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Nonhierarchical methods

the space is divided into one set of clusters



K-means clustering

K clusters

Minimizes total intra-cluster scatter (within sum of squares -

WSS)
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K-Means Algorithm

Initialization:

Randomly place K points into the space 

represented by the objects that are being 

clustered. These points represent initial 

group centroids.



K-Means Algorithm

Assign objects to the group that has the closest centroid 

𝐶(𝑥) = arg min
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When all objects have been assigned, recalculate the 
positions of the K centroids

𝑚𝑘 =
σ𝑥:𝐶 𝑥 =𝑘 𝑥

𝑁𝑘
, 𝑘 = 1,…𝐾

Repeat until the stopping criteria is met. 
(MSE < threshold, or no change in clustering)



K-Means Clustering

Initialization



K-Means Clustering

Initialization



K-Means Clustering

Assign objects



K-Means Clustering

Recalculate centroids



K-Means Clustering

Assign objects



K-Means Clustering

Recalculate centroids



K-Means Clustering

Assign objects



K-Means Clustering

Recalculate centroids END



K-Means Clustering

Guaranteed to converge

Guaranteed to achieve local optimum, not 

necessarily global optimum

Sensitive to noise and outlier data points

Clusters are sensitive to initial assignment of 

centroids (not a deterministic algorithm)

Clusters can be inconsistent from one run to 

another



Initialization



Outliers

Outlier



Choice of K

Many methods

Elbow point: compute total WSS



Choice of K

Gap value

Gap𝑁 𝐾 = 𝐸𝑁
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Choice of K

The silhouette value:

a measure of how similar a point is to points in its own 
cluster, when compared to points in other clusters

𝑆 𝑖 =
𝑏 𝑖 − 𝑎(𝑖)

max 𝑎 𝑖 , 𝑏 𝑖

𝑎(𝑖) – average distance from the i-th point to the other 
points in the same cluster as i

𝑏 𝑖 – minimum average distance from the i-th point to 
points in a different cluster, minimized over clusters

Try different Ks, compute average silhouette



Choice of K

The silhouette plot

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html



K-medoids

instead of means, use medoids of each

cluster

Medoid – object already in the set (e.g. 

existing color)

Mean – “artificial” object



K-medians

instead of means, use medians in each

dimension

object might not be in the set



Fuzzy C-means

Soft membership function
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https://matteucci.faculty.polimi.it/Clustering/tutorial_html/cmeans.html



Buckshot

hierarchical agglomerative clustering (HAC) and K-
Means clustering

First randomly take a sample of instances of size 𝑛

Run group-average HAC on this sample, which 
takes only O(n) time

Use the results of HAC as initial seeds for K-means

Overall algorithm is O(n) and avoids problems of bad 
seed selection

https://nlp.stanford.edu/IR-book/information-retrieval-book.html



Bisecting K-means

Divisive hierarchical clustering method using K-means

For I=1 to K-1 do {

Pick a leaf cluster C to split 

For J=1 to ITER do {

Use K-means to split C into two sub-clusters, C1

and C2

}

Choose the best of the above splits and make it 
permanent

}

http://glaros.dtc.umn.edu/gkhome/node/157



Self-Organizing Maps

SOM – Kohonen nets



Self-Organizing Maps

Neurons form a lattice 

Input data connected with all neurons



Two spaces of SOM

SOM lattice

Topological structure 

Weight space  

Same dimensionality as input space



SOM learning

Winner-takes-all algorithm:

The closest node is updated

Algorithm:

1. Randomize the map’s nodes weight

2. Select randomly one input vector



SOM learning

3. Find the closest node: best matching unit

𝑖∗ = arg min
𝑖

𝐱 − 𝐰𝑖

Closest using Euclid distance

4. The weight of this node is updated

Winner-takes-all



SOM learning

5. The weights of the adjacent nodes are

also updated, by not to the same degree

𝐰𝑖 𝑡 + 1 = 𝐰𝑖 𝑡 + 𝜂 𝑡 𝑂(𝑖, 𝑖∗, 𝑡) 𝐱 − 𝐰𝑖(𝑡)

𝑂(𝑖, 𝑖∗, 𝑡) – neighborhood specification

𝜂 𝑡 – learning rate 



SOM learning

𝐰𝑖 𝑡 + 1 = 𝐰𝑖 𝑡 + 𝜂 𝑡 𝑂(𝑖, 𝑖∗, 𝑡) 𝐱 − 𝐰𝑖(𝑡)

Cooperation phase

This is what ensures the 

similarity of weights between

contiguous nodes



SOM learning

6. Reduce the intensity of the update

progressively

Adaptation phase

At first, high learning rate, move quickly to 

the solution; at the end, small learning rate, 

to avoid oscillations.

7. Repeat 1 to 6 for Tmax iterations 



Neighborhood specification
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Neighborhood specification



Input vectors: Uniform random numbers from 〈−1,1〉×〈−1,1〉.

