
Machine learning in computer

vision

Lesson 10

Nonhierarchical methods

the space is divided into one set of clusters

K-means clustering

K clusters

Minimizes total intra-cluster scatter (within sum of squares -

WSS)

𝑊 = ෍

𝑘=1

𝐾

෍

𝑥𝑖∈𝐶𝑘

෍

𝑥𝑗∈𝐶𝑘

𝑥𝑖 − 𝑥𝑗
2
= ෍

𝑘=1

𝐾

2𝑁𝑘 ෍

𝑥𝑖∈𝐶𝑘

𝑥𝑖 −𝑚𝑘
2 = ෍

𝑘=1

𝐾

𝑊𝑆𝑆𝑘

mk centroid of cluster k

Nk number of points in cluster k

K-Means Algorithm

Initialization:

Randomly place K points into the space

represented by the objects that are being

clustered. These points represent initial

group centroids.

K-Means Algorithm

Assign objects to the group that has the closest centroid

𝐶(𝑥) = arg min
𝑘

𝑥 − 𝑚𝑘
2

When all objects have been assigned, recalculate the
positions of the K centroids

𝑚𝑘 =
σ𝑥:𝐶 𝑥 =𝑘 𝑥

𝑁𝑘
, 𝑘 = 1,…𝐾

Repeat until the stopping criteria is met.
(MSE < threshold, or no change in clustering)

K-Means Clustering

Initialization

K-Means Clustering

Initialization

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids

K-Means Clustering

Assign objects

K-Means Clustering

Recalculate centroids END

K-Means Clustering

Guaranteed to converge

Guaranteed to achieve local optimum, not

necessarily global optimum

Sensitive to noise and outlier data points

Clusters are sensitive to initial assignment of

centroids (not a deterministic algorithm)

Clusters can be inconsistent from one run to

another

Initialization

Outliers

Outlier

Choice of K

Many methods

Elbow point: compute total WSS

Choice of K

Gap value

Gap𝑁 𝐾 = 𝐸𝑁
∗ 𝑊𝐾 − log𝑊𝐾

𝑊𝐾 = σ𝑘=1
𝐾 1

2𝑁𝑘
𝑊𝑆𝑆𝑘

Choice of K

The silhouette value:

a measure of how similar a point is to points in its own
cluster, when compared to points in other clusters

𝑆 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max 𝑎 𝑖 , 𝑏 𝑖

𝑎(𝑖) – average distance from the i-th point to the other
points in the same cluster as i

𝑏 𝑖 – minimum average distance from the i-th point to
points in a different cluster, minimized over clusters

Try different Ks, compute average silhouette

Choice of K

The silhouette plot

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html

K-medoids

instead of means, use medoids of each

cluster

Medoid – object already in the set (e.g.

existing color)

Mean – “artificial” object

K-medians

instead of means, use medians in each

dimension

object might not be in the set

Fuzzy C-means

Soft membership function

෍

𝑘=1

𝐾

෍

𝑥𝑖∈𝐶𝑘

𝑤𝑖𝑘
𝑓
𝑥𝑖 −𝑚𝑘

2

https://matteucci.faculty.polimi.it/Clustering/tutorial_html/cmeans.html

Buckshot

hierarchical agglomerative clustering (HAC) and K-
Means clustering

First randomly take a sample of instances of size 𝑛

Run group-average HAC on this sample, which
takes only O(n) time

Use the results of HAC as initial seeds for K-means

Overall algorithm is O(n) and avoids problems of bad
seed selection

https://nlp.stanford.edu/IR-book/information-retrieval-book.html

Bisecting K-means

Divisive hierarchical clustering method using K-means

For I=1 to K-1 do {

Pick a leaf cluster C to split

For J=1 to ITER do {

Use K-means to split C into two sub-clusters, C1

and C2

}

Choose the best of the above splits and make it
permanent

}

http://glaros.dtc.umn.edu/gkhome/node/157

Self-Organizing Maps

SOM – Kohonen nets

Self-Organizing Maps

Neurons form a lattice

Input data connected with all neurons

Two spaces of SOM

SOM lattice

Topological structure

Weight space

Same dimensionality as input space

SOM learning

Winner-takes-all algorithm:

The closest node is updated

Algorithm:

1. Randomize the map’s nodes weight

2. Select randomly one input vector

SOM learning

3. Find the closest node: best matching unit

𝑖∗ = arg min
𝑖

𝐱 − 𝐰𝑖

Closest using Euclid distance

4. The weight of this node is updated

Winner-takes-all

SOM learning

5. The weights of the adjacent nodes are

also updated, by not to the same degree

𝐰𝑖 𝑡 + 1 = 𝐰𝑖 𝑡 + 𝜂 𝑡 𝑂(𝑖, 𝑖∗, 𝑡) 𝐱 − 𝐰𝑖(𝑡)

𝑂(𝑖, 𝑖∗, 𝑡) – neighborhood specification

𝜂 𝑡 – learning rate

SOM learning

𝐰𝑖 𝑡 + 1 = 𝐰𝑖 𝑡 + 𝜂 𝑡 𝑂(𝑖, 𝑖∗, 𝑡) 𝐱 − 𝐰𝑖(𝑡)

Cooperation phase

This is what ensures the

similarity of weights between

contiguous nodes

SOM learning

6. Reduce the intensity of the update

progressively

Adaptation phase

At first, high learning rate, move quickly to

the solution; at the end, small learning rate,

to avoid oscillations.

