Machine learning in computer vision

Lesson 3

Classification pipeline

Supervised methods

One variable – target (class), supervises the learning process, s.t. the predictors (features) predict the target with minimal error

Decision function $f(\mathbf{x}_i) = \omega$

Decision boundaries

Supervised classification

Training set N observations $(\mathbf{x}_1, \cdots \mathbf{x}_N), \mathbf{x}_i \in \mathbb{R}^d$

Correct classification $(y_1, \dots y_N), y_i \in \{-1, 1\}$

Classification problem: find $f(\mathbf{x})$ s. t. $f(\mathbf{x}_i)=y_i$ determine $g(\mathbf{x})$ from $f(\mathbf{x})$

Probability recap

Probability recap

Total probability: $\{A_i\}_{i=1}^M$ is a partition of sample space Ω . Then

$$P(B) = \sum_{i=1}^{M} P(B|A_i) \cdot P(A_i)$$

Proof: Event $B \in \Omega$ is a union of events $(B \cap A_1), \dots, (B \cap A_M)$. These events are disjoint, so

$$P(B) = \sum_{i=1}^{M} P(B \cap A_i) = \sum_{i=1}^{M} P(B|A_i) \cdot P(A_i)$$

Bayes' rule

Which of $\{A_i\}$ caused B? $P(A_i|B)$

Apply Bayes' rule $P(A_i|B).P(B) = P(A_i \cap B) = P(B \cap A_i) = P(B|A_i).P(A_i)$ $P(A_i|B) = \frac{P(B|A_i).P(A_i)}{P(B)}$ $= \frac{P(B|A_i).P(A_i)}{\sum_{j=1}^{M} P(B|A_j).P(A_j)}$

Randomly pick one of two boxes.

- One box contains 100 gold coins, the other one 50 gold and 50 silver coins.
- Randomly pick a coin from the box.
- If it is a gold coin, what is the probability that the box contain only gold coins?

http://www.steves-workshop.co.uk

A₁: Box with 100 gold coinsA₂: Box with 50 gold and 50 silver coinsB: gold coin

$$P(A_1|B) = \frac{P(B|A_1) \cdot P(A_1)}{P(B)} = \frac{1.0,5}{0,75} = \frac{2}{3}$$
$$P(A_2|B) = \frac{P(B|A_2) \cdot P(A_2)}{P(B)} = \frac{0,5.0,5}{0,75} = \frac{1}{3}$$

Relation to classification?

- Box = class
- Coin = object to classify
- Metal = feature describing the object

Bayes' classifier

The object is assigned to class ω_i , which is the most probable given the feature vector **x**

$$P(\omega_i | \mathbf{x}) = \frac{P(\mathbf{x} | \omega_i) \cdot P(\omega_i)}{P(\mathbf{x})}$$

We need to know:

 $P(\mathbf{x}|\omega_i)$ for each class ω_i

 $P(\omega_i)$ a priori probability of each class ω_i (a priori = before observing x)

 $P(\mathbf{x}) = \sum_{j=1}^{M} P(\mathbf{x}|\omega_j) \cdot P(\omega_j)$

Decision function

The object is assigned to class ω_i , which is the most probable given the feature vector **x**

$$\frac{P(\mathbf{x}|\omega_i).P(\omega_i)}{P(\mathbf{x})} \ge \frac{P(\mathbf{x}|\omega_j).P(\omega_j)}{P(\mathbf{x})}$$

 $f(\mathbf{x}) = \omega_i$, where $i = \arg \max_j P(\mathbf{x}|\omega_j)P(\omega_j)$

Decision function

MLE – Maximum Likelihood Estimation MAP – Maximum A Posteriori Estimation

Same covariance matrix in each class Same variances Independent features (diagonal covariance matrix)

Same covariance matrix in each class Different variances Independent features (diagonal covariance matrix)

Same covariance matrix in each class Different variances Correlated features

Different diagonal covariance matrix in each class

Different covariance matrix in each class

Optimality of Bayes' classifier

 $P(\mathbf{x}|\omega_i).P(\omega_i) \ge P(\mathbf{x}|\omega_j).P(\omega_j)$

$$P(error) = \int_{\mathcal{R}_1} P(\mathbf{x}, \omega_2) d\mathbf{x} + \int_{\mathcal{R}_2} P(\mathbf{x}, \omega_1) d\mathbf{x}$$

Optimality of Bayes' classifier

Change the decision boundary

$$P(error) = \int_{\mathcal{R}_1} P(\mathbf{x}, \omega_2) d\mathbf{x} + \int_{\mathcal{R}_2} P(\mathbf{x}, \omega_1) d\mathbf{x}$$

