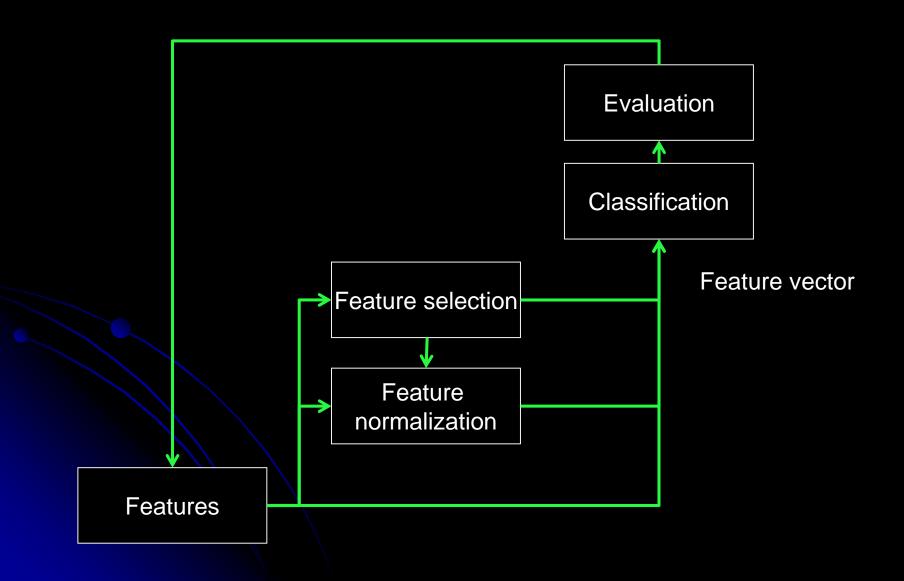
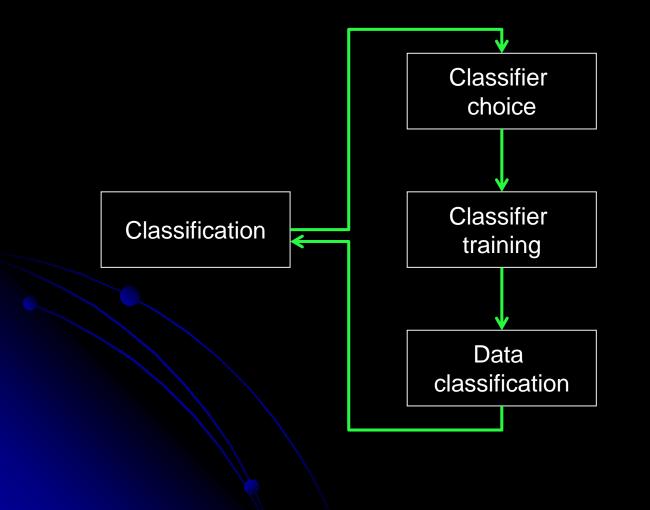
Machine learning in computer vision

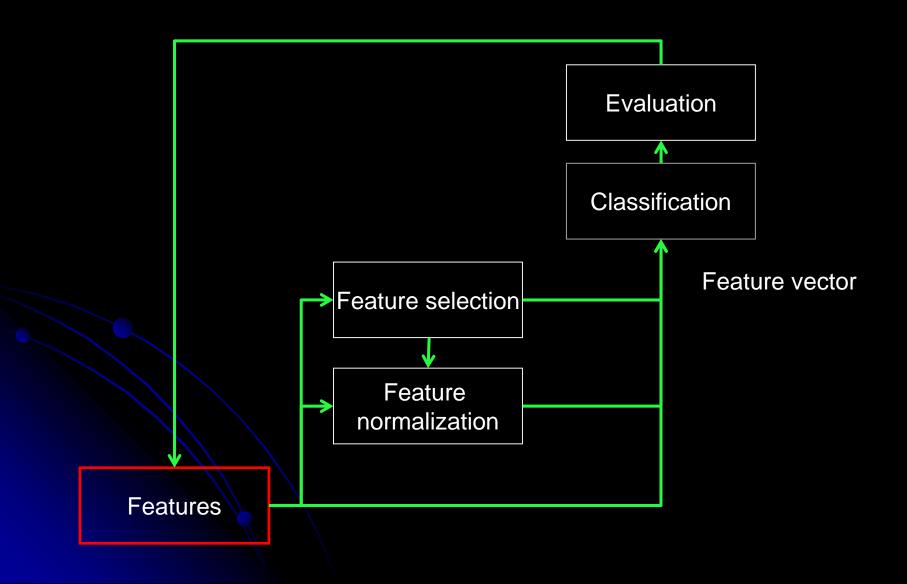
Lesson 1

Classification pipeline





Classification pipeline



Department store> Feature: usage Departments (classes) clothes groceries

Department store> Feature: usage Departments (classes) clothes groceries

Alternative feature: colour Departments (classes) "green stuff": apples, t-shirts,... "red stuff": apples, t-shirts,...

. . .

Department store> Feature: usage Departments (classes) clothes groceries

Alternative feature: colour Departments (classes) "green stuff": apples, t-shirts,... "red stuff": apples, t-shirts,...

