Machine learning in computer
vision

Lesson 1
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Features

Department store> Feature: usage
Departments (classes)

clothes

groceries

Alternative feature: colour
Departments (classes)
“‘green stuff”: apples, t-shirts,...
“red stuff’: apples, t-shirts,...

Classification depends on features



Features

Measurements quantifying some object
properties

Grouped to feature vectors



Feature vector = object descriptor

Invariant

Compact

Feature space
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Candy boxes
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Shape analysis and classificaiton : theory and practice / Luciano da Fontroura Costa,

Roberto Marcondes Cesar Ir.



Candy boxes

0.7<a<=1.5
05<r<=1

Shape analysis and classificaiton : theory and practice / Luciano da Fontroura Costa,

Foberto Marcon “esar I
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Feature normalization

Units (cm, m, cl, ml, ...)

Units influences the “distance”

Unitless features



Unitless features

Relative to some reference value
Example:

Height of object (cm, m)
Unitless height:

Reference value (max or min possible height, 1m,
100cm, ...)

(Unitless feature) = (feature in units)/
(reference value in units)



Normalization

Linear scaling to [0,1]
Xi — [

7 =
Y ou—=1

u — upper limit (maximum value)
| — lower limit (minimum value)

Scaling to unit length
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Normalization

Standardization

30- scaling - 99% of data in [0,1]

Xi — U

% = 30

+ 1

2



Alcohol and Malic Acid content of the wine dataset

Input scale
Standardized [N{u=0, ==1}]
min-max scaled [min=0, max=1]

Malic Acid

http://sebastianraschka.com/Articles/2014_about_feature_scaling.html



Transformed NON-standardized training dataset after PCA  Transformed standardized training dataset after PCA
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Usage

ML algorithms which require feature scaling:
SVMs
Perceptrons

Neural networks
PCA,...

ML algorithms which do not require feature
scaling:
Decision trees (and random forests)
Naive Bayes,...

https://www.jeremyjordan.me/preparing-data-for-a-machine-learning-model/
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Feature vector = object descriptor

Invariant

Discriminative

Feature space




Features

* more features => more information, higher precission
* more features => more difficult extraction
* more features => more difficult classifier training
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Features

* more features => more information, higher precission
* more features => more difficult extraction
* more features => more difficult classifier training

The curse of dimensionality

Solution:
Optimal number of features?
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Dimensionality reduction
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Dimensionality reduction

5 features (Bool)
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Dimensionality reduction
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5 features (Bool)

F2=~F3
F4=~F5

C=F1|F2

Optimal set
{F1,F2}, {F1,F3}



2 approaches

Feature selection:
subset of original features

Feature transformation:

transformation of the original features to
less-dimensional space

Guyon and Elisseeff: An Introduction to Variable and Feature Selection, Journal of Machine Learning Research 3
(2003) 1157-1182



Feature selection

Filter
does not depend on classifier

only on data properties (information, distance, correlation,
consistency,...)

Full set .
of features Feature Subset Fitness Rating
selection function
Training i

Quality
evaluation Best subset

Testing Training
data data




Feature selection

Wrapper
depends on classifier
optimizing the performance of the classifier
computationally expensive (training)

Full set Objective
of features Feature Subset function
. Classifier
selection

Training

Quality
evaluation L Trained . Best subset
Classification
1

Testing , Training
data data




Feature selection

X = (X, Xy), X; € R?




Feature selection

X = (X, Xy), X; € R?
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Feature selection

One step forward selection

Start with empty set X = @
For each feature x; € X
Compute score for {x;}
Insert K features with highest score into X



Feature selection

Seqguential forward selection

Start with empty set X = ¢
Repeat
For each feature x; € X\ X
Compute score for X U {x;}
Insert feature with max score into X
Until K features




Feature elimination

One step backward elimination

Start with full set of features X = X
For each feature x; € X
Compute score for {x;}
Delete (D-K) features with lowest score from X



Feature elimination

Start with
Repeat

For eac

Com

full set of features X = X

n feature x; € X

ute score for X\{x;}

Delete feature with max score from X
Until (D-K) features deleted



Feature selection

— L>R: Start with empty set X = ¢
Repeat
Sequential selection of L features
Sequential elimination of R features
Until K features
— L<R: Start with full set of features X = X
Repeat
Sequential elimination of R features
Sequential selection of L features
Until K features

http://www.lsi.upc.edu/~belanche/research/R02-62.pdf



Other selection methods

Genetic algorithms
Simulated annealing



Fithess measures

Filter:

Consistency
ndependence
nformation-theoretical measures
nterclass distance




Consistency

Feature subset must classify consistently with the
whole set

Inconsistency: objects with the same features
belong to different classes

Sunburn data
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Consistency

Feature subset must classify consistently with the
whole set

Inconsistency: objects with the same features
belong to different classes

Sunburn data



Consistency

M — number of instances of pattern x € X
m, — number of instances in class w;

