
Efficient AnimationEfficient Animation

Cem Cebenoyan
NVIDIA Corporation

cem@nvidia.com

Agenda

• Keyframe Interpolation Techniques
• Skinning Techniques
• Integration with Per-Pixel Lighting
• Optimization Issues

Keyframe Interpolation Idea

• Given a series of stored vertex positions, we
blend between them depending on a parameter,
most likely time.

• Can blend other attributes (like normals or texture
space bases) in the same fashion.

• This blending can occur entirely on the GPU
using vertex shaders and multiple streams.

Keyframe Interpolation

Linear Keyframe Interpolation

• The equation for linear keyframe interpolation is
simply:

• Where the final vertex position is a blend between
vertex position 0 and vertex position 1 using the
parameter t.

tvtvvfinal ⋅+−⋅= 10)1(

Linear Keyframe Interpolation

• In DirectX8, we can achieve this by setting the
current two keyframes we’re blending between
into separate streams, setting the blend
parameter as a constant, and doing the blending
in the shader using just two instructions:

mul r0, v0, c[BLEND_FACTOR].y

mad r0, v1, c[BLEND_FACTOR].x, r0

Keyframe Interpolation

• The flexibility of vertex shaders allows us to use
more complex blends in the vertex shader than
just a simple linear interpolation.

• Contrast this with the fixed function tweening
available in DirectX8 through the renderstate
D3DRS_TWEENFACTOR, which is limited to a
straight linear interpolation only.

Hermite Spline Interpolation

• You can blend between keyframes using a subset
of hermite splines known as Catmull-Rom
splines.

• Catmull-Rom splines are guaranteed to pass
through the values they’re interpolating, making
them ideal for keyframe interpolation.

Hermite Spline Interpolation

• Hermite spline interpolation uses the following
scary equation:

• Example spline:

13221110)()(++−+ ⋅+−⋅+−⋅+⋅= iiiiiifinal vhvvhvvhvhv

Hermite Spline Interpolation

• H are the following cubic hermite basis functions:

• Note that hermite splines are a function of four
vertex positions, so they require us to use four
separate streams, two positions before the
current and two after.

23
3

23
2

23
1

23
0

2
32

132

tth
ttth

tth
tth

−=
+−=

+−=
+−=

Hermite Spline Interpolation

• Spline interpolation gives a smoother blend, but
at a cost.

• Requires more instructions to do the blend in the
vertex shader.

• Requires twice the vertex data to be fetched by
the GPU.

• Can potentially reduce the memory requirements
since you can have greater space between
keyframes, and thus fewer keyframes overall.

• Watch for non-looping animations.

Hermite Spline Interpolation

• Note that it may be worthwhile to store vertex
attributes that don’t need to be interpolated, like
texture coordinates, in separate streams. This is
especially valuable for techniques that use many
streams, like spline interpolation.

• Saves duplication of data in your vertex buffers.
• Saves extra data being fetched over the AGP bus.
• Can potentially be slower, though, due to stream

inefficiencies. Test and find out.

Skinning Techniques

• There are a number of skinning techniques
supported by DirectX8:
• DirectX 7-style skinning
• Fixed-function matrix palette skinning
• Vertex shaders

DirectX7-style Skinning

• Specified through D3DRS_VERTEXBLEND.

• Not indexed, you get a limit to the number of
bones per call to DrawPrimitive().

• The limit on GeForce and GeForce2 is 2 bones,
GeForce3 ups this to 4 bones, the API limit.

DirectX7-style Skinning

• Advantages
• Very fast

• Disadvantages
• Kills batching for models with a large number of

bones.
• Limited number of bones available.
• Doesn’t integrate well with per-pixel lighting.

• Conclusion: use it when it’s sufficient, which may
be rare due to the many limitations.

Fixed Function Matrix Palette Skinning

• New for DirectX8, allows you to specify up to four
indices in your vertex format and index a palette
of up to 256 matrices.

• Meant to address the number of bone limitations
of the DirectX7-style of skinning.

FF Matrix Palette Skinning

• Advantages
• Simple to use.

• Disadvantages
• No current hardware supports it. And any

hardware that will support it in the future will likely
have much fewer than 256 matrices available.

• The current software implementation in DirectX8
isn’t optimal.

• Doesn’t integrate well with per-pixel lighting.
• Limits you to four bones per vertex.

• Conclusion: not the most flexible or high
performance skinning option.

Vertex Shader Matrix Palette Skinning

• Our choice: do matrix palette skinning in a vertex
shader.

• Advantages:
• Fully supported in hardware by GeForce3, and any

future DirectX8 hardware.
• Has a very fast software fallback through the

DirectX8 runtime.
• Supports a flexible number of bones per vertex.
• Integrates well with per-pixel lighting.