Classification depends on features

Measurements quantifying some object properties

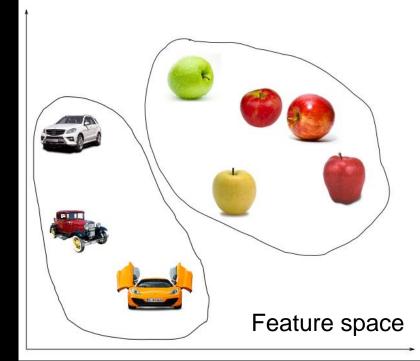
Grouped to feature vectors

Feature vector = object descriptor

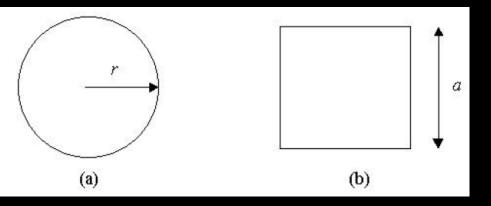
Invariant

Discriminative

Compact



Example

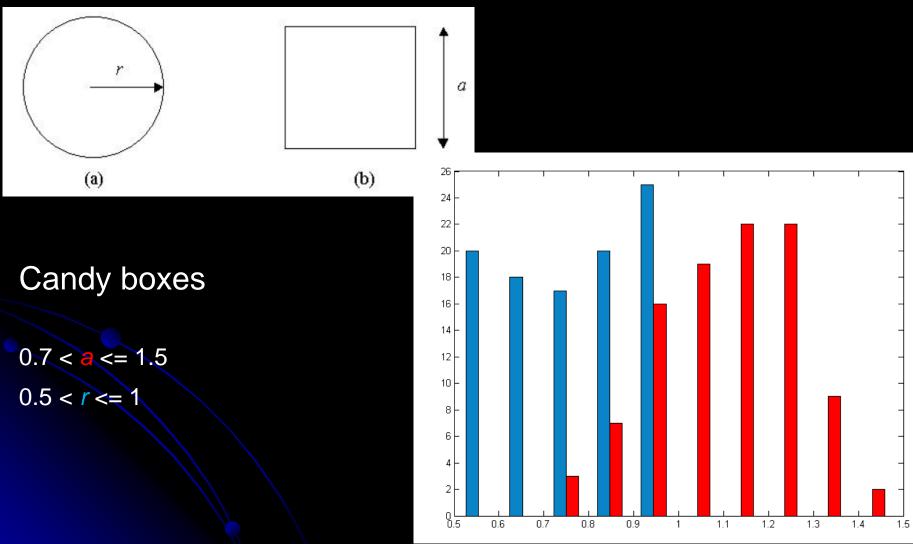


Candy boxes

0.7 < <mark>a</mark> <= 1.5 0.5 < *r* <= 1

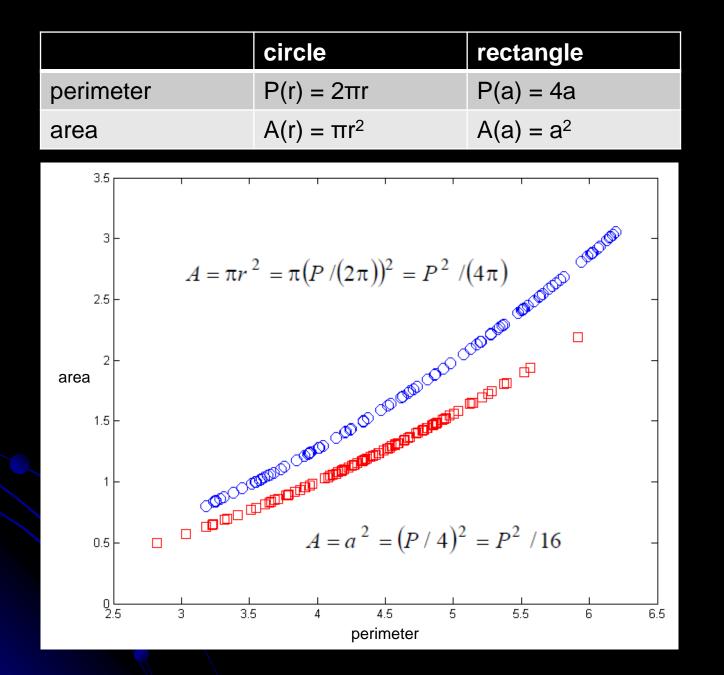
Shape analysis and classificaiton : theory and practice / Luciano da Fontroura Costa, Roberto Marcondes Cesar Jr.

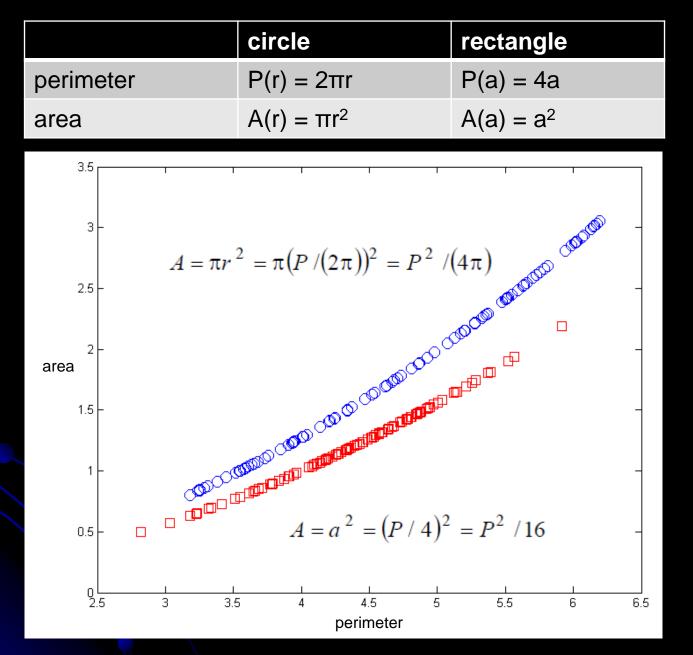
Example



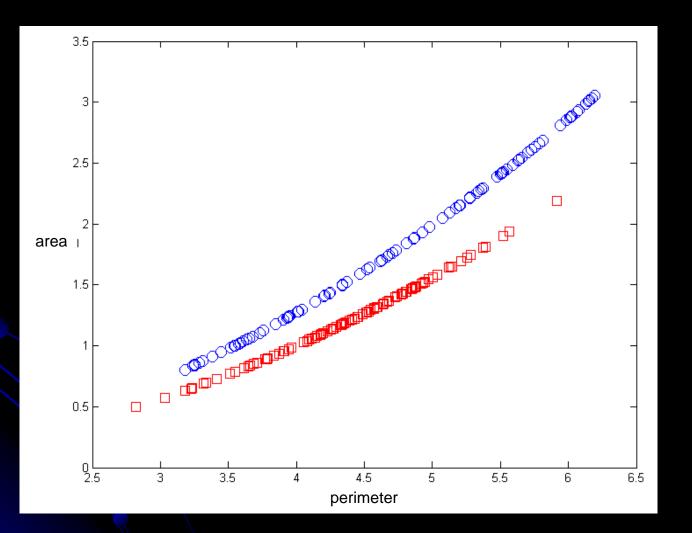
Shape analysis and classificaiton : theory and practice / Luciano da Fontroura Costa, Roberto Marcondes Cesar Jr.

