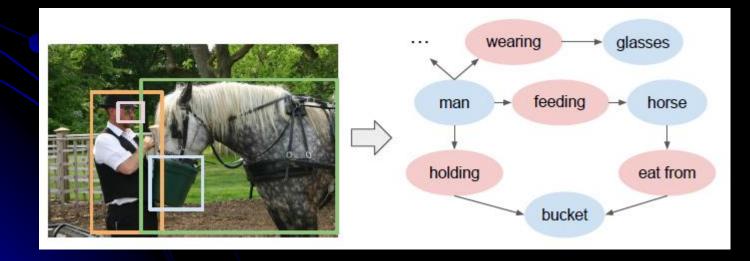
Machine learning in computer vision

Elena Šikudová

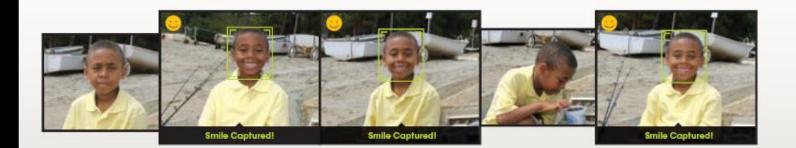
Computer vision tasks

Object detection Object localization



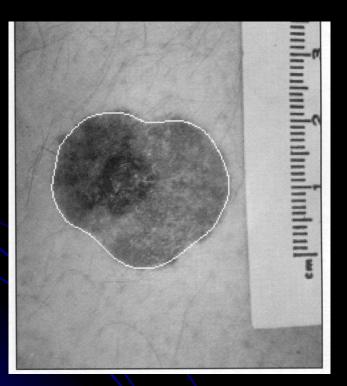


Face detection



Tumor detection

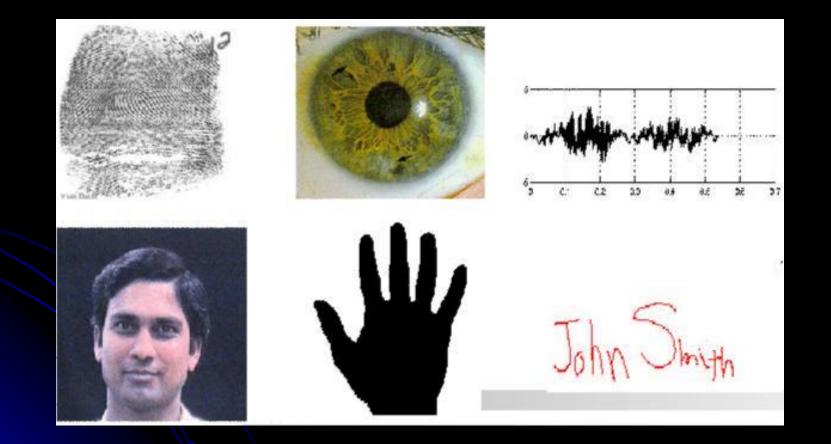
Medical applications



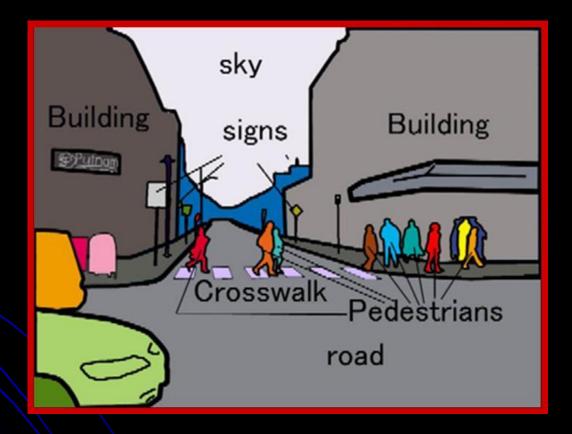
Optical character recognition (OCR)



