Machine learning in computer vision

Lesson 2

2 approaches

Feature selection:

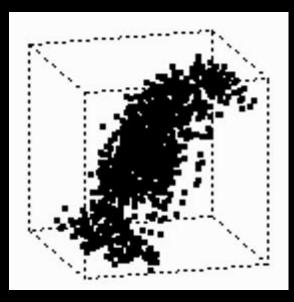
subset of original features

Feature transformation:

transformation of the original features to less-dimensional space

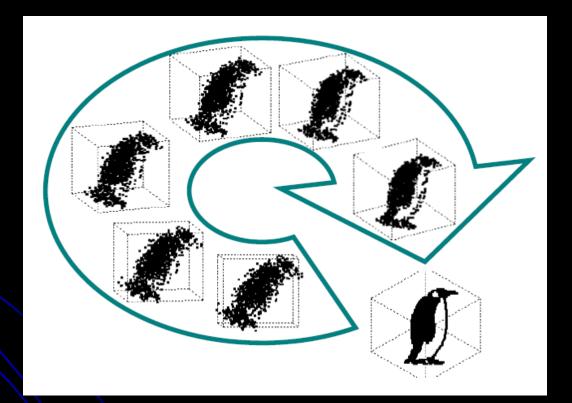
Transformation to less-dimensional space

Data in 3D



How to project to 2D?

Transformation to less-dimensional space



Feature transformation

Unsupervised (information loss is minimized) Principal Component Analysis (PCA) Latent Semantic Indexing (LSI) Independent Component Analysis (ICA)

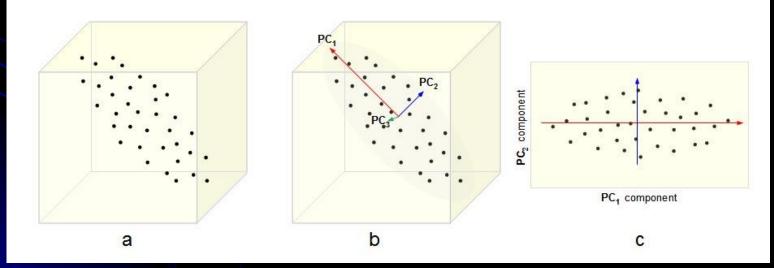
Supervised (interclass distance is maximized) Linear Discriminant Analysis (LDA) Canonical Correlation Analysis (CCA) Partial Least Squares (PLS)

. . .

Principal Component Analysis (PCA)

Karhunen-Loeve, K-L method

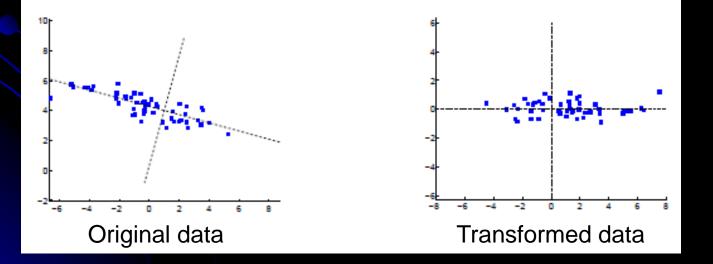
PCA - looking for a subspace with highest variance



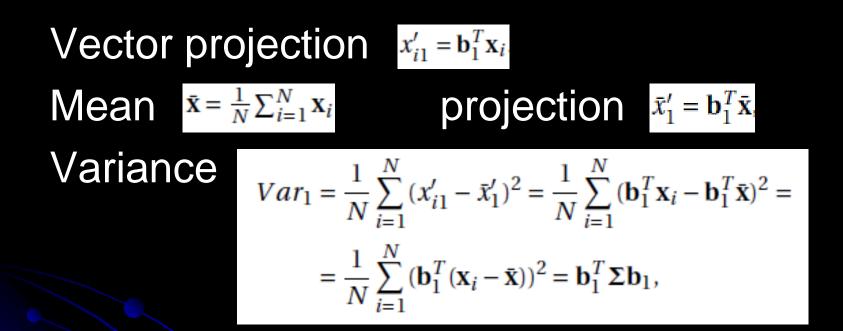
PCA

Rotates and translates the axes s.t. the first new axis is in the direction of maximum variance in the data

D-dimensional feature vectors: $\{x_1, ..., x_N\}$ New orthonormal basis: $\{b_1, ..., b_D\}$, $b_i^T b_j = \delta_{ij}$



PC1 derivation



First axis in the direction of the highest variance – constrained optimization

Lagrange multipliers

constrained optimization

$$\max_{\mathbf{b}_1} \mathbf{b}_1^T \mathbf{\Sigma} \mathbf{b}_1,$$

s.t. $\mathbf{b}_1^T \mathbf{b}_1 = 1.$

Lagrange function optimization

$$L = \mathbf{b}_1^T \mathbf{\Sigma} \mathbf{b}_1 - \lambda (\mathbf{b}_1^T \mathbf{b}_1 - 1)$$

$$\frac{\partial L}{\partial \mathbf{b}_1} = 2\Sigma \mathbf{b}_1 - 2\lambda \mathbf{b}_1 \equiv 0$$

 $\Sigma \mathbf{b}_1 = \lambda \mathbf{b}_1$ eigenvalue

Variance $\mathbf{b}_1^T \mathbf{\Sigma} \mathbf{b}_1 = \lambda \mathbf{b}_1^T \mathbf{b}_1 = \lambda$,

PC2 derivation

Variance $Var_2 = \mathbf{b}_2^T \mathbf{\Sigma} \mathbf{b}_2$.