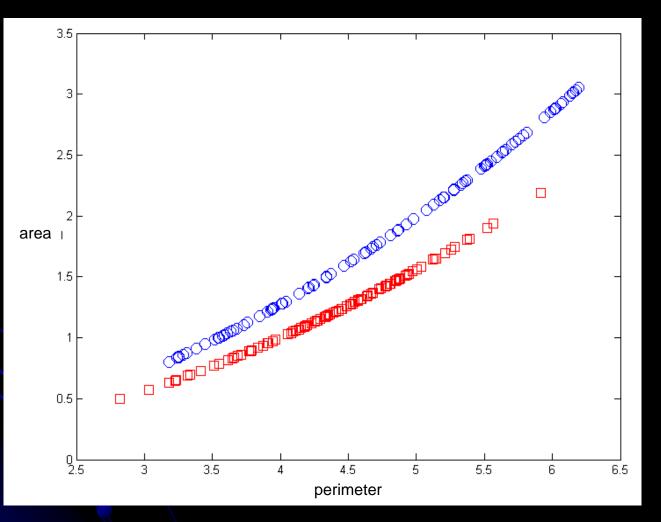
	circle	rectangle
perimeter	$P(r) = 2\pi r$	P(a) = 4a
area	$A(r) = \pi r^2$	$A(a) = a^2$



