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Department store> Feature: usage

Departments (classes) 

clothes

groceries

...

Alternative feature: colour

Departments (classes) 

“green stuff”: apples, t-shirts,...

“red stuff”: apples, t-shirts,...

...

Classification depends on features

Features



Features

Measurements quantifying some object 

properties

Grouped to feature vectors



Invariant

Discriminative

Compact

Feature vector = object descriptor

Feature space
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Feature normalization

Units (cm, m, cl, ml, ...)

Units influences the “distance” 

Unitless features



Unitless features

Relative to some reference value

Example:

Height of object (cm, m)

Unitless height:

Reference value (max or min possible height, 1m, 

100cm, ...)

(Unitless feature) = (feature in units)/

(reference value in units)



Linear scaling to [0,1]

෥𝑥𝑖 =
𝑥𝑖 − 𝑙

𝑢 − 𝑙
u – upper limit (maximum value)

l – lower limit (minimum value)

Scaling to unit length

෥𝑥𝑖 =
𝑥𝑖
x

Normalization



Standardization 

෥𝑥𝑖 =
𝑥𝑖 − 𝜇

𝜎

3σ- scaling - 99% of data in [0,1]

෥𝑥𝑖 =

𝑥𝑖 − 𝜇
3𝜎

+ 1

2

Normalization



Example

http://sebastianraschka.com/Articles/2014_about_feature_scaling.html



Example



ML algorithms which require feature scaling:

SVMs

Perceptrons

Neural networks

PCA,…

ML algorithms which do not require feature 
scaling:

Decision trees (and random forests)

Naive Bayes,…

Usage

https://www.jeremyjordan.me/preparing-data-for-a-machine-learning-model/
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Features

• more features => more information, higher precission

• more features => more difficult extraction

• more features => more difficult classifier training

Solution: 

Optimal number of features?

The curse of dimensionality
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2 approaches

Feature selection:

subset of original features 

Feature transformation:

transformation of the original features to 

less-dimensional space

Guyon and Elisseeff: An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 3 

(2003) 1157-1182



Filter 

does not depend on classifier

only on data properties (information, distance, correlation, 

consistency,…)

Feature selection



Feature selection

Wrapper

depends on classifier

optimizing the performance of the classifier

computationally expensive (training)



𝑋 = x1, ⋯ x𝑁 ,x𝑖 ∈ R𝑑

Feature selection



𝑋 = x1, ⋯ x𝑁 ,x𝑖 ∈ R𝑑

𝑥𝑖 ∈ 𝑋

Feature selection



One step forward selection

Start with empty set ෨𝑋 = ∅

For each feature 𝑥𝑖 ∈ 𝑋

Compute score for 𝑥𝑖

Insert K features with highest score into ෨𝑋

Feature selection



Feature selection

Sequential forward selection

Start with empty set ෨𝑋 = ∅

Repeat

For each feature 𝑥𝑖 ∈ 𝑋\ ෨𝑋

Compute score for ෨𝑋 ∪ 𝑥𝑖

Insert feature with max score into ෨𝑋

Until K features



One step backward elimination

Start with full set of features ෨𝑋 = 𝑋

For each feature 𝑥𝑖 ∈ ෨𝑋

Compute score for 𝑥𝑖

Delete (D-K) features with lowest score from ෨𝑋

Feature elimination



Feature elimination

Sequential backward elimination

Start with full set of features ෨𝑋 = 𝑋

Repeat

For each feature 𝑥𝑖 ∈ ෨𝑋

Compute score for ෨𝑋\ 𝑥𝑖
Delete feature with max score from ෨𝑋

Until (D-K) features deleted



Combined selection and elimination

– L>R: Start with empty set ෨𝑋 = ∅

Repeat

Sequential selection of L features

Sequential elimination of R features

Until K features

– L<R: Start with full set of features ෨𝑋 = 𝑋

Repeat

Sequential elimination of R features

Sequential selection of L features

Until K features

Feature selection

http://www.lsi.upc.edu/~belanche/research/R02-62.pdf



Genetic algorithms

Simulated annealing

…

Other selection methods



Filter: 

- Consistency

- Independence

Information-theoretical measures

Interclass distance

Fitness measures



Consistency

Feature subset must classify consistently with the 

whole set 

Inconsistency: objects with the same features 

belong to different classes
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Consistency