 $\max_{\mathbf{b}_2} \mathbf{b}_2^T \mathbf{\Sigma} \mathbf{b}_2,$ s.t. $\mathbf{b}_2^T \mathbf{b}_2 = 1,$ $\mathbf{b}_1^T \mathbf{b}_2 = 0.$

$$L = \mathbf{b}_2^T \mathbf{\Sigma} \mathbf{b}_2 - \lambda (\mathbf{b}_2^T \mathbf{b}_2 - 1) - \mu \mathbf{b}_1^T \mathbf{b}_2$$

$$\frac{\partial L}{\partial \mathbf{b}_2} = 2\Sigma \mathbf{b}_2 - 2\lambda \mathbf{b}_2 - \mu \mathbf{b}_1 \equiv 0$$

$$\Sigma b_2 = \lambda b_2$$
, eigenvalue

Finding new origin

directions of new basis vectors $\{\mathbf{b}_1, \dots, \mathbf{b}_D\}$

New origin: p

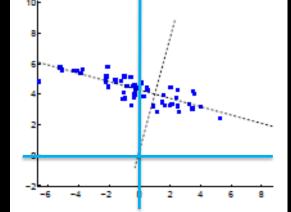
$$\mathbf{y}_i = \mathbf{p} + \sum_{j=1}^D y_{ij} \mathbf{b}_j$$

We want to minimize the error between original and projected vectors

$$E = \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{y}_i||^2 = \sum_{i=1}^{N} ||\mathbf{x}_i - (\mathbf{p} + \sum_{j=1}^{D} y_{ij} \mathbf{b}_j)||^2 =$$
$$= \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{p}||^2 - 2\sum_{i=1}^{N} \sum_{j=1}^{D} y_{ij} \mathbf{b}_j^T (\mathbf{x}_i - \mathbf{p}) + \sum_{i=1}^{N} \sum_{j=1}^{D} y_{ij}^2$$

 $y_{ij} = \mathbf{b}_i^T (\mathbf{x}_i - \bar{\mathbf{x}})$

 $\mathbf{p} = \mathbf{\bar{x}}$.



Finding new origin

directions of new basis vectors $\{\mathbf{b}_1, \dots, \mathbf{b}_D\}$

New origin: p

$$\mathbf{y}_i = \mathbf{p} + \sum_{j=1}^D y_{ij} \mathbf{b}_j$$

We want to minimize the error between original and projected vectors

$$E = \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{y}_i||^2 = \sum_{i=1}^{N} ||\mathbf{x}_i - (\mathbf{p} + \sum_{j=1}^{D} y_{ij} \mathbf{b}_j)||^2 =$$
$$= \sum_{i=1}^{N} ||\mathbf{x}_i - \mathbf{p}||^2 - 2\sum_{i=1}^{N} \sum_{j=1}^{D} y_{ij} \mathbf{b}_j^T (\mathbf{x}_i - \mathbf{p}) + \sum_{i=1}^{N} \sum_{j=1}^{D} y_{ij}^2$$

 $y_{ij} = \mathbf{b}_i^T (\mathbf{x}_i - \bar{\mathbf{x}})$

-2

 $\mathbf{p} = \mathbf{\bar{x}}$.

PCA steps

Compute covariance Σ

$$\boldsymbol{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T = \frac{1}{N} \mathbf{X} \mathbf{X}^T,$$

 $[\mathbf{X}]_{D \times N} = [\mathbf{x}_1 - \bar{\mathbf{x}}, \dots \mathbf{x}_N - \bar{\mathbf{x}}]$

Compute eigenvectors of matrix Σ

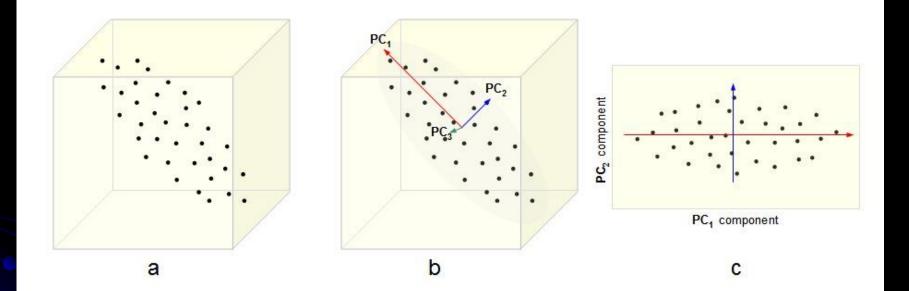
$$\mathbf{\Sigma}\mathbf{b}_j = \lambda_j \mathbf{b}_j$$

Compute coordinates of projected vectors

$$\begin{split} \mathbf{x}_i' &= \sum_{j=1}^{D} \mathbf{b}_j^T (\mathbf{x}_i - \bar{\mathbf{x}}) = \mathbf{B}^T (\mathbf{x}_i - \bar{\mathbf{x}}), \\ \mathbf{X}' &= \mathbf{B}^T \mathbf{X} \end{split}$$