7. Repeat 1 to 6 for Tmax iterations

Neighborhood specification

𝑂 𝑖, 𝑖∗, 𝑡 = 𝑒
−

𝐫𝒊∗ 𝑡 −𝐫𝑖 𝑡
2

2𝜎2(𝑡)

𝜎 𝑡 = 𝜎0 𝑒
−𝑡

𝑇𝑚𝑎𝑥

Neighborhood specification

Input vectors: Uniform random numbers from 〈−1,1〉×〈−1,1〉.

Weights

random numbers from

〈−0.5,0.5〉×〈− 0.5,0.5〉

Weights

After 100 iterations
Weights

After 200 iterations

Weights

After 600 iterations

Weights

After 3000 iterations

Weights

After 7000 iterations

SOM progress

SOM progress

Classification

U-matrix (unified distance matrix):

visualizes the distances between the neurons

Classification

Structural (syntactic)

recognition

Structural pattern recognition

Patterns can contain structural and relational

information that are difficult or impossible

to quantify in feature vector form

Structural pattern recognition

Structure quantification and description are
mainly done using:

Formal grammars

Relational descriptions (principally graphs)

Recognition and classification are done
using:

Parsing (for formal grammars)

Relational graph matching (for relational
descriptions)

Applications

a) Classification of time data (e.g. ECG)

b) Object recognition described by structural

codes (e.g. Freeman code, signature…)

c) Scene recognition, scene represented as

a graph of primitive objects

Time data

Line approximation of ECG:

0 / \ 0 / \ / 00 / / \ \ 0

Structural description of objects

d, b, a, b, c, b, a, b, d, b, a, b, c, b, a, b

221171076555443

Structural scene description

Hierarchical tree structure

scene S

objects B background C

object D object E floor m wall n

sfc e sfc t sfc x sfc y sfc z

Recognition

Theory of formal languages

A grammar generates a (possibly infinite)

set of strings (objects)

If we can design a grammar which

generates a class of strings, then we can

build a machine which will recognize any

string in that class

Formal languages

Alphabet is a finite set of symbols, V={x1,x2, …,xn}

Word over V is a finite string of ordered symbols from V

Example: V = {a,b,c}, valid words are “abcab”, “abba”,
“aaa”, null

V* set of all words over V

Language is an arbitrary subset L of V*

Example: V={0,1}, then L1 = {001, 110, 111, 0, null} is a
finite language

L2 = {s | s = 1n021m, n>=1, 1<=m<=10} is an infinite
language

Recognition

Objects from one class – words from the
language of this class

Classification – decide whether a word belongs
to the language of a class

Finite language – check all words

Infinite language – use the language grammar
or automaton to check

Grammars

Grammar G = {VT, VN, P, S}

VT is a set of terminal symbols

VN is a set of non-terminal symbols

VT ∩ VN = Ø;

P is the set of production rules

S is the starting symbol or the root; S belongs to VN

L(G) is a formal language generated by the grammar G

Each string is composed of only terminals

Each string can be derived from S using the production rules P

Example: VT = {a,b}, VN = {S}; P = {S->aSb, S->ab} => L(G) : anbn,
n>=1

Inference

Derive grammar based on training set or

domain knowledge

Not unique solutions

No general method, usually user interaction

is required

Example

Consider,

a: 0o horizontal unit length

b: 120o unit length

c: 240o unit length

L(G) represents the class of equilateral triangles

What is the grammar?

Type 3 Grammar solution

VT = {a,b,c}

VN = {S, A, B, C, D, E, F, G, H, I, J, K}

Type 2 Grammar solution

VT = {a,b,c}

VN = {S, A, B, C, D, E, F}

Example

Inference from training set

input: T = {x1,..., xt}

output: regular grammar G = (VN, VT, S, P)

Step 1

Find all terminals in T → create VT

Step 2

For each word xi = ai1...ain (xi∈T) create rules

S → ai1Z i1

Zi1 →ai2Zi2

.....

Zi,n-2 →ai,n-1Zi,n-1

Zi,n-1 →ain

every Zij is a new non-terminal

Example

Regular grammar G* unknown

G* = ({S,A,B,C}, {a,b}, S, P)

S → aA | bB

A → a | aS | bC

B → b | bS | aC

C → aB | bA

Finite automaton of G*

Training set

T = {abab, bbaa, baba, aabb}

Example

Inference: VT = {a,b}

VN =

Training set

T = {abab, bbaa, baba, aabb}

Example

L(G*) – infinite

L(G) – finite

L(G) = T ⊆ L(G*)

Many non-terminals, some equivalent

Generates only words from the training set

Recognition

1st step – check the terminal symbols

2nd step – try to derive the word from

compliant grammars: top-down, bottom-up

Syntactic deformations

Errors, noise, …

Structural deformations

Search for most similar word

e.g. Levenshtein distance (number of
transformations needed to transform word A
to B)

Grammars contains deformation rules
(insertion, deletion, substitution)

Summary

The classifier for a structural pattern

recognition system consists of a set of

grammars, one for each class

The main difficulty lies in grammar inference

Applications – mainly user-constructed

grammars