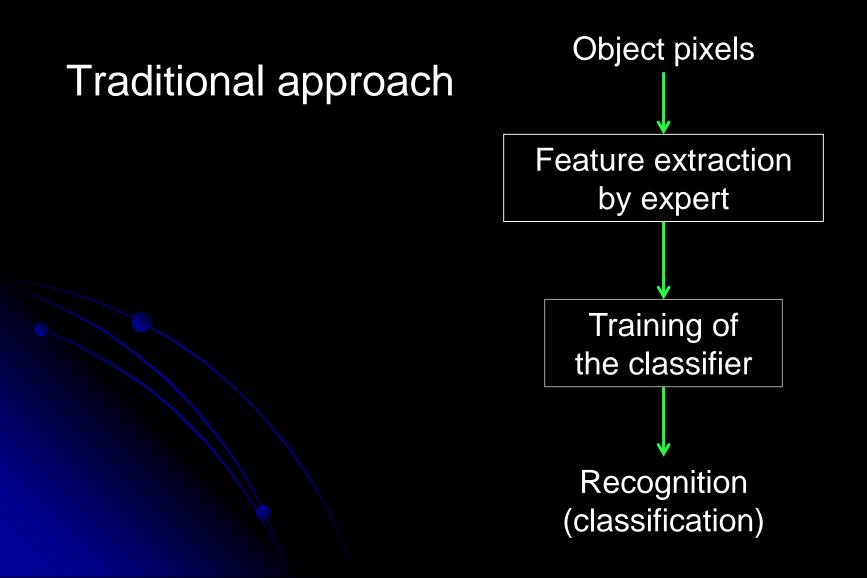
Biometrics



Scene segmentation

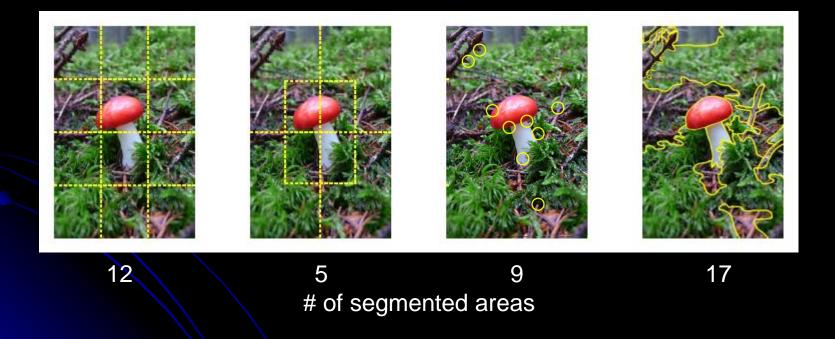


Object recognition



Object

A segmented area



Features

Measurements quantifying some object properties

Grouped to feature vectors

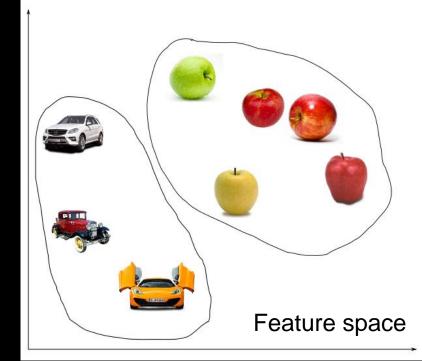
Domain expert knowledge

Feature vector = object descriptor

Invariant

Discriminative

Compact



Object (class) recognition

Feature-based classification

Statistics

Rules

Metrics

(distance)

Biologically inspired

Bayesian decision theory

Decision trees

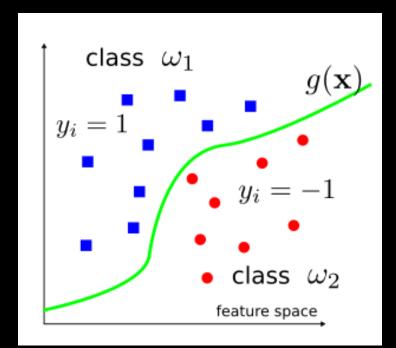
Nearest neighbour techniques Discriminant analysis Support vector machines

Neural networks

Supervised classification

Training set N observations $(\mathbf{x}_1, \cdots \mathbf{x}_N), \mathbf{x}_i \in \mathbb{R}^d$