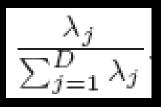
 $\mathbf{B} = [\mathbf{b}_1, \dots \mathbf{b}_D].$

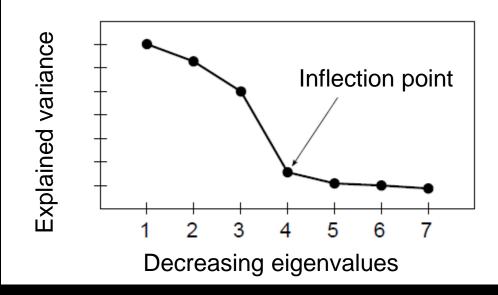
Dimensionality reduction



Number of principal components

Scree plot Explained variance

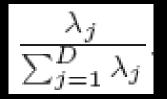




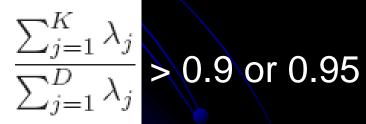
Inflection point - where the "unimportant" eigenvalues start here the optimal number is 3

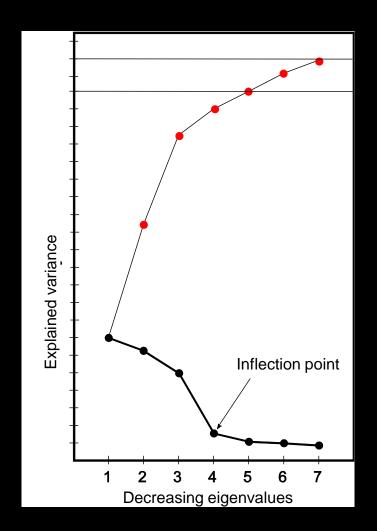
Number of principal components

Proportion of explained variance in j-th component



Cumulative proportion of explained variance





PCA computation

 $N < D, r = \operatorname{rank}(\mathbf{X}) = \operatorname{rank}(\mathbf{\Sigma}) \le N$ At most r non-zero eigenvalues

$$\begin{split} \boldsymbol{\Sigma} &= \frac{1}{N} \mathbf{X} \mathbf{X}^T \\ \boldsymbol{\Sigma} \mathbf{b}_j &= \lambda_j \mathbf{b}_j \\ \boldsymbol{\Omega}(D^3) & \boldsymbol{\Sigma} \mathbf{b}_j &= \lambda_j \mathbf{b}_j \\ \frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{b}_j &= \lambda_j \mathbf{b}_j \\ \frac{1}{N} \mathbf{X}^T \mathbf{X} \mathbf{X}^T \mathbf{b}_j &= \lambda_j \mathbf{X}^T \mathbf{b}_j \\ \frac{1}{N} \mathbf{X}^T \mathbf{X} \mathbf{X}^T \mathbf{b}_j &= \lambda_j \mathbf{y}_j, \end{split}$$

$$\mathbf{p}_j = \mathbf{X}^T \mathbf{b}_j$$
 - eigenvector of matrix $\frac{1}{N} \mathbf{X}^T \mathbf{X}$

PCA computation

$$\frac{1}{N} \mathbf{X}^T \mathbf{X} \mathbf{p}_j = \lambda_j \mathbf{p}_j$$
$$\frac{1}{N} \mathbf{X} \mathbf{X}^T \mathbf{X} \mathbf{p}_j = \lambda_j \mathbf{X} \mathbf{p}_j$$
$$\mathbf{\Sigma} \mathbf{X} \mathbf{p}_j = \lambda_j \mathbf{X} \mathbf{p}_j, \Rightarrow \mathbf{b}_j \propto \mathbf{X} \mathbf{p}_j$$

Suppose
$$||\mathbf{p}_j|| = 1$$

we look for \mathbf{b}_j , s.t. $||\mathbf{b}_j|| = 1$

$$\mathbf{b}_j = \frac{1}{\sqrt{N\lambda_j}} \, \mathbf{X} \mathbf{p}_j$$

SVD

N < Dsingular value decomposition of A $A = USV^T$

$$[\mathbf{A}]_{N \times D} = [\mathbf{U}]_{N \times N} [\mathbf{S}]_{N \times D} [\mathbf{V}^T]_{D \times D}$$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_N], \ \mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_D] \ \mathbf{a} \ \mathbf{S} = diag(\sigma_1, \dots, \sigma_{rank(\mathbf{A})})$$

$$\lambda = \sigma^2$$

$$\frac{\mathbf{A}^T \mathbf{A}}{\mathbf{A} \mathbf{A}^T}$$

v - eigenvector of
 u - eigenvector of

$$\Sigma = \frac{1}{N} \mathbf{X} \mathbf{X}^T$$

PCA - SVD connection

$$\mathbf{X} \;=\; \left[\mathbf{x}_1 - \mathbf{\bar{x}}, \ldots \mathbf{x}_N - \mathbf{\bar{x}}\right]$$