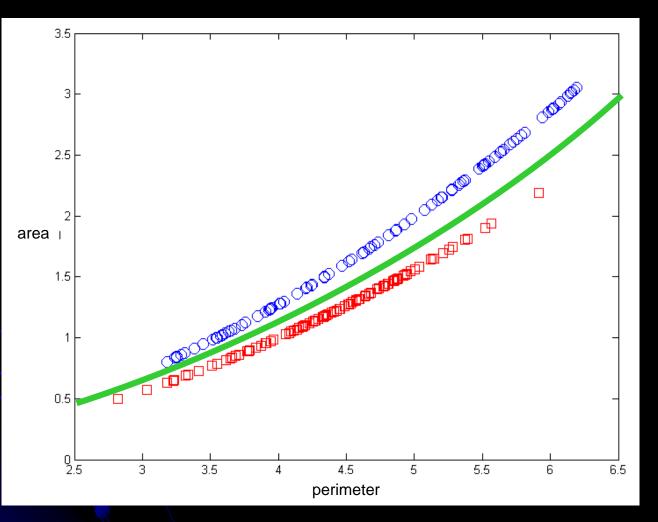


(primeter x area) feature space

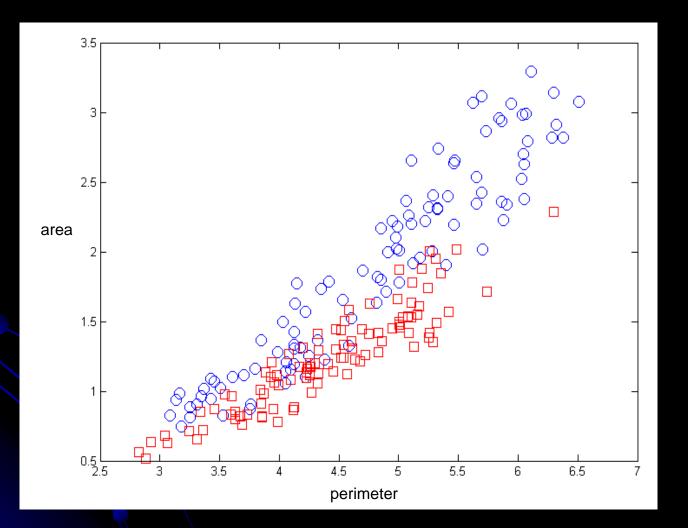


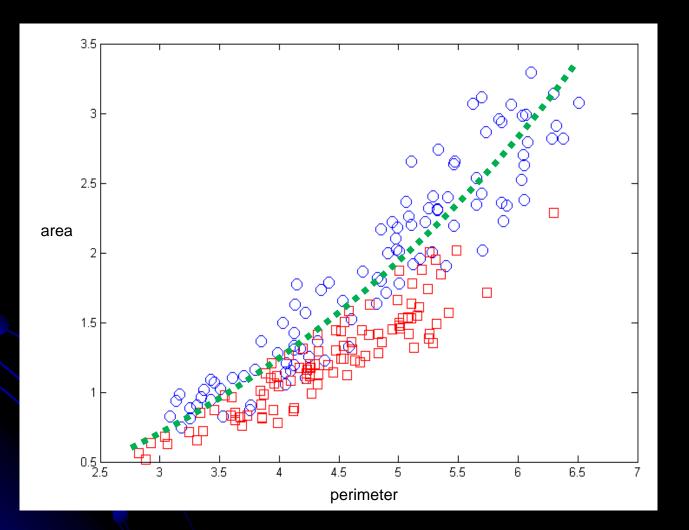


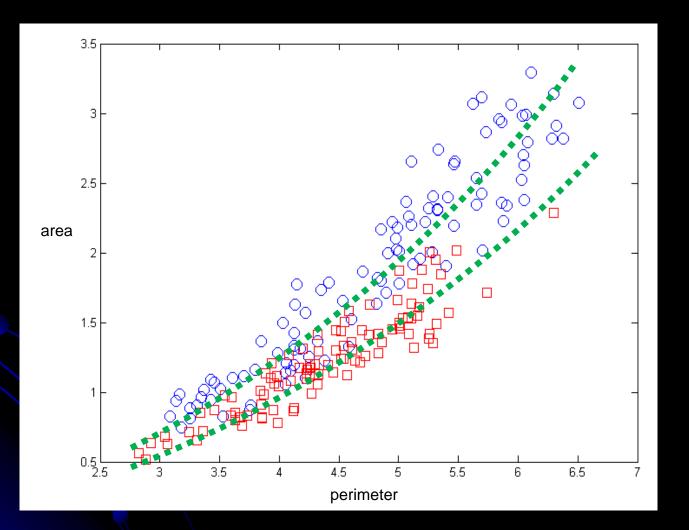
 $A = P^2/k$ where $4\pi < k < 16$

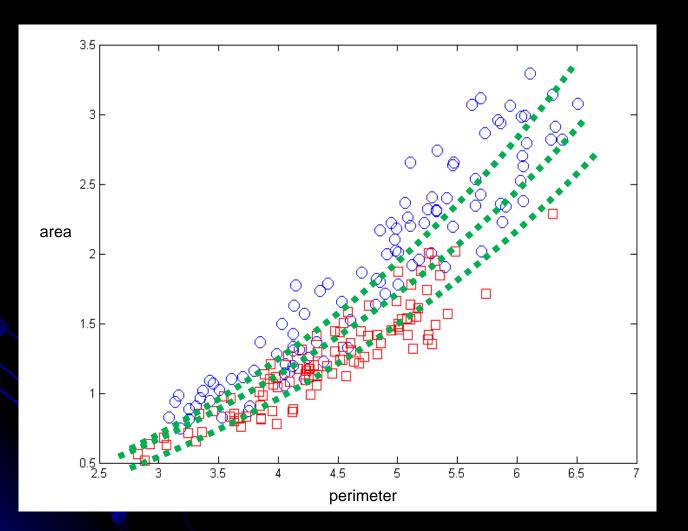


 $A = P^2/k$ where $4\pi < k < 16$

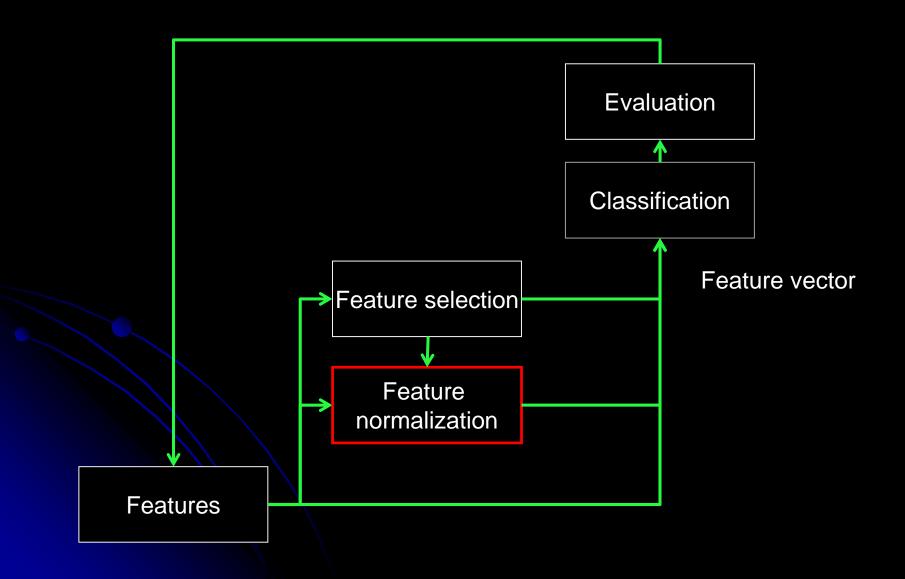






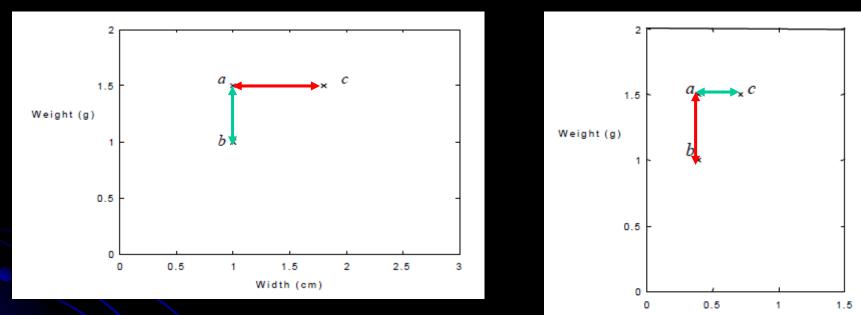


Classification pipeline



Feature normalization

Units (cm, m, cl, ml, ...)



Width (in)

Units influences the "distance"

Unitless features

Unitless features

Relative to some reference value

Example:

Height of object (cm, m)

Unitless height:

Reference value (max or min possible height, 1m, 100cm, ...)

