Machine learning in computer
vision

Lesson 10

Nonhierarchical methods

the space Is divided into one set of clusters

S 0O Datapoint
Op O /0

oS O y, B Centroid
OO = /
00BOS O Cluster
O

P % a
/" 0Bo
0008 © “o
O OO0 O\ O O O
(I)Oo

K-means clustering

K clusters

Minimizes total intra-cluster scatter (within sum of squares -
WSS)

K
- 7 7 | -]” = ZZNI« z llx; — my||* = E:WSS,c
k=

1x€ k Xj€ECk Xi€Ck

m, centroid of cluster k
N, number of points in cluster k

K-Means Algorithm
Initialization:

Randomly place K points into the space
represented by the objects that are being
clustered. These points represent initial
group centroids.

K-Means Algorithm

Assign objects to the group that has the closest centroid

C(x) = arg min||x — m||?
k

When all objects have been assigned, recalculate the
positions of the K centroids

Zx:C(x)=k X k — 1 K
Ny)) wes

my, =

Repeat until the stopping criteria is met.
(MSE < threshold, or no change in clustering)

K-Means Clustering

Initialization

K-Means Clustering

°
°
o« ®
o o o
o« ®
°
°
o ®
o o
°
® o o X

Initialization

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids END

K-Means Clustering

Guaranteed to converge

Guaranteed to achieve local optimum, not
necessarily global optimum

Sensitive to noise and outlier data points

Clusters are sensitive to initial assignment of
centroids (not a deterministic algorithm)

Clusters can be inconsistent from one run to
another

Initialization

Initial Cluster Assignments and Centroids Final Cluster Assignments and Centroids

Outliers

Initial Cluster Assignments and Centroids Final Cluster Assignments and Centroids

Qutlier

Choice of K

Many methods
Elbow point: compute total WSS

Optimal number of clusters

Number of clusters k

Choice of K

Gap value
Gapy (K) = Ex{Wk} — log Wy

1
WK — leé;l m WSSk

o 3.0 d
Number of Clusters

Choice of K

The silhouette value:

a measure of how similar a point is to points in its own
cluster, when compared to points in other clusters

~ b)) —a(@)
S0 = (@, b))

a(i) — average distance from the I-th point to the other
points in the same cluster as |

b(i) — minimum average distance from the i-th point to
points in a different cluster, minimized over clusters

Try different Ks, compute average silhouette

Choice of K

The silhouette plot

Silhouette analysis for KMeans clustering on sample data with n_clusters = 6

The silhouette plot for the various clusters. The visualization of the clustered data.

Cluster label
Feature space for the 2nd feature

1
0.2 0.4 0.6 A . -8 —6 —4
The silhouette coefficient values Feature space for the 1st feature

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette analysis.html

K-medoids

Instead of means, use medoids of each
cluster

Medoid — object already In the set (e.g.
existing color)

Mean — “artificial” object

K-medians

Instead of means, use medians Iin each
dimension

object might not be In the set

Fuzzy C-means

Soft membership function

2 > whllx; = ml?