$$\mathbf{Y} = \frac{1}{\sqrt{N}} \mathbf{X}^T \longrightarrow \mathbf{Y}^T \mathbf{Y} = \frac{1}{N} \mathbf{X} \mathbf{X}^T = \boldsymbol{\Sigma}$$

$$\mathbf{Y} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

V - eigenvectors of matrix

$$\mathbf{Y}^T \mathbf{Y} = \boldsymbol{\Sigma}$$

We can use SVD instead of PCA SVD – numerically stable

Using PCA

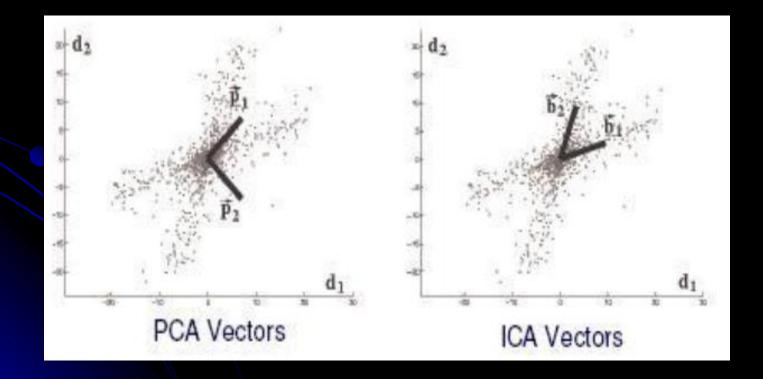
$$\mathbf{x}' = \sum_{j=1}^{D} \mathbf{b}_{j}^{T} \left(\mathbf{x} - \overline{\mathbf{x}} \right) = \mathbf{B}^{T} \mathbf{x} = \left(x_{1}', \dots, x_{D}' \right)^{T}$$
$$\mathbf{x} = \overline{\mathbf{x}} + \sum_{j=1}^{D} \mathbf{b}_{j} \mathbf{x}'$$

j=1

Using K eigenvectors (eigenfaces) $\widetilde{\mathbf{x}} \approx \overline{\mathbf{x}} + \sum_{j=1}^{K} \mathbf{b}_{j} x'_{j}$

Independent Components Analysis (ICA)

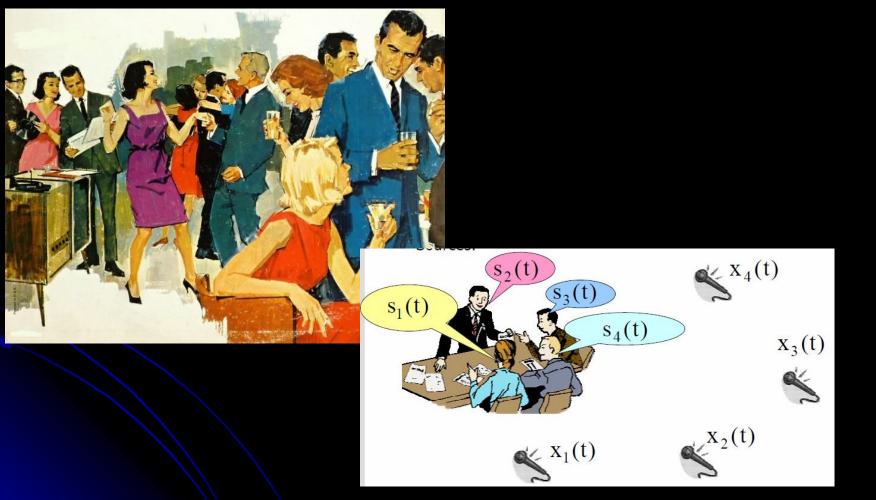
Components not orthogonal



ICA

vector represented as linear combination of non-Gaussian random variables ("independent components")

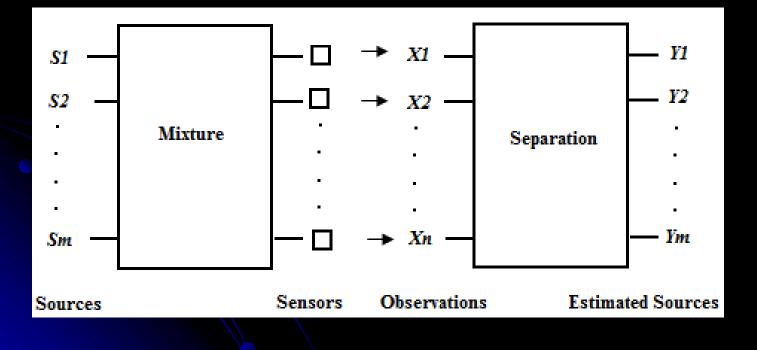
Cocktail party problem



 $x_i(t) = a_{i1} * s_1(t) + a_{i2} * s_2(t) + a_{i3} * s_3(t) + a_{i4} * s_4(t)$

ICA

X = A S $Y = W \tilde{X}$



ICA assumptions

$$p(s_1, s_2, ..., s_n) = p(s_1)p(s_2)...p(s_n)$$

E(s_i)=0 Var(s_i)=1 non-Gaussianity

 $E{SS^{T}}=I$

ICA procedure

Preprocessing:

