aswell as
shimmering or "popping” effects on narrow objects viewed at a distance. The lower the
display resolution, the more pronounced these artifacts become. Spatia anti-diasing
refersto a set of techniques used to counteract these effects. Most existing graphics chips
implement alimited form of spatia anti-diasng caled edge anti-aliasing, which usesan
agorithm that attempts to identify strong edges in a scene and smooth them ot.
Unfortunately, this technique requires significant pre-processing and sorting of polygons
to work properly, making it impractical for most gpplications.

A more useful, effective, and flexible technique is full- scene anti-diasing. Rather than
identifying the edges in a scene, full-scene anti-adiasing uses a method known as
supersampling to reduce or diminate diasang artifacts. Thisinvolves rendering ascene a
ahigher resolution then the final output, and then filtering and scaling the image down to
the desired resolution. The result is that more detall is captured in the final image, which
lessens or removes diasing atifacts.

Although this method can gresatly improve 3D image qudity & low resolutions, the fact
that multiple copies of an image must be rendered (multiplying thefill rate requirement
by afactor of 4 or more) makesit impractical at higher resolutions. Graphics chips that
are being released this year will enable smooth, high quaity 3D gaming at resolutions of
1280x1024 and higher. At these resolutions, diasing artifacts are difficult to detect, and
most users will prefer the improved sharpness and qudity to low-resolution anti-aliased

images.
Motion Blur

Moving 3D images rendered in red time differ consderably from the moving images
captured with avideo camerathat records to film. In the case of the video camera, an
image is created by opening a shutter on alens and exposing film to a scene for afixed
period of time. If an object in the scene is moving while the shutter is open, thismation is
cgptured on film as a blurring effect. If you look at the individud frames on arall of film,
thisblurring is clear, even though it is not apparent when the film is played back on a
movie screen or atelevison s In the case of 3D rendered images, however, moving
objects are not blurred. They remain sharp and clear regardless of how fast they are
moving. Blurring iswhat helps make motion gppear more smooth and fluid of TVsand
movie screens than it does on monitors. Monitors must compensate by displaying images
at much higher frame rates (at least 60 frames per second to achieve comparable qudity
to a 24 frame per second movie projector).

In order to smulate the smooth trangtion between frames on amonitor without
increasing frame rates, a technique caled mation blur (also known as tempord anti-
aliasing) can be used. It works by storing copies of successive framesin an accumulation
buffer, and blending them together to produce afina image in which moving objects are



blurred in the direction of motion. The more copies are stored, the better the effect ooks.
The diagram below illustrates how ATI's Pixd Tapestry architecture usesiits three texture
units to create a 4-frame mation blur effect:
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Much like full-scene anti-aliasing can be used to improve the quaity of low resolution
images, motion blur can be used to compensate for low frame rates. At higher frame
rates, the blurring effect becomes less noticesble. In fact, at frame rates of 60 frames per
second or higher, the human eye will autometicaly begin blurring successve frames
together. In genera, most users will prefer the more precise control and quicker response
that is afforded by high frame rates to lower frame rates combined with motion blur.

Soft Reflections and Soft Shadows

Materids can have widdly varying degrees of reflectivity, ranging from maite (no
reflections) to mirror-like (near perfect reflections). Many materids, like plagtics and
lacquered surfaces for example, are reflective but produce only blurred, partid reflections
of the environment. To redigticaly reproduce this effect in a 3D scene, reflections can be
anti-diased or blurred. Theresult isa"soft” reflection. Smilarly, most light sourcesin

red life do not produce sharp-edged shadows. More redigtic shadow effects can be
produced using anti-diasing.




These effects use accumulation buffers to store multiple copies of an object's reflection or
shadow, and then blend them together for the findl image. As with other anti-diasing
effects, the more copies are used the better the final image looks, but the tradeoff is
reduced performance and frame rate. If used judicioudy, these subtle effects can greatly
enhance the qudity of a3D scene while still maintaining reasonable frame rates.

Depth of Field and Fresnd Effects

Another gpplication of anti-aliasing is known as focd anti-aiasing, which causes parts of
an image to blur according to their distance fromthe viewer. This can be used to Smulate
the effects of focus, known as a depth of field effect. It can dso be used to recreate the
effects of looking at an image through frosted glass, known as a Fresndl effect.

Programmable Pixd Shaders

Asyou can seefrom the list of topics described thusfar, ATI's Pixel Tapestry
architecture is cgpable of applying awide range of effects to 3D surfacesin order to
enhance ther level of realism and detail. The RADEON graphics processor can
accelerate dl of these featuresin red time for maximum performance. But game
developers are a creative bunch, and the best ones frequently come up with ideas for new
graphica techniques to achieve a desred visud effect. In the past, these new techniques
could not be hardware accelerated without cregting a new graphics chip. Game

devel opers therefore had to write specia non-acce erated software routines if they wanted
to use these new techniques, and the performance cost associated with this type of
solution could often end up being prohibitive. The developer might be forced to leave the
feature out of the game atogether, in the hopesthat it could be used in their next game
when faster computer hardware is available to consumers.