M – number of instances of pattern x ∈ ෨𝑋

mi – number of instances in class ωi

σ𝑖=1
𝐶 𝑚𝑖 = 𝑀

𝐼𝐶 x = 𝑀 −max
𝑖

𝑚𝑖

Fitness of the set

𝐽 ෨𝑋 = 1 −
σ𝑥∈𝑈𝑛𝑖𝑞𝑢𝑒 ෨𝑋 𝐼𝐶 x

𝑁



Statistical independence

Pearson’s (linear) correlation coefficient of two 
variables X and Y

𝜌𝑋,𝑌 =
Cov 𝑋, 𝑌

Var 𝑋 Var 𝑌
∈ −1,1

𝜌𝑋,𝑌 = ±1, if variables are linearly dependent

𝜌𝑋,𝑌 = 0, if they are uncorrelated

Uncorrelatedness ≠ Independence



Pearson’s linear correlation 

coefficient 
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Correlation-based Feature Selector

Good features are correlated with the class 

and uncorrelated with other features

𝐽 ෨𝑋 =
𝑘𝑟𝑐𝑓

𝑘 + 𝑘 𝑘 − 1 𝑟𝑓𝑓

𝑟𝑐𝑓, 𝑟𝑓𝑓 - mean correlation coefficient of 

feature-class and feature-feature

𝑘 – number of features in ෨𝑋



Pearson’s linear correlation 

coefficient 



Information-theoretical measures

Hartley’s Information Measure

Message length - n

Number of symbols in alphabet - s

The information measure is a function of the 
number of possible messages N = sn:

ℑ = 𝑓 𝑁



Information-theoretical measures

Two messages: lengths n1 a n2

When combined into one: 

ℑ = ℑ1 + ℑ2
𝑓 𝑠𝑛1+𝑛2 = 𝑓 𝑠𝑛1 + 𝑓 𝑠𝑛2

𝑓 𝑁1. 𝑁2 = 𝑓 𝑁1 + 𝑓 𝑁2

Which function?



Information-theoretical measures

Hartley’s Information Measure

ℑ = log𝑁 = log 𝑠𝑛 = 𝑛 log 𝑠

Shannon’s Information Measure

Discrete random variable A with possible outcomes 
{a1,...,an}. 

P(A=ai)=pi

Information received after observing the outcome of A

ℑ = − log 𝑃 𝐴 = 𝑎𝑖



Shannon’s entropy

Entropy (uncertainty) = expected value of information
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Properties

H(A) ≤ log(N) 

H(A) = log(N)  i P(A=ai) = 1/N

H(A) ≥ 0 

H(A) = 0  k P(A=ak) = 1



Entropy

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes
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Entropy

H(X) = 1.5

H(Y) = 1

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes
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Specific conditional entropy

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes

H(Y |X=v) = entropy of Y, where X =v



Specific conditional entropy

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes

H(Y |X=v) = entropy of Y, where X =v

H(Y|X=Math) = 1

H(Y|X=History) = 0

H(Y|X=CS) = 0



Conditional entropy

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes

H(Y|X) = average of specific conditional 
entropy 

x P (X=x) H(Y | X = x)

Math 0.5 1

History 0.25 0

CS 0.25 0
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Conditional entropy

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes

H(Y|X) = average of specific conditional 
entropy 

x P (X=x) H(Y | X = x)

Math 0.5 1

History 0.25 0

CS 0.25 0

H(Y|X) = .5
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How  much  information  is  communicated,  on  
average,  in  one  random  variable about 
another?
I(Y; X) = H(Y) – H(Y|X)

X, Y independent  I(Y; X) = 0

I(Y; Y) = H(Y)

0  I(Y; X)  min{H(Y), H(X)}

Mutual information
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Mutual information

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes



Mutual information

H(Y) = 1
H(Y|X) = 0.5
I(Y; X) = 0.5

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes



Mutual information

H(Y) = 1
H(Y|X) = 0.5
I(Y; X) = 0.5

X = College Major

Y = Likes “XBOX”

X Y

Math Yes

History No

CS Yes

Math No

Math No

CS Yes

History No

Math Yes
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Fitness evaluation



Nonlinear correlation coefficient

𝑁𝐿𝐶𝐶 = 1 − 𝑒−2𝐼(𝑋;𝑌)

Joe, H. Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 1989, 84, 157–

164.



Interclass distance
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