Correct classification $(y_1, \dots y_N), y_i \in \{-1, 1\}$

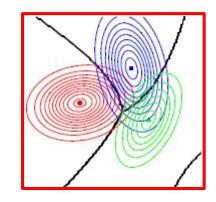


Classification problem: find $f(\mathbf{x})$ s. t. $f(\mathbf{x}_i)=y_i$ determine $g(\mathbf{x})$ from $f(\mathbf{x})$

Naïve Bayes classifier

Bayes rule $P(\omega_i | \mathbf{x}) = \frac{P(\mathbf{x} | \omega_i) P(\omega_i)}{P(\mathbf{x})}$

 $f(\mathbf{x}) = \omega_i$, where $i = \arg \max_j P(\mathbf{x}|\omega_j)P(\omega_j)$



Fake smile recognition

Features: std, max, min, mean

Accuracy 91.3%

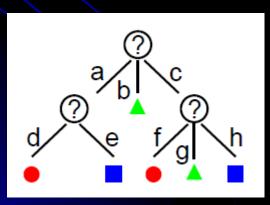
Dibeklioglu, H. et al. 2010. Eyes do not lie: spontaneous versus posed smiles. MM '10.

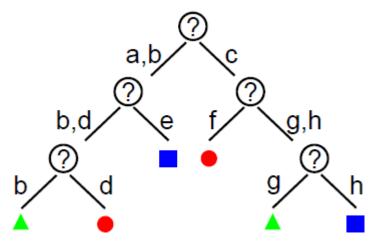
Decision trees

Nominal data – no interpretation of distance

Rules

Tree: node = test, branches = possible outcomes leaf = object class

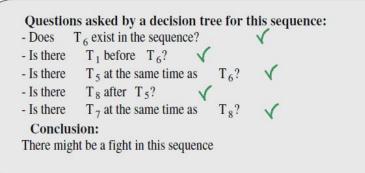




Action recognition in video

Labels definition:

- T₁: Two person are approaching
- T2: Person quickly going up
- T₃: Person slowly moving in the middle
- T₄: Blob quite big with great agitation
- T₅: Agitated Persons on the center right of the scene
- T₆: Two persons very close and quite agitated
- T₇: Person quickly moving to the right
- T8: Person not moving



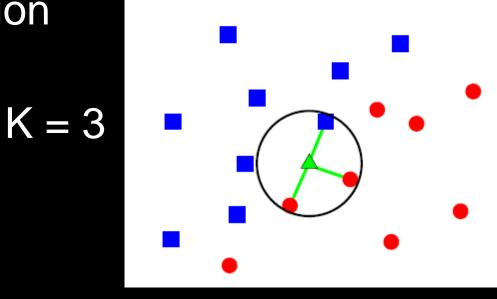
Various scene Accuracy 70% – 100%

Simon, C. et al.. 2010. Visual event recognition using decision trees. MTA, 50, 1, 95-121.

K nearest neighbours

K=1 $f(\mathbf{x}) = y_i$, where $i = \arg\min_i ||\mathbf{x}_j - \mathbf{x}||$

K>1 majority classification



Written sign recognition

000000000000000000 / \ \ \ / 1 | / 7 1 | / 7 1 | / / / 222222222222222 666666666666666666 クァキ17ァァ7ファ7ファフ 88888888888888888888 999993999999 9

Accuracy Numbers 99% Capital letters 94% Small letters 89%

Pérez-Cortes J.C., et al, 2000 Fast and Accurate Handwritten Character Recognition Using Approximate Nearest Neighbours Search on Large Databases. SSPR /SPR 2000

Linear classifier

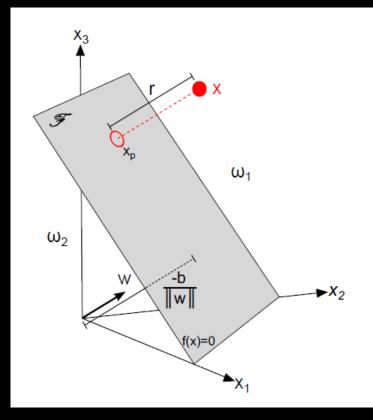
Hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$