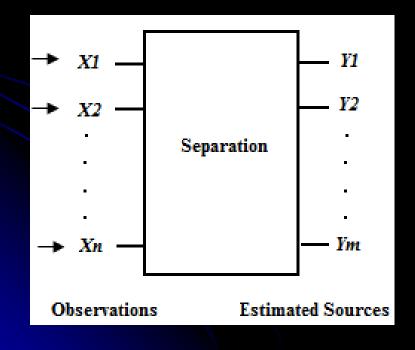
 $\begin{array}{lll} \text{Centering} & \mathbf{X}' = \mathbf{X} - \overline{\mathbf{X}} \\ \text{Whitening} & \widetilde{\mathbf{X}} = \mathbf{B} \, \mathbf{X}', \, \text{s.t.} \, \boldsymbol{\Sigma}_{\widetilde{\mathbf{X}}} = \mathbf{I} \end{array}$

Eigenvalues:

$$\mathbf{X'X'^T} = \mathbf{\Sigma} = \mathbf{VSV'}$$
$$d_{ij} = s_{ij}^{-1/2}$$
$$\tilde{\mathbf{X}} = \mathbf{VDV^T} \mathbf{X'}$$

ICA procedure

Looking for directions w_i , to maximize non-Gaussianity $\mathbf{Y} = \mathbf{W} \, \tilde{\mathbf{X}}$



Non-Gaussianity measures

skewness and kurtosis (3rd, 4th central moment)

NegentropyJ(y)aproximationJ(y)

$$J(y) = H(y_G) - H(y)$$
$$J(y) \propto (E(G(y)) - E(G(y_G))^2)$$

$$G_1(u) = \frac{1}{a_1} \log \cosh a_1 u, \quad G_2(u) = -\exp(-u^2/2)$$

ICA algorithm

w that maximizes non-gaussianity

 $J(\mathbf{w}^T \mathbf{x}) \propto (E(G(\mathbf{w}^T \mathbf{x})) - E(G(\mathbf{y}_G))^2)$

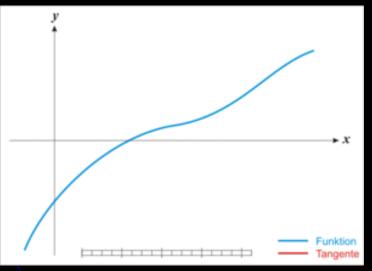
constraint ||w||²⁼¹

constant for w

Lagrange: $L = E(G(w^Tx)) - \lambda(w^Tw - 1)$ Derivation: L' = $E(x.g(w^Tx)) - \lambda w \equiv 0$ solve using Newton method

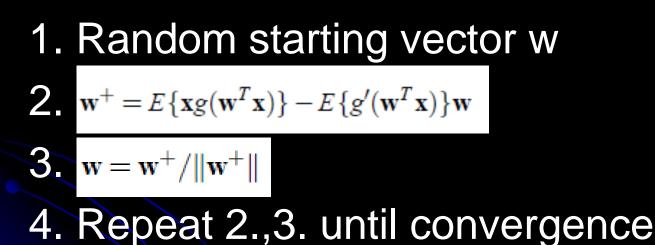
Newton method – root finding

$$\mathbf{w}_{i+1} = \mathbf{w}_i - \frac{f(\mathbf{w}_i)}{f'(\mathbf{w}_i)}$$



https://en.wikipedia.org/wiki/Newton%27s_method

FastICA algorithm, 1 direction



FastICA, more directions

FastICA for each direction, decorelation after each iteration

$$\mathbf{w}_{p+1} = \mathbf{w}_{p+1} - \sum_{j=1}^{p} \mathbf{w}_{p+1}^{T} \mathbf{w}_{j} \mathbf{w}_{j}$$
$$\mathbf{w}_{p+1} = \mathbf{w}_{p+1} / \sqrt{\mathbf{w}_{p+1}^{T} \mathbf{w}_{p+1}}$$

FastICA for all directions, symetric decorelation at the end

ICA ambiguites

Amplitudes of separated signals cannot be determined.

There is a sign ambiguity associated with separated signals.

The order of separated signals cannot be determined.

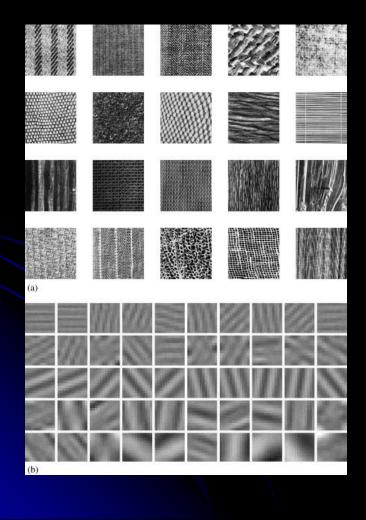
Reduction

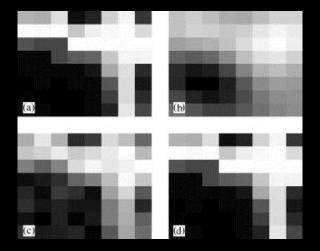
ICs not ranked

Compute ICA for K<D
 During whitening we retain K PCs
 Compute ICA for K=D, analyze the mixing matrix A

ICA applications

ICs





Reconstruction of original (8×8) image using ICA basis functions.