=1 x;€Ck

https://matteucci.faculty.polimi.it/Clustering/tutorial_html/cmeans.html

Buckshot

hierarchical agglomerative clustering (HAC) and K-
Means clustering

First randomly take a sample of instances of size v/n

Run group-average HAC on this sample, which
takes only O(n) time

Use the results of HAC as initial seeds for K-means

Overall algorithm is O(n) and avoids problems of bad
seed selection

https://nlp.stanford.edu/IR-book/information-retrieval-book.html

Bisecting K-means

Divisive hierarc
Forl=1to K-10
Pick a leaf ¢

nical clustering method using K-means

0 {

uster C to split

ForJ=1to ITER do {
Use K-means to split C into two sub-clusters, C,

and C,
}

Choose the best of the above splits and make it

permanent

}

http://glaros.dtc.umn.edu/gkhome/node/157

Self-Organizing Maps

SOM — Kohonen nets

Self-Organizing Maps

Neurons form a lattice
Input data connected with all neurons

Feature map

Input vector

Two spaces of SOM

SOM lattice
Topological structure

Weight space
Same dimensionality as input space

SOM learning

Winner-takes-all algorithm:
The closest node Is updated

Algorithm:
1. Randomize the map’s nodes weight

2. Select randomly one input vector

SOM learning

3. Find the closest node: best matching unit

o S

i* = arg min||x — w;||
i

Closest using Euclid distance

Winner-takes-all

SOM learning

5. The weights of the adjacent nodes are
also updated, by not to the same degree
w;(t+ 1) =w; (&) + ()0, % t)||x — w;(t)]]

O(i,i*,t) — neighborhood specification
n(t) — learning rate

SOM learning

Wi(t + 1) — Wi(t) + T](t)O(l, i*, t)”X IR Wl(t)”

Cooperation phase
This Is what ensures the

SOM learning

6. Reduce the intensity of the update
progressively

Adaptation phase

At first, high learning rate, move quickly to
the solution; at the end, small learning rate,
to avoid oscillations.

/. Repeat 1to 6 for T, Iterations

max

Neighborhood specification

o(t)

-1

©O0000CO0OCOO00O00OOO
CO00CO@EeQO00000
ooy i 1 K I I J eleloN®

COeeeeeeeovooo
Ceeeeeeeeecoo
Ceeeoee®ee000
0008080000 R0C0CO
CO0@8eeeseeseccoo
@fed. | |) 1 | | JeoleleNe
CCo0@@POC00000
000000000000
000000000000
©C000CO0O0O0O0O000OO

000000000000
000000000000
000000000000
080000000
Q@eecoo0
0e®e@00OO0

0000000000

0000000000

00000000
000

20%(t)

Neighborhood specification

Nkt
REEEN
i 1

Weights Weights
random numbers from After 100 iterations
(—0.5,0.5)x(- 0.5,0.5)

After 600 iterations After 3000 iterations After 7000 iterations

Input vectors: Uniform random numbers from (—1,1)x(-1,1).

SOM progress

Classification

U-matrix (unified distance matrix):.
visualizes the distances between the neurons

SOM Neighbor Weight Distances

SOM Neighbor Weight Distances

SOM Weight Positions

14

NN NN N\ \ N /N /N

N /N NS N /N N\ N\ N/

/ / \WARY FA SN SN

. 9 — 9 — — 9 —

N/ /N /NS / SN/ .
Hits

Weight 1

Classification

Structural (syntactic)
recognition

Structural pattern recognition

Patterns can contain structural and relational
iInformation that are difficult or impossible
to quantify in feature vector form

Statistical Structural

horizontal

Number of segments: 4
Number of horizontal segments: 2
Number of vertical segments: 2

umper or diagonal segments horizontal

vertical V}arncal

Number of segments: 3

Number of horizontal segments: 1
Number of vertical segments: 0
Number of diagonal segments: 2

diagon\al <> di_____agonal

. K
horizontal

Structural pattern recognition

Structure quantification and description are
mainly done using:
Formal grammars
Relational descriptions (principally graphs)
Recognition and classification are done
using:
Parsing (for formal grammars)

Relational graph matching (for relational
descriptions)

Applications

a) Classification of time data (e.g. ECG)

b) Object recognition described by structural
codes (e.g. Freeman code, signature...)

C) Scene recognition, scene represented as
a graph of primitive objects

Time data

Line approximation of ECG:
O/\O/\/00//\\O

Structural description of objects

db,ab,c b, ,ab,db,abc b ab

Structural scene description

Hierarchical tree structure
S

scene S

O\

objects B background C

/\

object D object E floorm walln

sfce sfct sfcx sfcy sfcz

Recognition

Theory of formal languages

A grammar generates a (possibly infinite)
set of strings (objects)

If we can design a grammar which
generates a class of strings, then we can
build a machine which will recognize any
string In that class