Naïve Bayes' classifier

The object is assigned to class ω_i , which is the most probable given the feature vector **x**

$$P(\omega_i | \mathbf{x}) = \frac{P(\mathbf{x} | \omega_i) \cdot P(\omega_i)}{P(\mathbf{x})}$$

Naïve assumption: Features are independent given the class label $P(x_1,x_2,...,x_D|\omega_i)=P(x_1|\omega_i)P(x_2|\omega_i)...P(x_D|\omega_i)$

Training

Estimate $P(x_k|\omega_i)$ and $P(\omega_i)$ for all k, i For categorical features count the evidence:

$$P(x_k | \omega_i) = \frac{N^{i,k}}{N^i}$$
$$P(\omega_i) = \frac{N^i}{N}$$

 $N^{i,k}$ - number of objects from class ω_i where feature k takes the value x_k

 N^i - number of objects from class ω_i

N - number of all objects

I have a red Skoda Kodiaq. Will it be stolen? P(Yes|Red, SUV, Domestic) > P(No|Red, SUV, Domestic)?

P(Yes)=P(No) P(Red, SUV, Domestic|Yes) ? P(Red, SUV, Domestic|No)

P(Red|Yes) P(SUV|Yes) P(Domestic|Yes) P(Red|No) P(SUV|No) P(Domestic|No)

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	ŜUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Frequency tables

	Stolen		
Color	Yes	No	
Red	3	2	
Yellow	2	3	

	Stolen			
Туре	Yes No			
Sports	4	2		
SUV	1	3		
	Stolen			
	Sto	len		
Origin	Sto Yes	len No		
Origin Domestic	Sto Yes 2	len No 3		

P(Red|Yes) = 3/5 P(SUV|Yes) = 1/5 P(Domestic|Yes) = 2/5 P(Red|No) = 2/5 P(SUV|No) = 3/5P(Domestic|No) = 3/5

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	ŜUV	Imported	No
7	Yellow	SUV	Imported	Yes
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Problem?

What if there are 100s of features?

 $P(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_D | \boldsymbol{\omega}_i) = P(\mathbf{x}_1 | \boldsymbol{\omega}_i) P(\mathbf{x}_2 | \boldsymbol{\omega}_i) \dots P(\mathbf{x}_D | \boldsymbol{\omega}_i) = \prod_{k=1}^{D} P(\mathbf{x}_k | \boldsymbol{\omega}_i)$

Order of magnitude?

Solution

Compute logs: $P(\mathbf{x}|\omega_i) \cdot P(\omega_i) > P(\mathbf{x}|\omega_j) \cdot P(\omega_j)$ $\log(P(\mathbf{x}|\omega_i) \cdot P(\omega_i)) > \log(P(\mathbf{x}|\omega_j) \cdot P(\omega_j))$

 $log(P(\mathbf{x}|\omega_i), P(\omega_i))$ = log($\prod_{k=1}^{D} P(\mathbf{x}_k | \omega_i), P(\omega_i)$) = $\sum_{k=1}^{D} log P(\mathbf{x}_k | \omega_i) + log(P(\omega_i))$

I have a red Skoda Kodiaq. Will it be stolen? P(Yes|Red, SUV, Domestic) > P(No|Red, SUV, Domestic)?

P(Yes)=P(No) P(Red, SUV, Domestic|Yes) ? P(Red, SUV, Domestic|No)

P(Red|Yes) P(SUV|Yes) = 0 P(Domestic|Yes) P(Red|No) P(SUV|No) P(Domestic|No)

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	ŜUV	Imported	No
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Frequency tables

	Stolen		
Color	Yes	No	
Red	3	2	
Yellow	1	3	

	Stolen			
Туре	Yes No			
Sports	4	2		
SUV	0	3		
	Stolon			
	Stolen			
Origin	Yes	No		
Domestic	2	3		
Imported	2	2		

P(Red|Yes) = 3/4 P(SUV|Yes) = 0/4 P(Domestic|Yes) = 2/4 P(Red|No) = 2/5 P(SUV|No) = 3/5P(Domestic|No) = 3/5

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	ŜUV	Imported	No
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Laplace smoothing

Adds 1 to each count

$$P(x_k|\omega_i) = \frac{N^{i,k} + 1}{N^i + V^k}$$

V^k - number of values feature k can have

Frequency tables

	Stolen		
Color	Yes	No	
Red	3 <mark>+1</mark>	2 <mark>+1</mark>	
Yellow	1+1	3 <mark>+1</mark>	