VS Matrix Palette Skinning

• Disadvantages:
• Potentially more complex, but we have sample

code and NVLink to help.
• Requires you to break up your mesh into sections

influenced by a certain number of bones, but it
shares this limitation with all hardware-accelerated
skinning solutions.

• Conclusion: Vertex Shaders are the most flexible
and efficient way to do skinning on the GPU.

The Address Register

• Vertex shader indexed matrix palette skinning
relies on using the address register a0.x

• It allows you to offset into the constant memory a
variable amount.

• Note that it can only be the destination of a mov
instruction:

mul a0.x, r0, r1 // ERROR!

• Also, there is only an a0.x, no a0.y, a0.z, etc.

VS Matrix Palette Skinning

• Implementation details:
• Vertex declaration for two bones per vertex:

DWORD dwDecl[] =

{

D3DVSD_STREAM(0),

D3DVSD_REG(0, D3DVSDT_FLOAT3), // position

D3DVSD_REG(1, D3DVSDT_FLOAT3), // normal

D3DVSD_REG(2, D3DVSDT_FLOAT2), // two weights

D3DVSD_REG(3, D3DVSDT_SHORT2), // two indices

D3DVSD_END()

};

VS Matrix Palette Skinning

• Actual vertex shader code:
//load first index

mov a0.x, V_INDICES.x

//transform position by first bone, store in r0

dp4 r0.x, V_POSITION, c[a0.x + CV_BONESTART + 0]

dp4 r0.y, V_POSITION, c[a0.x + CV_BONESTART + 1]

dp4 r0.z, V_POSITION, c[a0.x + CV_BONESTART + 2]

//transform normal by first bone, store in r2

dp3 r2.x, V_NORMAL, c[a0.x + CV_BONESTART + 0]

dp3 r2.y, V_NORMAL, c[a0.x + CV_BONESTART + 1]

dp3 r2.z, V_NORMAL, c[a0.x + CV_BONESTART + 2]

VS Matrix Palette Skinning

//load second index

mov a0.x, V_INDICES.y

//transform position by second bone, store in r1

dp4 r1.x, V_POSITION, c[a0.x + CV_BONESTART + 0]

dp4 r1.y, V_POSITION, c[a0.x + CV_BONESTART + 1]

dp4 r1.z, V_POSITION, c[a0.x + CV_BONESTART + 2]

//transform normal by second bone, store in r3

dp3 r3.x, V_NORMAL, c[a0.x + CV_BONESTART + 0]

dp3 r3.y, V_NORMAL, c[a0.x + CV_BONESTART + 1]

dp3 r3.z, V_NORMAL, c[a0.x + CV_BONESTART + 2]

VS Matrix Palette Skinning

//blend between r0 and r1 -- the positions

mul r0, r0, V_WEIGHT.x

mad r1, r1, V_WEIGHT.y, r0

//blend between r2 and r3 – the normals

mul r2, r2, V_WEIGHT.x

mad r3, r3, V_WEIGHT.y, r7

• Now, r1 contains the blended vertex position and
r3 contains the blended normal. Just use them as
usual…

VS Matrix Palette Skinning

• Some notes:
• Note that GeForce3 does not support the vertex

attribute format D3DVSDT_UBYTE4, which is the
most natural format for storing indices.

• The previous sample used shorts to store the
indices, which can take twice the memory.

• Instead, it’s possible to use D3DVSDT_D3DCOLOR,
which is a packed DWORD usually used to
represent colors.

• Note that these values will then have to be scaled
by 255 in the vertex shader since they are
converted to the range [0..1].

• Memory / Speed tradeoff.

VS Matrix Palette Skinning -- Issues

• Limited constant memory – 96 4-vectors
• If your bone matrices are affine, it’s not

necessary to store a full 4x4 matrix per bone, a
4x3 will do.

• If you can avoid anisotropic scales in your bone
matrices, you can avoid having to store inverse-
transpose matrices for transforming vectors.

• So, 96 / 3 == 32 bones max, although realistically
you’ll probably only be able to store around 20-
25.

VS Matrix Palette Skinning -- Issues

• Can use quaternions to increase number of
possible bones in constant memory.

• One four vector to represent the represent the
quaternion rotation.

• One three vector to represent translation.
• Total bones possible increases to 96 / 2 == 48!
• Transformation more expensive, though.

VS Matrix Palette Skinning -- Issues

• Which means you’ll have to split up your mesh
into sections influenced by a certain number of
bones.

• Since bones are arranged spatially, vertices
should fall into bins influenced by certain bones.

• Note that the D3DXMesh function
ConvertToIndexedBlendedMesh() can do this for
you.