Formal languages

Alphabet is a finite set of symbols, V={x;,X,, ...,X.}
Word over V is a finite string of ordered symbols from V

Example: V = {a,b,c}, valid words are “abcab”, “abba’,
“aaa’, null

V* set of all words over V
Language is an arbitrary subset L of V*

Example: V={0,1}, then L, = {001, 110, 111, O, null} is a
finite language

L, ={s|s=1"0%1", n>=1, 1<=m<=10} is an infinite
language

Recognition

Objects from one class — words from the
language of this class

Classification — decide whether a word belongs
to the language of a class

Finite language — check all words

Infinite language — use the language grammar
or automaton to check

Grammars

Grammar G = {V, V, P, S}
V; is a set of terminal symbols
V\ IS a set of non-terminal symbols
Vi NVy=69;

P is the set of production rules [(¥ASAYYRENIZACALYRE=SATACRTIL

S is the starting symbol or the root; S belongs to V
L(G) is a formal language generated by the grammar G
Each string is composed of only terminals
Each string can be derived from S using the production rules P

Example: V; = {a,b}, V = {S}; P = {S->aSh, S->ab} => L(G) : a"b",
n>=1

Inference

Derive grammar based on training set or
domain knowledge

Not unique solutions

No general method, usually user interaction
IS required

Example

Consider,
a. 0° horizontal unit length
b: 120° unit length
c. 240° unit length
L = {a"b"c";1 < n < 3}
L(G) represents the class of equilateral triangles

What is the grammar?

Example

Type 3 Grammar solution S+ 3A Ct+H— bl H = bK

V; ={ab,c} S>> aC DB DbF I ¢

Vv={S,AB,C,D,E,F,G,H, 1, J,K} ArsaB Fr bl Tl
A aD E= bG K d
B+ aE G — bH

Type 2 Grammar solution
V;={a,b,c}
Vy={S,A B C,D,E, F}
St adlFF A aBF D bc

A= b B—aEF Creb
A—aDF Ew—bD Fi>c

Inference from training set

input: T ={x1,..., xt}
output: regular grammar G = (VN, VT, S, P)

Step 1
Find all terminals in T — create VT

Step 2
For each word xi = ail...ain (Xi€T) create rules

S —ailZi

Zi1 —ai2Zi2

Zi,n-2 —ai,n-1Zi,n-1

Zi,n-1 —ain

every Zij is a new non-terminal

Example

Regular grammar G* unknown
G*=({S,AB,C}, {a,b}, S, P)

S —aA|bB
A—al|aS|bC
B—->b|bS|aC
C —aB | bA

Finite automaton of G*

Training set
T = {abab, bbaa, baba, aabb}

Example

Inference: VT ={a,b}
VN = {S, Z1= Zzs Zs- Z4= Z5= Ze= Z?- Za- Za-= st Z11- Z12}

S - 821 Z1 — bZE
S-bz, [Z,-bZ,

Z, —»al,
Zs - al,
Zy — bz,
L1y = by,

S-bz, | Z, - az,
S—~aZif £~ aly

Training set
T = {abab, bbaa, baba, aabb}

Example

L(G*) — Infinite
L(G) — finite

L(G) =T C L(G*

Many non-terminals, some equivalent
Generates only words from the training set

Recognition

15t step — check the terminal symbols

2"d step — try to derive the word from
compliant grammars: top-down, bottom-up

I Ill I."I I|I | III 1 I .l.|ll I|I
Aﬂi B II|I ‘_,-I B II", II|I A III I|I B "'.

Al Y (A AW | ' Al TN \
aabbbedd aabbbedd aabbbedd

Syntactic deformations

Errors, noise, ...
Structural deformations

Search for most similar word

e.g. Levenshtein distance (number of
transformations needed to transform word A
to B)

Grammars contains deformation rules
(insertion, deletion, substitution)

Summary

The classifier for a structural pattern
recognition system consists of a set of
grammars, one for each class

The main difficulty lies In grammar inference

Applications — mainly user-constructed
grammars