(Unitless feature) = (feature in units)/ (reference value in units)

Normalization

Linear scaling to [0,1]

$$\widetilde{x_i} = \frac{x_i - l}{u - l}$$

u – upper limit (maximum value) l – lower limit (minimum value)

Scaling to unit length

$$\widetilde{x_i} = \frac{x_i}{\|\mathbf{x}\|}$$

Normalization

Standardization

$$\widetilde{x}_i = \frac{x_i - \mu}{\sigma}$$

 3σ - scaling - 99% of data in [0,1]

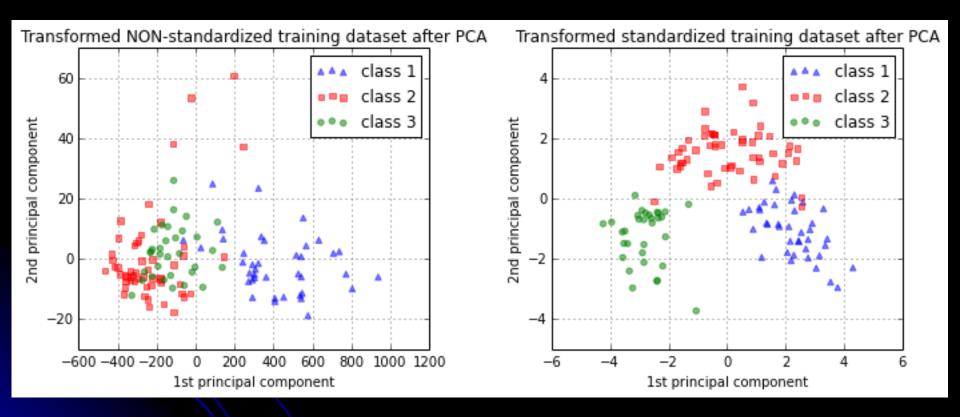
$$\widetilde{x_i} = \frac{\frac{x_i - \mu}{3\sigma} + 1}{2}$$

Example



http://sebastianraschka.com/Articles/2014_about_feature_scaling.html

Example

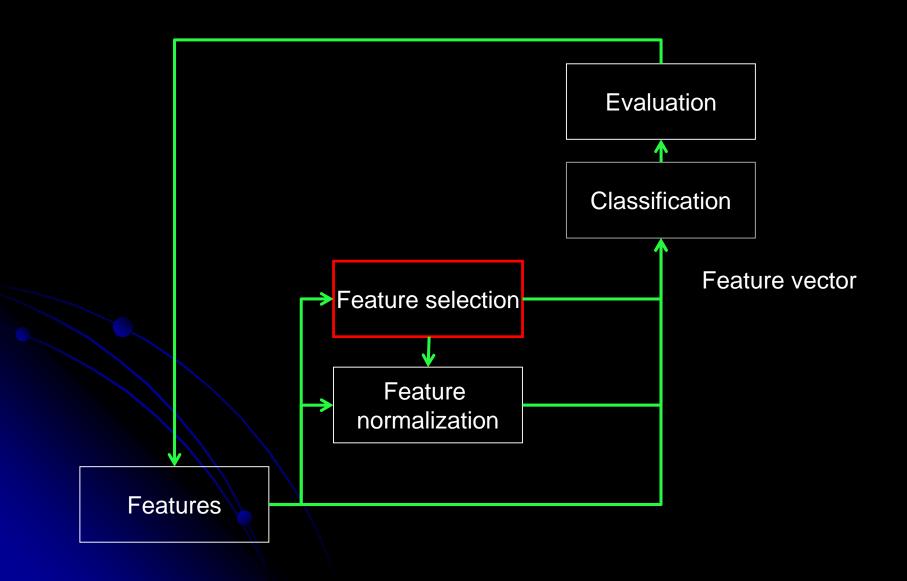


Usage

ML algorithms which require feature scaling: **SVMs** Perceptrons Neural networks PCA.... ML algorithms which do not require feature scaling: Decision trees (and random forests) Naive Bayes,...

https://www.jeremyjordan.me/preparing-data-for-a-machine-learning-model/

Classification pipeline

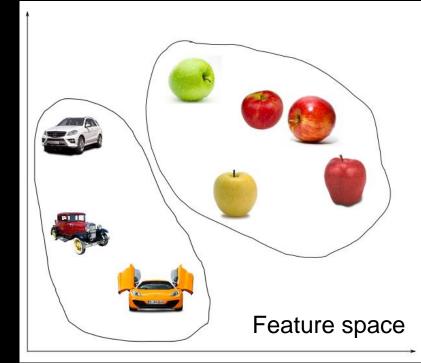


Feature vector = object descriptor

Invariant

Discriminative

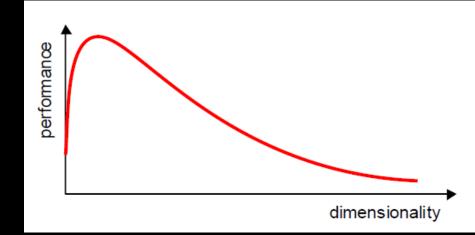
Compact



- more features => more information, higher precission
- more features => more difficult extraction
- more features => more difficult classifier training

- more features => more information, higher precission
- more features => more difficult extraction
- more features => more difficult classifier training

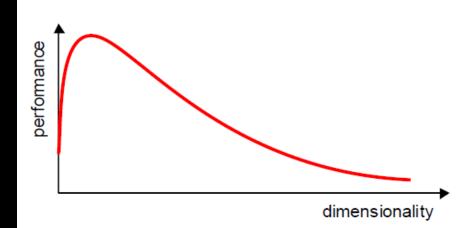
The curse of dimensionality



- more features => more information, higher precission
- more features => more difficult extraction
- more features => more difficult classifier training

The curse of dimensionality

Solution: Optimal number of features?