Texture Space Review

• Per-pixel Lighting uses the idea of a local per-
vertex texture space:

T

SSxT

Texture Space Review

Normal Map – A flat
plane in S,T direction

SxT

S

T

L and N are expressed in
different coordinate systems

Solution = Rotate Light position
into S,T,SxT space.

Result: New light position for
each vertex.

Integration with Per-Pixel Lighting

• Per-pixel lighting usually stores a per-vertex
texture space matrix to transform model space
vectors into local texture space.

• However, when models distort (i.e. animate),
these texture space vectors become invalid.

• The naïve solution to this is to regenerate the
texture space matrices from the model data every
time the model moves.

• This is quite CPU intensive and slow, however,
especially for complex models.

A Better Way – Update the Bases

• The solution is to instead modify the existing
bases, preferably in the vertex shader.

• This works for both matrix palette skinning and
keyframe interpolation, provided you’re using
vertex shaders.

VS Matrix Palette Skinning

• For each axis of Texture Space-- usually called
the S, T, and SxT vectors– skin the vectors in the
exact same fashion as you did the vertex
normals.

• Note that you can skip skinning the SxT vector
and instead derive it in the vertex shader using
the cross product, which is only two instructions.
Can be much cheaper if you have many bones
per vertex.

• You can also often just use the vertex normal as
the SxT vector.

Keyframe Interpolation
• Create keyframes for the S, T, and SxT vectors as

well (or, once again, derive the SxT vector in the
shader)

• Linearly interpolate between the S(0) and S(1)
using the keyframe weight from 0 to 1
(1 – Weight) S0 + (Weight) * S1

• Now Normalize the result
• To handle scaled or stretched textures
• Rescale by the linearly interpolated length of the

two keyframe vectors
NormalizedVector *=
(1 – Weight) * LengthOf(S0) +
(Weight) * LengthOf(S1)

Keyframe Interpolation

• The normalizing of the vector approximates a
SLERP

• The rescaling ensures that any stretching or
scaling in the textures is preserved
• especially important if morphing

• Note that these techniques may not be necessary
if you’re using a more sophisticated interpolation
technique like hermite interpolation.

Optimization Issues

• With skinning, the number of instructions in your
vertex shaders grows quickly.

• If you’re doing simple vertex lighting, the
skinning cost is at least 9 instructions per bone.

• For per-pixel lighting with skinning the bases, the
cost grows to at least 16 instructions per bone.

• So it’s 64 instructions to do just the skinning with
4 bones and per-pixel lighting, not to mention
putting the light into texture space,
renormalizations, projection, etc.

Optimization Issues

• If the number of bones influencing individual
vertices varies a great deal from vertex to vertex,
bin your vertices into groups influenced by a
certain number of bones.

• So, if you have a character with vertices in the
face influenced by 4 bones each, while vertices
on the torso are influenced by 2 bones each,
don’t render them with the same call to
DrawPrimitive(), even if the total number of verts
fits in the constant memory.

• Instead, render each section with two different
vertex shaders.

More Optimization Issues

• Note that running the ‘optimal’ vertex shader isn’t
always a win.

• If you’re entirely fill or memory bound, it may be
easiest to just render everything with the same
vertex shader, since the length of your shader
isn’t directly influencing your performance in
these cases.

• Test and see!

What About the CPU?
• While the hardware can run through a vertex

shader much faster than even the fastest CPU
can, there may be situations where skinning on
the CPU is still preferable.

• If you’re doing multiple passes over your
characters, the vertex shader has to be run for
each pass, there’s no persistence.

• On the CPU, one can simply skin the vertices
once and send the pre-skinned vertices to the
hardware for each pass.

• The CPU can also start transforming the next
frame’s vertices while the GPU is rasterizing,
improving parallelism.

What About the CPU?

• Also, if you’re completely bound by fill or
memory, the GPU gets into a situation where the
TnL unit is sitting idle while waiting on the
rasterizer.

• Using the CPU can potentially improve
performance in this case as the CPU can run
through the vertex buffer without any stalls at all.

• Note that certain operations are much faster on
the GPU:
• Vector normalization
• Exponents for specular lighting
• Cross-products

More Uses For CPU

• Any time an exact skinned position is necessary.
• Stencil shadows / silhouette extraction
• Exact collision (for maybe a fighting game)

• Extremely long vertex shaders also may benefit
CPU.

• Conclusion: the GPU is extremely good at what it
does, but isn’t the solution to every single
problem. The goal is to make your games run as
fast as possible looking as good as possible.

One Idea For Balancing CPU/GPU

• Use the CPU to do the skinning and generate a
keyframe every 5 or so frames.

• Then use the GPU to blend between these
keyframes for the intermediate frames, using
linear or more complex blending.

• Could strike a great balance between CPU and
GPU, especially for multi-pass.

Questions…

?
Cem Cebenoyan

cem@nvidia.com

www.nvidia.com/Developer