Programmable pixel shaders are an exciting innovation that gives developers anew
degree of freedom in creating advanced visud effects. A pixd shader isa smple routine
that determines the color of a pixel based on variety of inputs (base materia color, light
color, surface reflectivity, bumpiness, transparency, etc.). Pixel Tapestry architecture
dlows a developer to actudly program custom shader routines into the graphics
processor itself, dlowing them to be accelerated in hardware.

Pixel Tapestry architecture's advanced pixel shader support alows up to three stages of
mathematical operations with up to three inputs each to be performed on every pixel ina
scene. Each stage of the shader routine can use the results of a previous stage as one of its
inputs, and can perform anumber of operations including addition, subtraction,
multiplication, apha blending and dot product. The following diagram illugtrates the
flexibility of the pixel shader hardware found in the RADEON graphics processor:
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Performance

A pretty pictureisonly part of the story when talking about redistic, immersive 3D
worlds. 3D games are interactive applications. No matter how detailed a 3D environment
is, theilluson of redity fals gpart if you don't get smooth, immediate feedback from

your actions. When you turn your head in red life, the view from your eyes changes
immediately. There is no delay, flickering, or sudden jumping from one view to ancther.
This need for smoothness and instant feedback is so important that game devel opers will
usudly limit the level of detall and image qudlity they display in order to maintain

smooth gameplay on a sandard system.

To achieve ingant feedback and fluid movement in a 3D gpplication, the software and
hardware must be capable of updating the displayed image with new information fast
enough that the human eye cannot detect the change. On low-resolution televisions and
movie screens, this can require aslittle as 30 or even 24 frames per second. On high
resolution monitors and flat pandls, however, aframe rate of about 60 frames per second
isrequired. Thisisimportant for fast- paced action games where sudden movements,
split-second reections and fineam are vitd.

Measuring Graphics Performance

When looking for one number that gives the most accurate indication of the relative
performance of a graphics processor, the most commonly quoted statistic isfill rate.
Unfortunately, fill rate is an ambiguous termthat can refer to severa different statitics.
Theseinclude:

Pixel Fill Rate: The number of pixels the graphics processor can render per
second. Calculated by multiplying the graphics engine clock speed by the number
of rendering pipelines, and measured in megapixeds per second (Mpix/sec).

Texd Fill Rate The number of texds (where atexd refersto asingle pixd from a
texture bitmap) the graphics processor can access per second. Calculated by
multiplying the graphics engine clock speed by the tota number of texture units,
then multiplying again by the number of filtering samples that can be accessed for
eaech pixel in asingle clock cyde (1 for point sampled or unfiltered, 4 for bilinear
filtered, 8 for trilinear filtered, etc.). Typicaly measured in gigatexels per second
(Gtex/sec).

Effective Fill Rate: The gatistic most commonly used in gragphics marketing when
referring to fill rate. Equa to the number of pixes agragphics chip can process
each second multiplied by the maximum number of textures that can be applied to
apixel inasngle dock cycle (determined by the number of texture units).
Usualy measured in megatexels or gigatexels per second (where 1 gigatexd =
1000 megatexels).



To complicate things further, fill rate numbers only represent the maximum "theoretica”
performance of a graphics processor. They are based on the assumptions that the
processor will aways run a 100% efficiency, and that performance will never be
congtrained by other factors such as memory bandwidth, AGP bus bandwidth, or CPU
gpeed. When running redl applications, however, these assumptions are dmost never
vdid.

There are many factors that affect the frame rates a 3D gpplication can achieve. In every
gtuation, however, thereis usualy one bottleneck that has the largest effect on
performance. The key to improving Soeed is finding and eliminating these bottlenecks.

For example, when the PCI bus became a bottleneck for graphics, AGP was developed to
overcome it. This exposed the CPU as a new bottleneck. Technology has snce
compensated for this by offloading most of the graphics work formerly done by the CPU
(such astriangle setup and transform & lighting) on to the graphics processor. Now the
CPU isno longer amgor limiting factor in graphics performance. For the current
generation of graphics hardware, the primary speed differentiator has become memory
bandwidth.

As a scene becomes more complex, the amount of data required to accurately set up and
render it grows exponentialy. The speed a which graphics chips can process data has
increased so rapidly that it has outstripped the capability of today's most advanced
memory technologies to deliver it. Graphics chipstry to cache frequently used datato
avoid having to fetch it from externa memory, but these caches must be kept fairly smal
to keep costs reasonable. Without a solution to this problem, things like increasing the
clock speed of the graphics processor or adding many pardld rendering pipelines are just
like spinning the tires of a car stuck in the mud. Until memory designers come up with
completdy new ways to improve performance, adifferent kind of solution must be

found.