Dimensionality reduction

F1	F2	F3	F4	F5	С
0	0	1	0	1	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
0	0	1	1	0	0
0	1	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1

5 features (Bool)

Dimensionality reduction

F1	F2	F3	F4	F5	С
0	0	1	0	1	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
0	0	1	1	0	0
0	1	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1

5 features (Bool)

Dimensionality reduction

F1	F2	F3	F4	F5	С
0	0	1	0	1	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
0	0	1	1	0	0
0	1	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1

5 features (Bool)

C=F1|F2

Dimensionality reduction

F1	F2	F3	F4	F5	С
0	0	1	0	1	0
0	1	0	0	1	1
1	0	1	0	1	1
1	1	0	0	1	1
0	0	1	1	0	0
0	1	0	1	0	1
1	0	1	1	0	1
1	1	0	1	0	1

5 features (Bool)

C=F1|F2

Optimal set {F1,F2}, {F1,F3}

2 approaches

Feature selection:

subset of original features

Feature transformation:

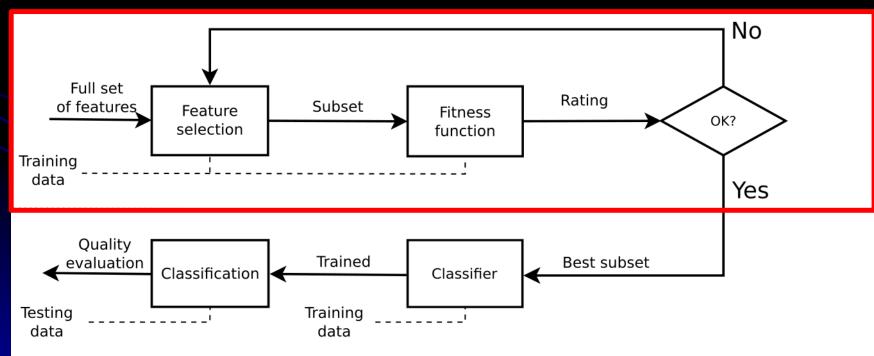
transformation of the original features to less-dimensional space

Guyon and Elisseeff: An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 3 (2003) 1157-1182

Filter

does not depend on classifier

only on data properties (*information, distance, correlation, consistency,...*)

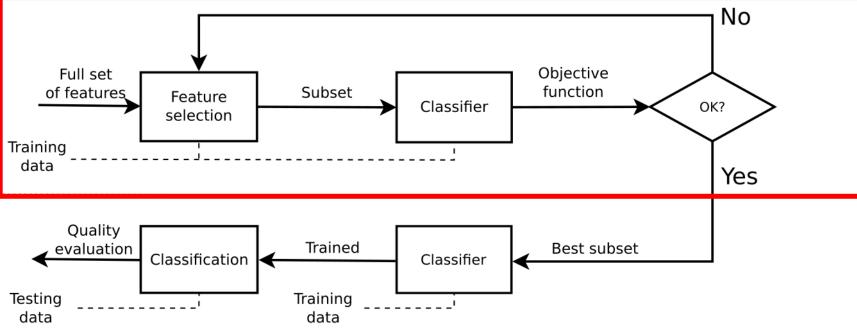


Wrapper

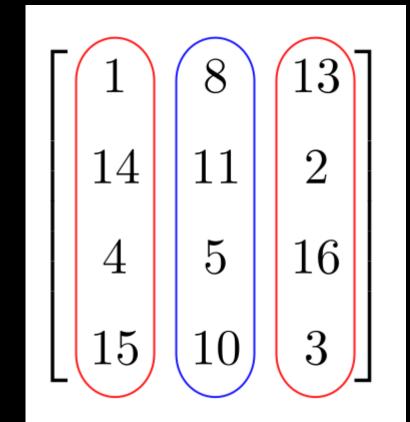
depends on classifier

optimizing the performance of the classifier

computationally expensive (training)

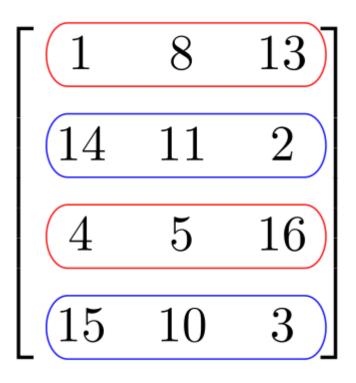


$X = (\mathbf{x}_1, \cdots \mathbf{x}_N), \mathbf{x}_i \in \mathsf{R}^d$



$X = (\mathbf{x}_1, \cdots \mathbf{x}_N), \mathbf{x}_i \in \mathsf{R}^d$

 $x_i \in X$



One step forward selection

Start with empty set $\tilde{X} = \emptyset$ For each feature $x_i \in X$ Compute score for $\{x_i\}$ Insert K features with highest score into \tilde{X}

Sequential forward selection

Start with empty set $\tilde{X} = \emptyset$ Repeat For each feature $x_i \in X \setminus \tilde{X}$ Compute score for $\tilde{X} \cup \{x_i\}$ Insert feature with max score into \tilde{X} Until K features

Feature elimination

One step backward elimination

Start with full set of features $\tilde{X} = X$ For each feature $x_i \in \tilde{X}$ Compute score for $\{x_i\}$ Delete (D-K) features with lowest score from \tilde{X}

Feature elimination

Sequential backward elimination

Start with full set of features $\tilde{X} = X$ Repeat For each feature $x_i \in \tilde{X}$ Compute score for $\tilde{X} \setminus \{x_i\}$ Delete feature with max score from \tilde{X} Until (D-K) features deleted

Combined selection and elimination

– L>R: Start with empty set $\tilde{X} = \emptyset$ Repeat Sequential selection of L features Sequential elimination of R features **Until K features** – L<R: Start with full set of features $\tilde{X} = X$ Repeat Sequential elimination of R features Sequential selection of L features Until K features

http://www.lsi.upc.edu/~belanche/research/R02-62.pdf

Other selection methods

Genetic algorithms Simulated annealing

Fitness measures

Filter:

Consistency Independence Information-theoretical measures Interclass distance

Feature subset must classify consistently with the whole set

Inconsistency: objects with the same features belong to different classes

	Hair	Height	Weight	Lotion	Result
i_1	1	2	1	0	1
i_2	1	3	2	1	0
i_3	2	1	2	1	0
i_4	1	1	2	0	1
i_5	3	2	3	0	1
i_6	2	3	3	0	0
i_7	2	2	3	0	0
i_8	1	1	1	1	0