- (a) Original image,
- (b) using 10 basis functions, *NSE*≈0.4,
- (c) using 30 basis functions, NSE≈0.1
- (d) using 63 basis functions, *NSE*≈0.

R. Jenssen, T. Eltoft Independent component analysis for texture segmentation Pattern Recognit., 36 (10) (2003), pp. 2301-2315

Bibliography

Aapo Hyvärinen and Erkki Oja: Independent Component Analysis: Algorithms and Applications, *Neural Networks*, 13(4-5):411-430, 2000

http://research.ics.aalto.fi/ica/icademo/

Independent Component Analysis of Textures in Angiography Images http://www.ia.pw.edu.pl/~wkasprza/PAP/ICCVG04c.pdf

Independent Component Analysis of Textures https://pdfs.semanticscholar.org/a734/1ead68514c5eb39cc2e907df62f d280e7f87.pdf

Cons of unsupervised methods

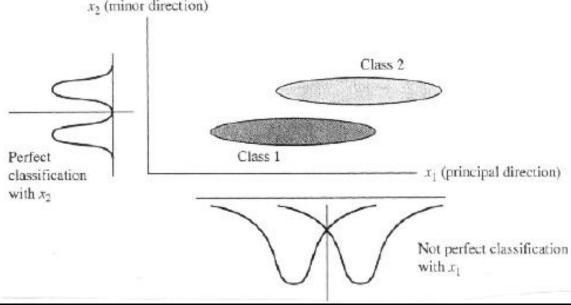
sometimes not optimal for classification task

do not take into account the class membership

Cons of unsupervised methods

sometimes not optimal for classification task

do not take into account the class membership



Linear Discriminant Analysis (LDA)

Supervised method

Dimensionality reduction with class separability

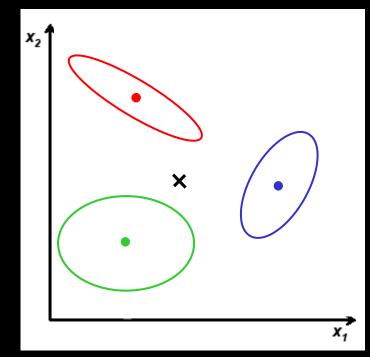
Investigates intraclass and interclass relations

Fisher LDA

D-dimensional feature vectors: $\{x_1, ..., x_N\}$ C classes: $|\omega_j| = N_j$

$$\bar{\mathbf{x}}_j = \frac{1}{|\omega_j|} \sum_{\mathbf{x} \in \omega_j} \mathbf{x} = \frac{1}{N_j} \sum_{\mathbf{x} \in \omega_j} \mathbf{x}$$

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i$$



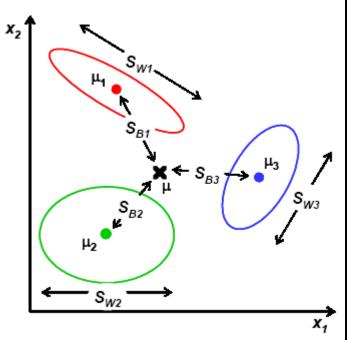
Scatter

Total scatter in the data

$$\mathbf{S} = \sum_{i=1}^{N} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})^{T}.$$

$$\mathbf{S} = \mathbf{S}_{M} + \mathbf{S}_{V}$$
Interclass scatter
$$\mathbf{S}_{M} = \sum_{j=1}^{C} N_{j} (\bar{\mathbf{x}}_{j} - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_{j} - \bar{\mathbf{x}})^{T}$$

$$\mathbf{S}_{V} = \sum_{j=1}^{C} \sum_{\mathbf{x} \in \omega_{j}} (\mathbf{x} - \bar{\mathbf{x}}_{j}) (\mathbf{x} - \bar{\mathbf{x}}_{j})^{T} = \sum_{j=1}^{C} \mathbf{S}_{j}$$



Intraclass scatter

$$\mathbf{S}_j = \sum_{\mathbf{x} \in \omega_j} (\mathbf{x} - \bar{\mathbf{x}}_j) (\mathbf{x} - \bar{\mathbf{x}}_j)^T.$$

Projection to w

$$x'_i = \mathbf{w}^T \mathbf{x}_i \qquad \bar{x}'_j = \mathbf{w}^T \bar{\mathbf{x}}_j$$

$$\mathbf{Q} = \mathbf{Q}_M + \mathbf{Q}_V$$

$$\mathbf{Q} = \sum_{i=1}^N (\mathbf{w}^T \mathbf{x}_i - \mathbf{w}^T \bar{\mathbf{x}}) (\mathbf{w}^T \mathbf{x}_i - \mathbf{w}^T \bar{\mathbf{x}})^T = \mathbf{w}^T \mathbf{S} \mathbf{w}$$

$$\mathbf{Q}_M = \sum_{j=1}^C N_j (\mathbf{w}^T \bar{\mathbf{x}}_j - \mathbf{w}^T \bar{\mathbf{x}}) (\mathbf{w}^T \bar{\mathbf{x}}_j - \mathbf{w}^T \bar{\mathbf{x}})^T = \mathbf{w}^T \mathbf{S}_M \mathbf{w}$$