Weights 

random numbers from

〈−0.5,0.5〉×〈− 0.5,0.5〉

Weights 

After 100 iterations
Weights 

After 200 iterations

Weights 

After 600 iterations

Weights 

After 3000 iterations

Weights 

After 7000 iterations

SOM progress



SOM progress



Classification

U-matrix (unified distance matrix):

visualizes the distances between the neurons





Classification



Structural (syntactic) 

recognition



Structural pattern recognition

Patterns can contain structural and relational 

information that are difficult or impossible 

to quantify in feature vector form



Structural pattern recognition

Structure quantification and description are 
mainly done using:

Formal grammars

Relational descriptions (principally graphs)

Recognition and classification are done 
using:

Parsing (for formal grammars)

Relational graph matching (for relational 
descriptions)



Applications

a) Classification of time data (e.g. ECG)

b) Object recognition described by structural 

codes (e.g. Freeman code, signature…)

c) Scene recognition, scene represented as 

a graph of primitive objects



Time data

Line approximation of ECG: 

0 / \ 0 / \ / 00 / / \ \ 0



Structural description of objects

d, b, a, b, c, b, a, b, d, b, a, b, c, b, a, b

221171076555443



Structural scene description

Hierarchical tree structure

scene S 

objects B  background C 

object D   object E  floor m  wall n   

sfc e  sfc t sfc x sfc y sfc z 



Recognition

Theory of formal languages

A grammar generates a (possibly infinite) 

set of strings (objects) 

If we can design a grammar which 

generates a class of strings, then we can 

build a machine which will recognize any 

string in that class



Formal languages

Alphabet is a finite set of symbols, V={x1,x2, …,xn}

Word over V is a finite string of ordered symbols from V

Example: V = {a,b,c}, valid words are “abcab”, “abba”, 
“aaa”, null

V* set of all words over V

Language is an arbitrary subset L of V*

Example: V={0,1}, then L1 = {001, 110, 111, 0, null} is a 
finite language

L2 = {s | s = 1n021m, n>=1, 1<=m<=10} is an infinite 
language



Recognition

Objects from one class – words from the 
language of this class

Classification – decide whether a word belongs 
to the language of a class

Finite language – check all words

Infinite language – use the language grammar 
or automaton to check



Grammars

Grammar G = {VT, VN, P, S}

VT is a set of terminal symbols

VN is a set of non-terminal symbols

VT ∩ VN = Ø;

P is the set of production rules

S is the starting symbol or the root; S belongs to VN

L(G) is a formal language generated by the grammar G

Each string is composed of only terminals

Each string can be derived from S using the production rules P

Example: VT = {a,b}, VN = {S}; P = {S->aSb, S->ab} => L(G) : anbn, 
n>=1



Inference

Derive grammar based on training set or 

domain knowledge

Not unique solutions

No general method, usually user interaction 

is required 



Example

Consider, 

a: 0o horizontal unit length

b: 120o unit length

c: 240o unit length

L(G) represents the class of equilateral triangles

What is the grammar? 



Type 3 Grammar solution

VT = {a,b,c}

VN = {S, A, B, C, D, E, F, G, H, I, J, K}

Type 2 Grammar solution

VT = {a,b,c}

VN = {S, A, B, C, D, E, F}

Example



Inference from training set

input: T = {x1,..., xt}

output: regular grammar G = (VN, VT, S, P)

Step 1

Find all terminals in T → create VT 

Step 2

For each word xi = ai1...ain (xi∈T) create rules

S → ai1Z i1

Zi1 →ai2Zi2

.....

Zi,n-2 →ai,n-1Zi,n-1

Zi,n-1 →ain

every Zij is a new non-terminal



Example

Regular grammar G* .... unknown

G* = ({S,A,B,C}, {a,b}, S, P)

S → aA | bB 

A → a | aS | bC  

B → b | bS | aC

C → aB | bA

Finite automaton of G*

Training set

T = {abab, bbaa, baba, aabb} 



Example

Inference: VT = {a,b}

VN =

Training set

T = {abab, bbaa, baba, aabb} 



Example

L(G*) – infinite

L(G) – finite

L(G) = T ⊆ L(G*)

Many non-terminals, some equivalent

Generates only words from the training set



Recognition

1st step – check the terminal symbols

2nd step – try to derive the word from 

compliant grammars: top-down, bottom-up



Syntactic deformations

Errors, noise, …

Structural deformations

Search for most similar word 

e.g. Levenshtein distance (number of 
transformations needed to transform word A 
to B)

Grammars contains deformation rules 
(insertion, deletion, substitution)



Summary

The classifier for a structural pattern 

recognition system consists of a set of 

grammars, one for each class 

The main difficulty lies in grammar inference

Applications – mainly user-constructed 

grammars