Sunburn data

Feature subset must classify consistently with the whole set

Inconsistency: objects with the same features belong to different classes

	Hair	Height	Weight	Lotion	Result
i_1	1	2	1	0	1
i_2	1	3	2	1	0
i_3	2	1	2	1	0
i_4	1	1	2	0	1
i_5	3	2	3	0	1
i_6	2	3	3	0	0
i_7	2	2	3	0	0
i_8	1	1	1	1	0

Sunburn data

Feature subset must classify consistently with the whole set

Inconsistency: objects with the same features belong to different classes

	Hair	Height	Weight	Lotion	Result
i_1	1	2	1	0	1
i_2	1	3	2	1	0
i_3	2	1	2	1	0
i_4	1	1	2	0	1
i_5	3	2	3	0	1
i_6	2	3	3	0	0
i_7	2	2	3	0	0
i_8	1	1	1	1	0

Sunburn data

M – number of instances of pattern $x \in \tilde{X}$ m_i – number of instances in class ω_i Σ^C – $m_i = M$

 $\sum_{i=1}^{C} m_i = M$

$$IC(\mathbf{x}) = M - \max_{i} m_{i}$$

Fitness of the set $J(\tilde{X}) = 1 - \frac{\sum_{x \in Unique(\tilde{X})} IC(\mathbf{x})}{N}$

Statistical independence

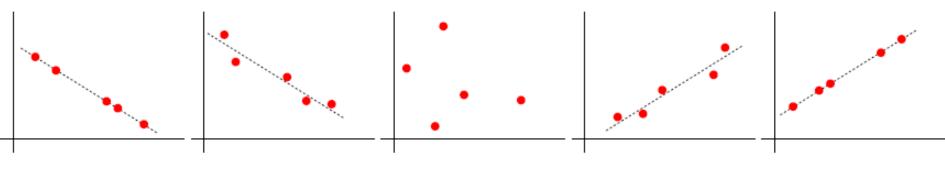
Pearson's (linear) correlation coefficient of two variables X and Y

$$\rho_{X,Y} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} \in \langle -1,1 \rangle$$

 $\rho_{X,Y} = \pm 1$, if variables are linearly dependent $\rho_{X,Y} = 0$, if they are uncorrelated

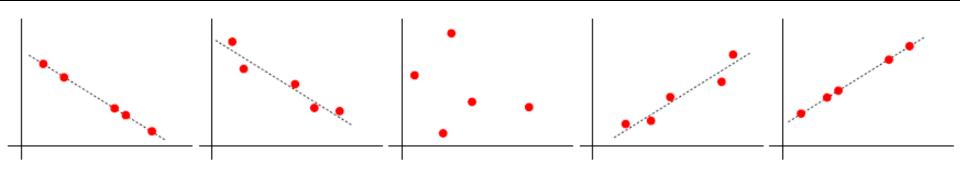
Uncorrelatedness *≠* Independence

Pearson's linear correlation coefficient

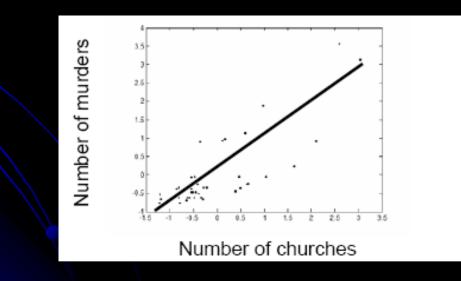


(a) $\rho = -1$ (b) $\rho \in (-1,0)$ (c) $\rho = 0$ (d) $\rho \in (0,1)$ (e) $\rho = 1$

Pearson's linear correlation coefficient



(a) $\rho = -1$ (b) $\rho \in (-1,0)$ (c) $\rho = 0$ (d) $\rho \in (0,1)$ (e) $\rho = 1$



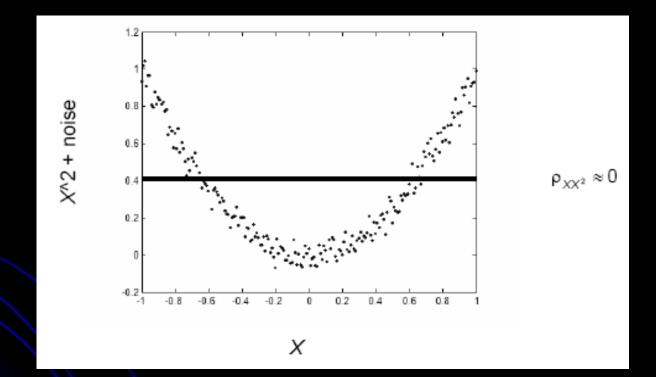
Correlation-based Feature Selector

Good features are correlated with the class and uncorrelated with other features

$$J(\tilde{X}) = \frac{k\overline{r_{cf}}}{\sqrt{k + k(k-1)\overline{r_{ff}}}}$$

 $\overline{r_{cf}}$, $\overline{r_{ff}}$ - mean correlation coefficient of feature-class and feature-feature k – number of features in \tilde{X}

Pearson's linear correlation coefficient



Information-theoretical measures

Hartley's Information Measure

Message length - *n* Number of symbols in alphabet - *s*

The information measure is a function of the number of possible messages $N = s^n$:

 $\Im = f(N)$

Information-theoretical measures

Two messages: lengths n_1 a n_2 When combined into one:

$$\Im = \Im_{1} + \Im_{2}$$

f(s<sup>n₁+n₂) = f(s^{n₁}) + f(s^{n₂})
f(N₁. N₂) = f(N₁) + f(N₂)</sup>

Which function?