$$\mathbf{Q}_V = \sum_{j=1}^C \sum (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \bar{\mathbf{x}}_j) (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \bar{\mathbf{x}}_j)^T = \mathbf{w}^T \mathbf{S}_V \mathbf{w}$$

$$\mathbf{Q}_V = \sum_{j=1}^{C} \sum_{\mathbf{x} \in \omega_j} (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \bar{\mathbf{x}}_j) (\mathbf{w}^T \mathbf{x} - \mathbf{w}^T \bar{\mathbf{x}}_j)^T = \mathbf{w}^T \mathbf{S}_V \mathbf{w}.$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_M \mathbf{w}}{\mathbf{w}^T \mathbf{S}_V \mathbf{w}}$$

$$\mathbf{S} = \mathbf{S}_M + \mathbf{S}_V$$

$$\mathbf{S}_M = \sum_{j=1}^C N_j (\bar{\mathbf{x}}_j - \bar{\mathbf{x}}) (\bar{\mathbf{x}}_j - \bar{\mathbf{x}})^T$$

$$\mathbf{S}_V = \sum_{j=1}^C \sum_{\mathbf{x} \in \omega_j} (\mathbf{x} - \bar{\mathbf{x}}_j) (\mathbf{x} - \bar{\mathbf{x}}_j)^T = \sum_{j=1}^C \mathbf{S}_j$$

2 classes

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_M \mathbf{w}}{\mathbf{w}^T \mathbf{S}_V \mathbf{w}}$$

$$\frac{\mathrm{d}J}{\mathrm{d}\mathbf{w}} = (\mathbf{w}^T \mathbf{S}_M \mathbf{w}) 2\mathbf{S}_V \mathbf{w} - (\mathbf{w}^T \mathbf{S}_V \mathbf{w}) 2\mathbf{S}_M \mathbf{w} \equiv 0$$

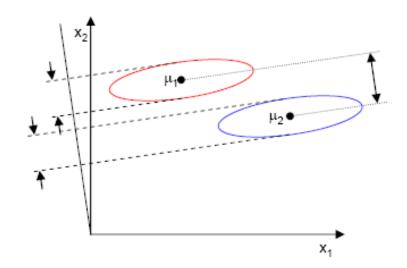
$$\mathbf{S}_M \mathbf{w} = J \mathbf{S}_V \mathbf{w}$$
$$\mathbf{S}_V^{-1} \mathbf{S}_M \mathbf{w} = J \mathbf{w}$$

$$S_M = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^T$$

$$S_M \mathbf{v} = (\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)^T \mathbf{v}$$

$$S_M \mathbf{v} = \alpha(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$$

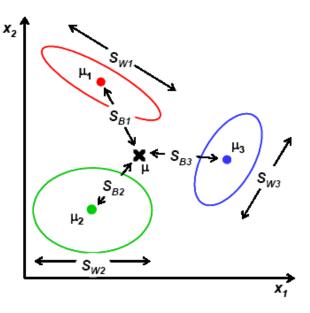
 $\mathbf{w} \propto S_V^{-1}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$



C classes

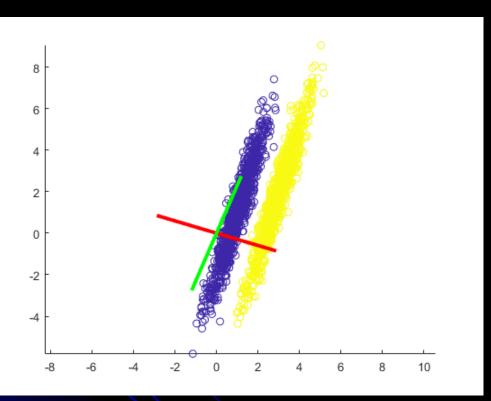
$$\mathbf{W} = [\mathbf{w}_1 | \mathbf{w}_2 | \dots | \mathbf{w}_{C-1}]$$

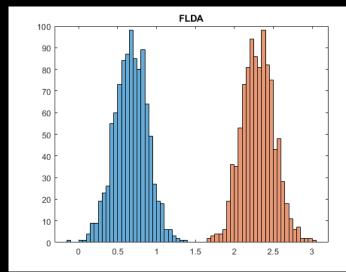
$$J(\mathbf{w}) = \frac{|\mathbf{W}^T \mathbf{S}_M \mathbf{W}|}{|\mathbf{W}^T \mathbf{S}_V \mathbf{W}|}$$

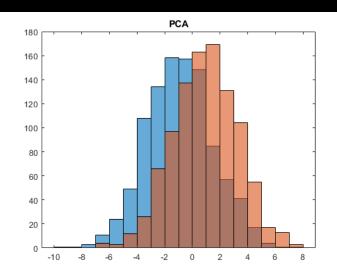


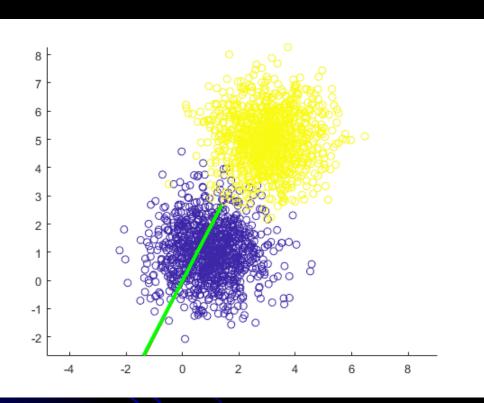
Solve the generalized eigenvalue problem