 $\mathbf{w}^{T}\mathbf{x} + b \ge 0 \text{ for } \mathbf{x} \in \omega_{1}$ $\mathbf{w}^{T}\mathbf{x} + b < 0 \text{ for } \mathbf{x} \in \omega_{2}$

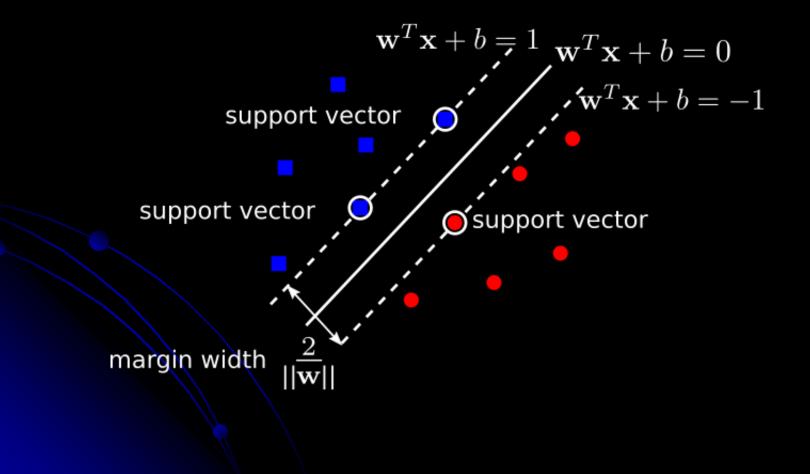
$$\mathbf{u} = [b, \mathbf{w}^T]$$
$$\mathbf{z} = [1, \mathbf{x}^T]^T$$

 $\mathbf{u}^T\mathbf{z}=\mathbf{0}$

 $\mathbf{u}_{i+1} = \mathbf{u}_i - \alpha(i) \nabla O|_{\mathbf{u}_i}$



Support vector machines

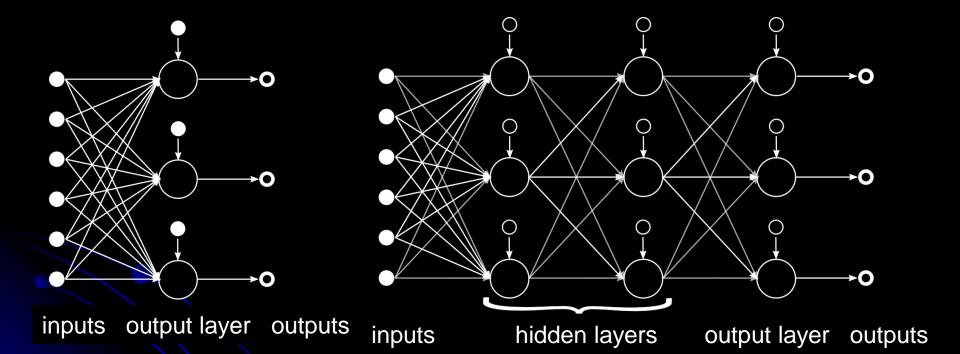


Person and age identification

Method	# of face pairs	Person identification	Age identification
Human (Color/Hair)	100	77.8 %	75.7 %
Human (Gray/Cut-out)	100	66.9 %	63.8 %
SVM	100	80.0 %	75.5 %

Lanitis, A., 2008 Evaluating the performance of face-aging algorithms, ICAFGR2008, 1-6

