
Machine learning in computer 

vision

Lesson 2



2 approaches

Feature selection:

subset of original features 

Feature transformation:

transformation of the original features to 

less-dimensional space



Transformation 

to less-dimensional space

Data in 3D

How to project to 2D?



Transformation 

to less-dimensional space



Feature transformation

Unsupervised (information loss is minimized)

Principal Component Analysis (PCA)

Latent Semantic Indexing (LSI)

Independent Component Analysis (ICA)

…

Supervised (interclass distance is maximized)

Linear Discriminant Analysis (LDA)

Canonical Correlation Analysis (CCA)

Partial Least Squares (PLS)

…



Principal Component Analysis 

(PCA)

Karhunen-Loeve, K-L method

PCA - looking for a subspace with highest 

variance



PCA

Rotates and translates the axes s.t. the first new 

axis is in the direction of maximum variance in the 

data

D-dimensional feature vectors: x1, … xN

New orthonormal basis: b1, … bD , bi
Tbj = δij

Original data                                   Transformed data   



Vector projection

Mean                        projection

Variance

First axis in the direction of the highest 

variance – constrained optimization 

PC1 derivation



Lagrange multipliers

constrained optimization

Lagrange function optimization

Variance

eigenvalue

s.t.



Variance

eigenvalue

s.t.

PC2 derivation



Finding new origin

directions of new basis vectors

New origin: p

We want to minimize the error between original and projected vectors



Finding new origin

directions of new basis vectors

New origin: p

We want to minimize the error between original and projected vectors



PCA steps
Compute covariance

Compute eigenvectors of matrix

Compute coordinates of projected vectors           



Dimensionality reduction



Number of principal components

Scree plot

Explained variance

Inflection point - where the “unimportant” 
eigenvalues start

here the optimal number is 3

Inflection point

Decreasing eigenvalues  
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Proportion of explained 

variance in j-th 

component

Cumulative proportion of 

explained variance

> 0.9 or 0.95

Number of principal components

Inflection point

Decreasing eigenvalues  
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𝑁 < 𝐷, 𝑟 = rank X = rank 𝚺 ≤ 𝑁

At most r non-zero eigenvalues

p𝑗 = X𝑇b𝑗 - eigenvector of matrix 1

𝑁
X𝑇X

PCA computation



Suppose

we look for bj, s.t.



PCA computation



SVD

𝑁 < 𝐷
singular value decomposition of A

v - eigenvector of 

u - eigenvector of

T
USVA 



PCA - SVD connection

We can use SVD instead of PCA

SVD – numerically stable

- eigenvectors of matrix          



Using PCA

Using K eigenvectors (eigenfaces)



Independent Components Analysis 

(ICA)

Components not orthogonal 



ICA

vector represented as linear combination of 

non-Gaussian random variables 

(“independent components”)



Cocktail party problem

xi(t) = ai1*s1(t) + ai2*s2(t) + ai3*s3(t) + ai4*s4(t)



ICA

𝐗 = 𝐀 𝐒
𝐘 = 𝐖 ෨X



ICA assumptions

E(si)=0

Var(si)=1

non-Gaussianity

E{SST}=I



ICA procedure

Preprocessing:

Centering 𝐗′ = 𝐗 − ഥ𝐗

Whitening    ෨X = 𝐁 𝐗′, s.t. 𝚺෩X = 𝐈

Eigenvalues:     X′X′𝑇 = 𝚺 = VSV𝑇

෨X = VDV𝑇 𝐗′

1/2 ijij sd



ICA procedure

Looking for directions wi, to maximize non-

Gaussianity

𝐘 = 𝐖 ෨X



Non-Gaussianity measures

skewness and kurtosis (3rd, 4th central  

moment)

Negentropy

aproximation
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ICA algorithm

w that maximizes non-gaussianity

constraint

Lagrange: L = E(G(wTx)) – λ(wTw – 1)

Derivation:  L’ = E(x.g(wTx)) – λw ≡ 0

solve using Newton method

constant for w
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f(w)



Newton method – root finding

w𝑖+1 = w𝑖 −
𝑓(w𝑖)

𝑓′(w𝑖)

https://en.wikipedia.org/wiki/Newton%27s_method



FastICA algorithm, 1 direction

1. Random starting vector w

2. 

3.

4. Repeat 2.,3. until convergence



FastICA, more directions

FastICA for each direction, decorelation after 

each iteration 

FastICA for all directions, symetric 

decorelation at the end



ICA ambiguites

Amplitudes of separated signals cannot be 

determined.

There is a sign ambiguity associated with 

separated signals.

The order of separated signals cannot be 

determined.



Reduction

ICs not ranked

1. Compute ICA for K<D 

2. During whitening we retain K PCs 

3. Compute ICA for K=D, analyze the mixing 

matrix A



ICA applications

ICs

Reconstruction of original (8×8) image using 
ICA basis functions. 

(a) (a) Original image, 

(b) (b) using 10 basis functions, NSE≈0.4, 

(c) (c) using 30 basis functions, NSE≈0.1 

(d) (d) using 63 basis functions, NSE≈0.

R. Jenssen, T. Eltoft

Independent component analysis for texture segmentation

Pattern Recognit., 36 (10) (2003), pp. 2301-2315
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Cons of unsupervised methods

sometimes not optimal for classification task

do not take into account the class 

membership



Cons of unsupervised methods

sometimes not optimal for classification task

do not take into account the class 

membership



Linear Discriminant Analysis (LDA)

Supervised method

Dimensionality reduction with class 

separability

Investigates intraclass and interclass 

relations



Fisher LDA

D-dimensional feature vectors: x1, … xN

C classes: 𝜔𝑗 = 𝑁𝑗



Scatter

Total scatter in the data             

Interclass scatter

Intraclass scatter                                   



Variability premietnutých príznakov

Projection to w



2 classes

𝑆𝑀 = തx1 − തx2 തx1 − തx2
𝑇

𝑆𝑀v = തx1 − തx2 തx1 − തx2
𝑇v

𝑆𝑀v = 𝛼 തx1 − തx2

w ∝ 𝑆𝑉
−1 തx1 − തx2



C classes

Solve the generalized eigenvalue problem                                                                          



PCA vs LDA



PCA vs LDA



http://courses.cs.tamu.edu/rgutier/csce666_f13/l10.pdf

PCA vs LDA



PCA – LDA combination

Zhao, W., Chellappa, R. and Krishnaswamy, A.

Discriminant Analysis of Principal Components for Face Recognition

Use PCA lower the dimension

Find discriminative 

directions



PCA vs LDA

for small number of training data, PCA gives 

better results than LDA

if we have enough training data for each 

class, LDA is better

A. Martinez, A. Kak, "PCA versus LDA", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 2, 

pp. 228-233, 2001.



assume Gaussian distribution

If the class difference lies in variance but not mean, LDA 

fails

PCA vs LDA



Nonlinear methods