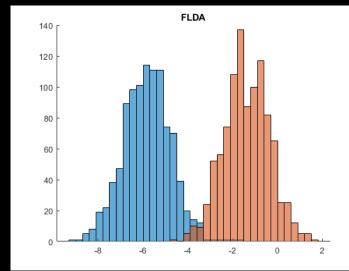
$$(\mathbf{S}_M - \mathbf{S}_V \lambda) \mathbf{w} = 0.$$

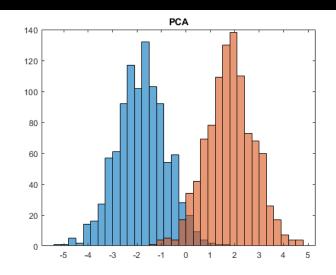


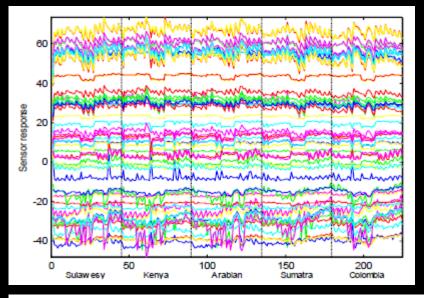


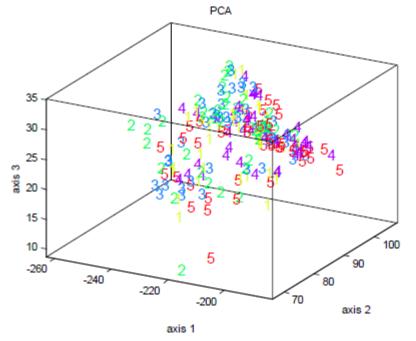






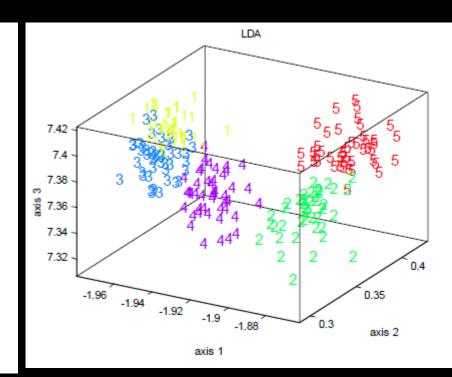






Five types of coffee beans were presented to an array of gas sensors

For each coffee type, 45 "sniffs" were performed and the response of the gas sensor array was processed ir order to obtain a 60-dimensional feature vector



http://courses.cs.tamu.edu/rgutier/csce666_f13/l10.pdf

PCA – LDA combination

Use PCA lower the dimension

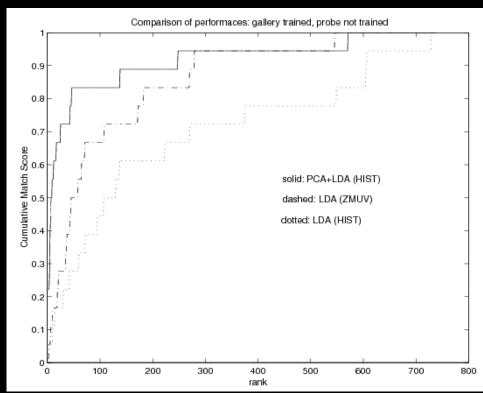
$$\begin{bmatrix} x_1 \\ x_2 \\ \cdots \\ x_N \end{bmatrix} - - > PCA - - > \begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_K \end{bmatrix}$$

Find discriminative directions

$$\begin{bmatrix} y_1 \\ y_2 \\ \cdots \\ y_K \end{bmatrix} - - > LDA - - > \begin{bmatrix} z_1 \\ z_2 \\ \cdots \\ z_{C-1} \end{bmatrix}$$

Zhao, W., Chellappa, R. and Krishnaswamy, A.

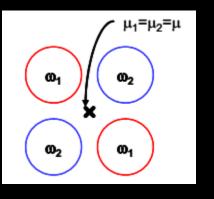
Discriminant Analysis of Principal Components for Face Recognition



for small number of training data, PCA gives better results than LDA if we have enough training data for each class, LDA is better

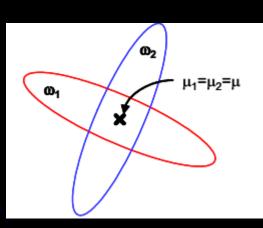
A. Martinez, A. Kak, "PCA versus LDA", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 23, no. 2, pp. 228-233, 2001.

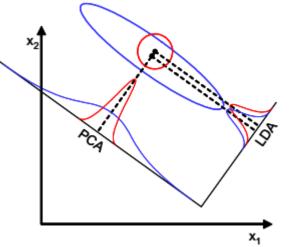
assume Gaussian distribution





If the class difference lies in variance but not mean, LDA fails





Nonlinear methods