Artificial neural networks



Feed-forward neural networks

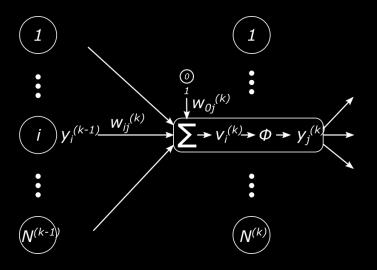
Outputs of neurons in the previous layer are weighted and summed

$$v_j^{(k)} = \sum_{i=1}^{N^{(k-1)}} w_{ij}^{(k)} y_i^{(k-1)} + w_{0j}^{(k)}$$

Non-linear activation function is applied

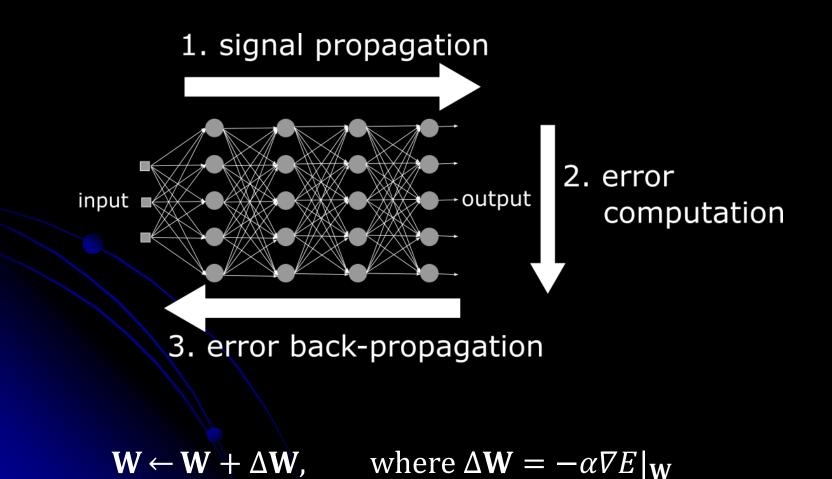
$$y_j^{(k)} = \phi^{(k)} \left(v_j^{(k)} \right)$$

Output goes to the next layer

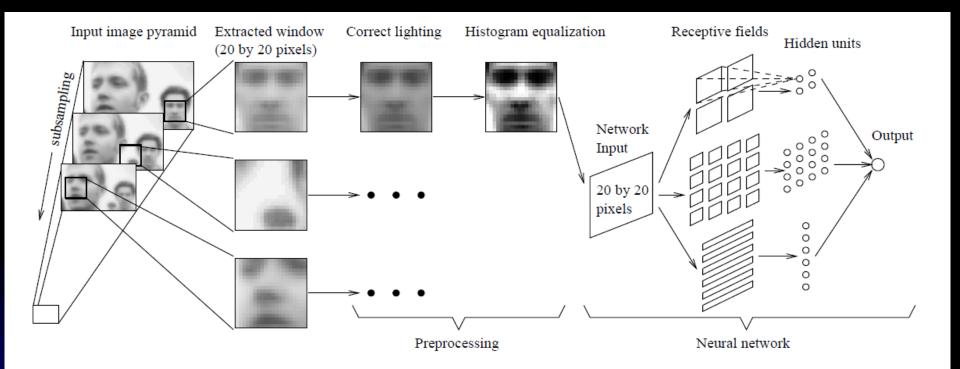


Network training

Weight matrix (weight vectors in all layers)