Information-theoretical measures

Hartley's Information Measure $\Im = \log N = \log s^n = n \log s$

Shannon's Information Measure

Discrete random variable *A* with possible outcomes $\{a_1, ..., a_n\}$. P(*A*=*a_i*)=p_{*i*} Information received after observing the outcome of A $\Im = -\log(P(A = a_i))$

Shannon's entropy

Entropy (uncertainty) = expected value of information

$$H(A) = E(\mathfrak{I}(A))$$

= $-E(\log_2(P(A))) =$
= $-\sum_{a \in \Omega} P(A = a) \cdot \log_2(P(A = a))$

Example

$$\Omega = \{0, 1\}$$

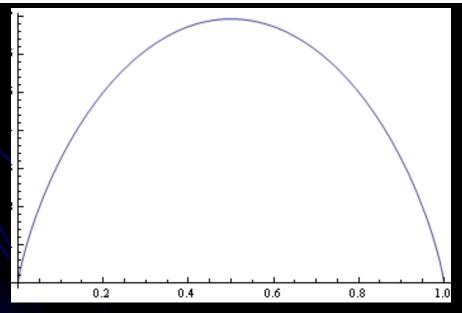
 $P(A = 1) = p$
 $P(A = 0) = 1 - p$

$$H(A) = E(\mathfrak{I}(A))$$

= $-E(\log_2(P(A))) =$
= $-\sum_{a \in \Omega} P(A = a) \cdot \log_2(P(A = a))$

$$H(A) = -P(A = 1) \cdot \log_2(P(A = 1)) - P(A = 0) \cdot \log_2(P(A = 0))$$

= -p \cdot \log_2(p) - (1 - p) \cdot \log_2(1 - p)



Properties

 $H(A) \le \log(N)$ $H(A) = \log(N) \Leftrightarrow \forall i P(A=a_i) = 1/N$

 $H(A) \ge 0$ $H(A) = 0 \iff \exists k \ P(A = a_k) = 1$

Entropy

X = College Major Y = Likes "XBOX"

H(A) = -E(1)	$og_2(P(A=a))) =$
$=-\sum_{a\in\Omega} A$	$P(A = a).\log_2(P(A = a))$

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Entropy

X = College Major Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

$$H(A) = -E(\log_2(P(A = a))) =$$
$$= -\sum_{a \in \Omega} P(A = a) \cdot \log_2(P(A = a))$$

H(X) = 1.5H(Y) = 1

Specific conditional entropy

X = College Major Y = Likes "XBOX"

H(Y | X = v) = entropy of Y, where X = v

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Specific conditional entropy

X = College Major Y = Likes "XBOX"

H(Y | X = v) = entropy of Y, where X = v

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

H(Y|X=Math) = 1H(Y|X=History) = 0H(Y|X=CS) = 0

Conditional entropy

X = College Major Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

H(Y|X) = average of specific conditional entropy

$$H(Y \mid X) = \sum_{x \in \Omega_X} P(X = x) \cdot H(Y \mid X = x))$$

X	P (X=x)	$H(Y \mid X = x)$
Math	0.5	1
History	0.25	0
CS	0.25	0

Conditional entropy

X = College Major Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

H(Y|X) = average of specific conditional entropy

$$H(Y \mid X) = \sum_{x \in \Omega_X} P(X = x) \cdot H(Y \mid X = x))$$

X	P (X=x)	$H(Y \mid X = x)$
Math	0.5	1
History	0.25	0
CS	0.25	0

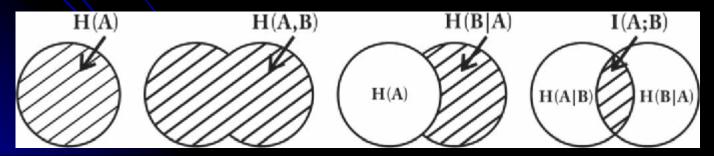
H(Y|X) = .5

How much information is communicated, on average, in one random variable about another?

I(Y; X) = H(Y) - H(Y|X)

$$I(Y;X) = -\sum_{x \in \Omega_X} \sum_{y \in \Omega_Y} P(X = x, Y = y) \log \frac{P(X = x, Y = y)}{P(X = x)P(Y = y)}$$

X, Y independent $\Rightarrow I(Y; X) = 0$ I(Y; Y) = H(Y) $0 \le I(Y; X) \le \min\{H(Y), H(X)\}$



- X = College Major
- Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

- X = College Major
- Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

H(Y) = 1H(Y|X) = 0.5I(Y; X) = 0.5

- X = College Major
- Y = Likes "XBOX"

X	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

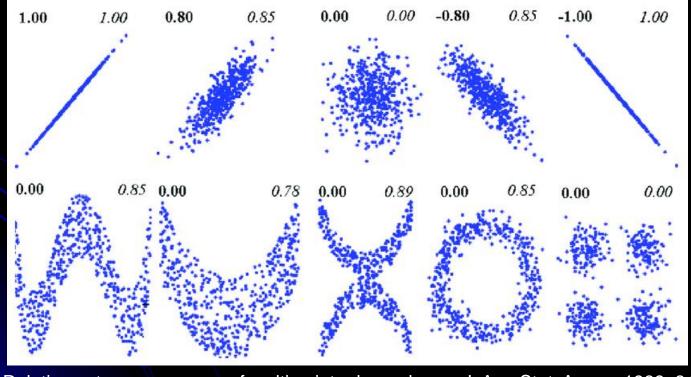
H(Y) = 1H(Y|X) = 0.5I(Y; X) = 0.5

Fitness evaluation

$$J(\widetilde{X}) = I(\widetilde{X}; y)$$

Nonlinear correlation coefficient

$$NLCC = \sqrt{1 - e^{-2I(X;Y)}}$$



Joe, H. Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 1989, 84, 157– 164.

Interclass distance

$$J(\widetilde{X}) = \sum_{i=1}^{C} P(\omega_i) \sum_{j=i+1}^{C} P(\omega_j) D_{\widetilde{X}}(\omega_i, \omega_j)$$

$$D_{\tilde{X}}(\omega_i, \omega_j) = \frac{1}{|\omega_i| |\omega_j|} \sum_{\mathbf{x} \in \omega_i} \sum_{\mathbf{y} \in \omega_j} d_{\tilde{X}}(\mathbf{x}, \mathbf{y})$$