C —

i=1m; =M

IC(x) = M — maxm;
l

Fithess of the set

() =1-

er Unique(X) IC (X)
N




Statistical independence

Pearson’s (linear) correlation coefficient of two
variables X and Y

Cov(X,Y)
\/ Var(X)Var(Y)

€ (—1,1)

%44

pxy = *1, if variables are linearly dependent
pxy = 0, If they are uncorrelated

Uncorrelatedness # Independence



Pearson’s linear correlation
coefficient

(@) p=-1 (b) pe(-1,0) (c) p=0 (d) pe(0,1) (e) p=1



Pearson’s linear correlation
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Correlation-based Feature Selector

Good features are correlated with the class
and uncorrelated with other features

s KTer
X) =
/() JEk + k(k — 1755

e Trf - mean correlation coefficient of
feature-class and feature-feature

k — number of features in X



Pearson’s linear correlation
coefficient




Information-theoretical measures

Hartley’s Information Measure

Message length - n
Number of symbols in alphabet - s

The information measure iIs a function of the
number of possible messages N = s™:

3 = f(N)



Information-theoretical measures

Two messages: lengths n, a n,
When combined into one:

3 = Sl + SZ
f(s™™2) = f(s™) + f(s™)
f(N1-N2) — f(N1) f(Nz)

Which function?



Information-theoretical measures

Hartley’s Information Measure
I =1logN =logs™ =nlogs

Shannon’s Information Measure

Discrete random variable A with possible outcomes
{ag,.-.,.a,}-
P(A=a))=p,
Information received after observing the outcome of A
3= —log(P(A = ai))



Shannon'’s entropy

Entropy (uncertainty) = expected value of information

H(A) =E(S(A)
=—E(log,(P(A))) =

=-> P(A=a).log,(P(A=a))



Q=1{0,1} H(A) =E(3(A)
P(A=1)=p =—E(log,(P(A))) =
P(A=0)=1-p =-Y P(A=a).log,(P(A=a)

H(A)=-P(A=1).log,(P(A=1))—P(A=0).log,(P(A=0))
=—p.log,(p)—@1-p).log,(1-p)




Properties

H(A) < log(N)
H(A) = log(N) < Vi P(A=a) = 1/N

H(A) = 0
H(A) = 0 < Jk P(A=a) = 1



=glige]le)"

X = College Major H(A) = —E(log, (P(A = a))) =
Y = Likes “XBOX" =-Y P(A=a).log,(P(A=a))
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=glige]le)"

X = College Major H(A) = —E(log, (P(A = a))) =
Y = Likes “XBOX" =-Y P(A=a).log,(P(A=a))

acQ)

X Y

409 = 1.5
M) = 1




Specific conditional entropy

X = College Major

H(Y | X=v) = entropy of Y, where X=v
Y = Likes “XBOX" (Y1X=V) PY

X Y




Specific conditional entropy

X = College Major

H(Y | X=v) = entropy of Y, where X=v
Y = Likes “XBOX" (Y1X=V) PY

X Y

H(Y/X=History) = O




Conditional entropy

X = College Major 1 x) = average of specific conditional

Y = Likes "XBOX" entropy

X Y HY [ X)= > P(X =x).H(Y | X =x))

v e s

Yes Math
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Conditional entropy

X = College Major 1 x) = average of specific conditional

Y = Likes "XBOX" entropy

X Y HY [ X)= > P(X =x).H(Y | X =x))

v e s

Yes Math

Hustory

HOYIX) = 5




Mutual information

How much information Is communicated, on
average, in one random variable about
another?

I(Y; X) = H(Y) = H(Y[X)

P(X=xY=Y)
P(X =x)P(Y =)
X, Y independent = I(Y; X) =0
ICY; Y) = H(Y)

0 < I(Y; X) < min{H(Y), H(X)}

1(Y;X)==) > P(X=xY=y)log




Mutual information

X = College Major
Y = Likes "XBOX"

X Y




Mutual information

X = College Major
Y = Likes "XBOX"

X % H(Y) =1

H(YIX) = 0.5
I(Y; X) = 0.5




Mutual information

X = College Major
Y = Likes "XBOX"

X Y

H(Y) = 1
H(Y|X) = 0.5
I(Y; X) = 0.5

Fithess evaluation

J(X)=1(X;y)




Nonlinear correlation coefficient

NLCC = /1 — e~ 2I(X:Y)
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Joe, H. Relative entropy measures of multivariate dependence. J. Am. Stat. Assoc. 1989, 84, 157—
164.



Interclass distance

J(X)=2 P(@) > P(@)D¢ (e, @)