Face detection



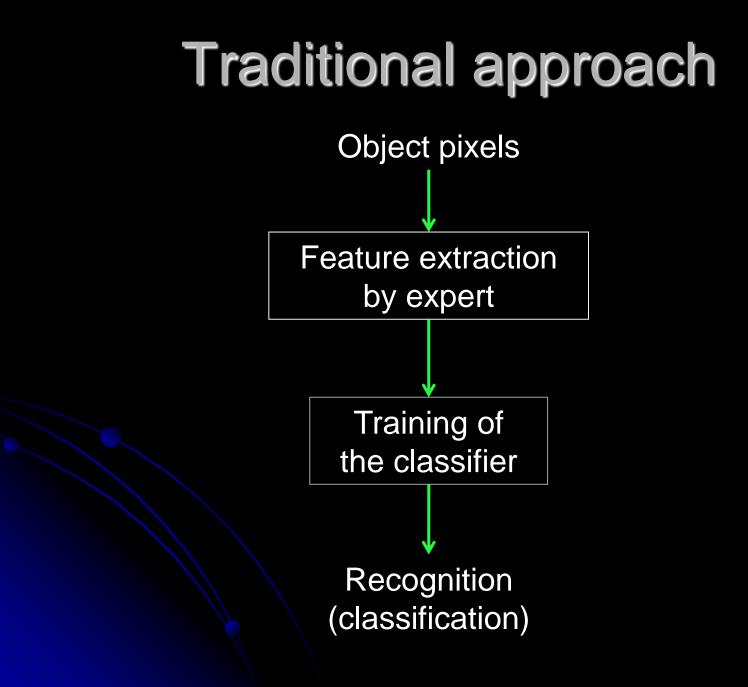
90% accuracy

Rowley, H. A., et al. 1998, Neural network-based face detection, PAMI, vol. 20, no. 1, pp. 23-38

Identification of portraits

2 hidden layers8 geometrical features80% accuracy

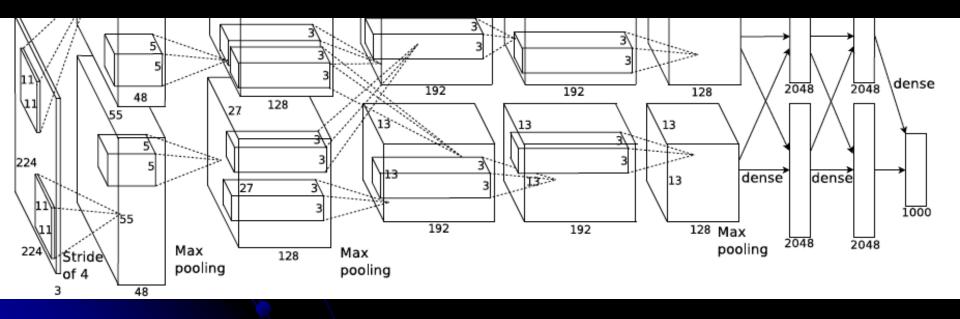
Šikudová E. et al., 2006, Extracting semantic information from art images. CVG Computational Imaging and Vision, vol 32. Springer



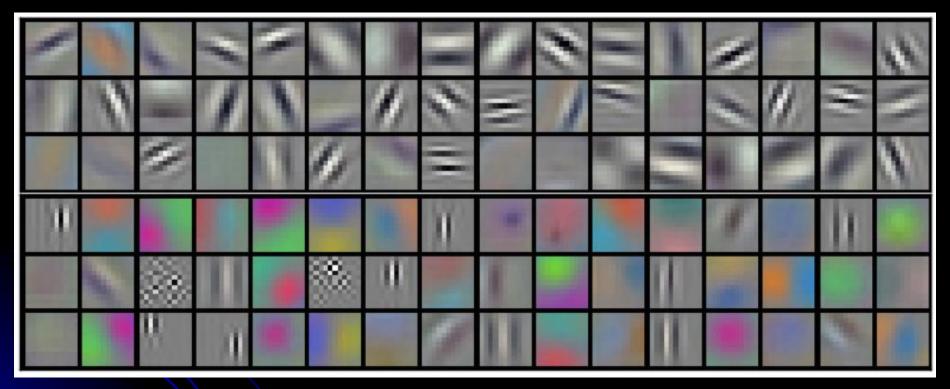


AlexNet

Convolutional network, 7 hidden layers, 650 000 neurons 60 000 000 parameters Trained on 2 GPU for a week