HyperZ™ Technology

ATI'sRADEON chip takes a new approach to the memory bandwidth limitation issue.
The innovative HyperZ technology improves memory bandwidith efficiency without the
added cogt of exotic embedded or proprietary memory technologies. By eliminating this
key bottleneck, thefinal barrier to redigtic, red-time 3D is overcome.

The speed and type of memory accompanying a graphics chip places upper bounds on the
fill rate it can achieve. The table below shows how HyperZ boosts the maximum number
of 32-hit color pixels agraphics chip can render each second when equipped with various
types of frame buffer memory:

Memory Speed & Type Maximum Fill Rate(Mpix/sec) Maximum Fill Rate with HyperZ
(Mpix/sec)



b= rnory M=x=irur Fill Rate |Maximum Fill Rate with
Speed & Type [Mpizisac) Hyperf (Mpixizec)
166 MHz SDR 221 266
166 MHz DDR 443 521
123 hiHz DR 422 586
[200 hiHz DR 533 540

Fiymme wrrmme fpical 3D aome applic ation with sersge depthcompleodhr of 3.

All 3D applications today use some form of depth buffer to keep track of which objects
are vishle to the viewer. The most commonly used type of depth buffer is the Z-buffer,
athough other variations such as W-buffers can aso be used. With the current generation
of graphics hardware, depth buffer reads and writes typically account for more than half
of al memory bandwidth usage. HyperZ dashes the amount of bandwidth required for
the depth buffer without sacrificing any qudity in the fina image. HyperZ employs a st
of three techniques that combine to take 3D performance to new heights. These are
Hierarchica Z, Z Compression, and Fast Z Clear.

Hierarchical Z

A mgor problem that al game developers have to face when designing 3D worldsis
known as overdraw. To understand what overdraw is, consider a 3D scene where you are
looking through a small window into aroom beyond. Some of the walls and objectsin

the room will be visble through the window, and some will not. Most graphics

processors have no way of knowing what parts of the scene will be visble and what parts
will be covered until they begin the rendering process. They must then check the depth
buffer for each pixel and determine whether to draw it or not. In this process, many pixes
will be written to the frame buffer, then overwritten by new pixes from objects that are
closer to the viewer. Overdraw is the term for this overwriting of pixdsin the frame
buffer. A measure of the amount of overdraw in a sceneis caled depth complexity,
which represents the ratio of total pixels rendered to visible pixels. For example, if a
scene has a depth complexity of 3, this means 3 times as many pixes were rendered as
were actudly visible on the screen. Thisadso meansthat 3 times thefill rate would be
needed to display the scene at a given frame rate as would be needed if the was no
overdraw.

Overdraw isamagor source of inefficiency in 3D games. Depending on the content of a
scene, depth complexity can vary from 1 to as high as 10 or more, dthough vaues around
2 or 3 are most common. Hierarchical Z represents a new, more efficient way of deding
with overdraw on the graphics chip. It works by examining scene data before it is
rendered, to determine which pixelswill be visble and which will not. Any pixels that

will not be visbleto the viewer are discarded and not rendered a al. Thisdramaticdly
reduces overdraw and significantly boosts effective fill rate, with a corresponding
improvement in performance.



Z Compression

Data compression is acommonly used technique in any Stuation where alarge amount of
informetion must be transferred over a bandwidth-limited medium. The Z-buffer isa
good example of just such a Stuation. Since trandfers to and from the Z-buffer account
for such alarge percentage of memory bandwidth usage, it is an obvious target for deta
compression. HyperZ uses an advanced, losdess compression agorithm to reduce the
amount of data transferred during Z-buffer reads and writes. Compression and
decompresson isdone in red time, freeing up additional memory bandwidth without
sacrificing imege quality.

Fast Z Clear

After each frame of a 3D sceneis drawn, the depth buffer dlocated to that scene must be
cleared before it can start accepting data for the next frame. Conventiona graphics
processors clear the buffer by writing avaue of zero to each location. This process il
counts as a Z-buffer write, and therefore requires memory bandwidth over and above that
which is required to render the frame. HyperZ alows the Z-buffer to be cleared very
quickly (approximately 64x fagter than conventiona architectures) without having to

write anything to the Z-buffer, further reducing memory bandwidth consumption and
enhancing performance.



SUmmary

3D graphics technology is currently being driven by 3D games. Game developers are
seeking the ultimate goa of photoredidtic, red-time 3D rendering to take their gamesto
the next level. Thisrequiresthe ability to render lifdike characters and environments,
capture visua details like reflections and shadows, and do it dl without compromising
framerate. ATI'strio of new technologies (Charisma Engine, Pixel Tapestry and HyperZ)
overcome existing technicd barriers to make these things possible.

This document has described just a selection of the things that can be done with ATI's
new technologies. With advanced programming interfaces like DirectX® 7 and
OpenGL® 1.2, most of the techniques described are smple to implement in redl
goplications. The result is an environment where the only limit to what can be
experienced on one's PC is adeveloper's credtivity. The Charisma Engine, Pixel Tapestry
architecture, and HyperZ technologies will gppear in ATI's RADEON family of graphics
products.