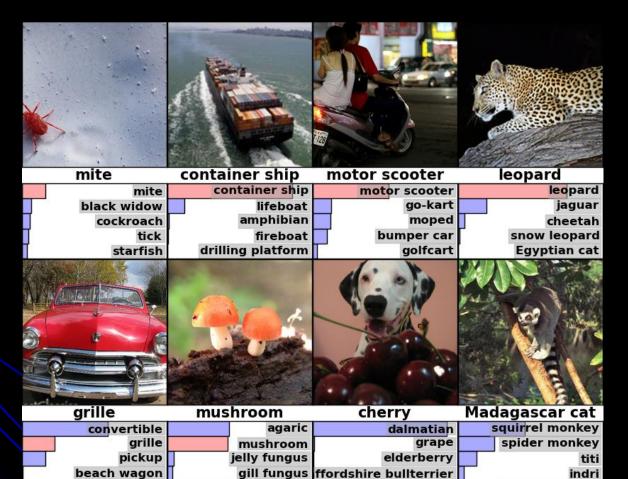


AlexNet Features



1. layer: 96 convolutional kernels

AlexNet results



top 5 error 16,4%

currant

howler monkey

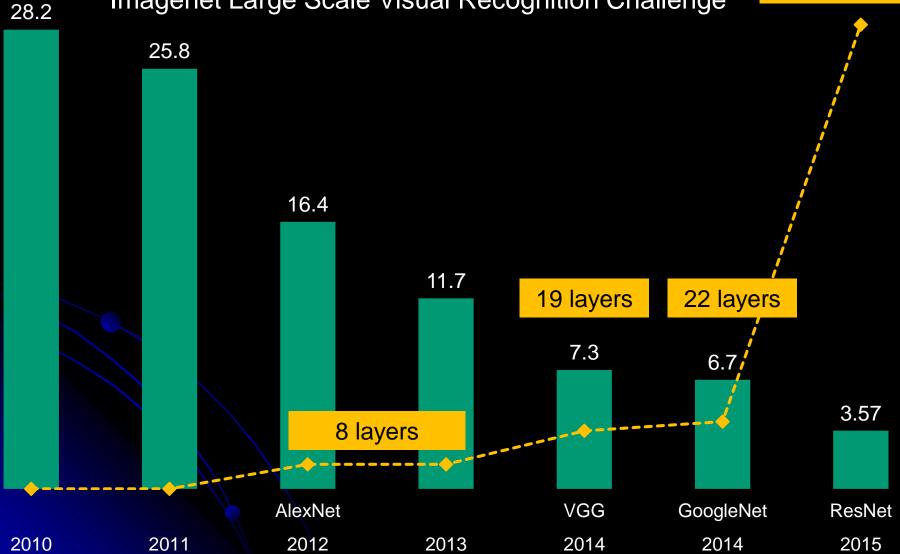
dead-man's-fingers

fire engine

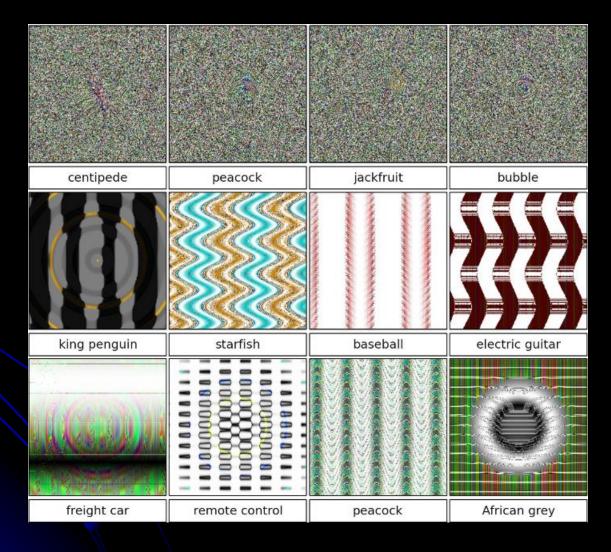
History of ILSVRC

152 layers

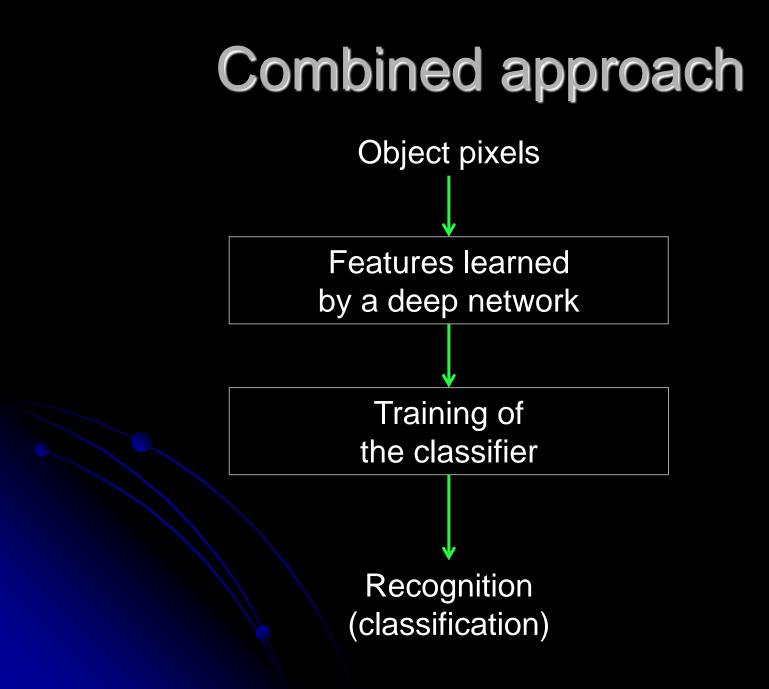
Imagenet Large Scale Visual Recognition Challenge



Wrong classification



Nguyen, A. Et al. 2015, Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images, CVPR '15



Combined approach

OverFeat network (NYU), no additional training + SVM

Task	Database	mAP
Image classification	Pascal VOC 2007	73.9%
Scene classification	MIT-67	58.4%
Fine grained recognition	Caltech-UCSD Birds 200- 2011	53.3%
	Oxford 102 Flowers	74.70%

Combined approach

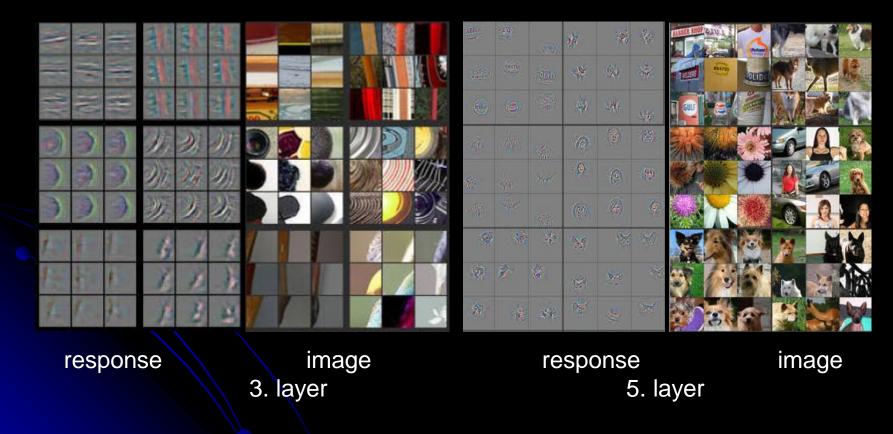
AlexNet + SVM

Layer	Accuracy		
	Caltech 101	Caltech 256	
SVM (1)	44.8%	24.6%	
SVM (2)	66.2%	39.6%	
SVM (3)	72.3%	46.0%	
SVM (4)	76.6%	51.3%	
SVM (5)	86.2%	65.6%	
SVM (7)	85.5%	71.7%	

Zeiler, M. D. et al. 2014, Visualizing and Understanding Convolutional Networks, ECCV2014, pp. 818–833

Combined approach

AlexNet + SVM



Zeiler, M. D. et al. 2014, Visualizing and Understanding Convolutional Networks, ECCV2014, pp. 818–833

Other covered topics

Feature selection and preprocessing Unsupervised learning Hidden Markov models Classification quality evaluation

Conditions

written exam project

at least 50% from each

Bibliography

Christopher M. Bishop **Pattern Recognition and Machine Learning** Richard O. Duda, Peter E. Hart, David G. Stork Pattern classification Trevor Hastie, Robert J. Tibshirani, J. Jerome H. Friedman The elements of statistical learning Šikudová a kol. Počítačové videnie: detekcia a rozpoznávanie objektov

Takehome message

No algorithm solves all the problems

Machine learning is a methodology, not a tool

Domain knowledge

https://xkcd.com/1838/