	Stolen			
Туре	Yes No			
Sports	4 <mark>+1</mark>	2 <mark>+1</mark>		
SUV	0 <mark>+1</mark>	3 <mark>+1</mark>		
	Stolen			
	Sto	len		
Origin	Sto Yes	len No		
Origin Domestic	Sto Yes 2+1	len No 3+1		

P(Red|Yes) = 4/6 P(SUV|Yes) = 1/6 P(Domestic|Yes) = 3/6 P(Red|No) = 3/7 P(SUV|No) = 4/7P(Domestic|No) = 4/7

Example No.	Color	Туре	Origin	Stolen?
1	Red	Sports	Domestic	Yes
2	Red	Sports	Domestic	No
3	Red	Sports	Domestic	Yes
4	Yellow	Sports	Domestic	No
5	Yellow	Sports	Imported	Yes
6	Yellow	ŜUV	Imported	No
8	Yellow	SUV	Domestic	No
9	Red	SUV	Imported	No
10	Red	Sports	Imported	Yes

Training

Continuous variables Probability density function

Parametric methods

Unimodal PDF – estimate the parameters of Gaussian (or other PDF)

Sample mean \bar{x}_{ij} Sample variance σ_{ij}^2

$$P(x_i = x | \omega_j) = \frac{1}{\sigma_{ij} \sqrt{2\pi}} \exp\left(\frac{-(x - \bar{x}_{ij})^2}{2\sigma_{ij}^2}\right)$$

Parametric methods

Multimodal PDF – GMM (Gaussian mixture model)

$$P(x_{i} = x | \omega_{j}) = \sum_{m=1}^{M} \frac{w_{ijm}}{\sigma_{ijm}\sqrt{2\pi}} \exp\left(\frac{-(x - \bar{x}_{ijm})^{2}}{2\sigma_{ijm}^{2}}\right)$$

$$\sum_{m=1}^{M} w_{ijm} = 1$$

Data value

GMM

Fix i and j Unknowns: $\theta = \{w_m, \bar{x}_m, \sigma_m^2\}_{m=1}^M$

$$P(x|\theta) = \sum_{m=1}^{M} \frac{w_m}{\sigma_m \sqrt{2\pi}} \exp\left(\frac{-(x - \bar{x}_m)^2}{2\sigma_m^2}\right)$$

 $= \sum_{m=1}^{M} w_m \varphi_m(x|\theta)$

EM algorithm

EM algorithm

- Iterative algorithm
- 2 repeating steps:

Expectation – compute membership with the current parameters

Maximization – find parameters that maximize the likelihood expectation

Set initial values θ_0

E step

In iteration t+1:

Compute membership – how "responsible" is Gaussian m for data point $x^{(n)}$: $\gamma_m(x^{(n)}) = P(x^{(n)} \text{ came from } \varphi_m)$

$$\gamma_m(x^{(n)}) = \frac{w_{m,t}\varphi_m(x^{(n)}|\theta_t)}{\sum_{g=1}^M w_{g,t}\varphi_g(x^{(n)}|\theta_t)}$$

M step

Maximize $E(L(\theta)), L(\theta) = p(x|\theta)$

$$w_{m,t+1} = \frac{\sum_{n=1}^{N} \gamma_m(x^{(n)})}{N}$$

$$\bar{x}_{m,t+1} = \frac{\sum_{i=1}^{N} \gamma_m(x^{(n)}) x^{(n)}}{\sum_{i=1}^{N} \gamma_m(x^{(n)})}$$

$$\sigma_{m,t+1}^{2} = \frac{\sum_{i=1}^{N} \gamma_{m}(x^{(n)}) (x^{(n)} - \bar{x}_{m,t+1})^{2}}{\sum_{i=1}^{N} \gamma_{m}(x^{(n)})}$$

Nonparametric methods

Probability of $x \in \mathcal{R}$: $P = \int_{\mathcal{R}} p(\mathbf{x}) dx$

For \mathcal{R} small enough $P = \int_{\mathcal{R}} p(\mathbf{x}) d\mathbf{x} \approx p(\mathbf{x}) \int_{\mathcal{R}} d\mathbf{x} = V \cdot p(\mathbf{x})$ where V is the area of \mathcal{R}

Nonparametric methods

Let's have **n** independent draws from p(x), if K belong to \mathcal{R} : $P = {K \choose N}$ - histogram

 $P \approx V.p(\mathbf{x})$

$$\widehat{p}(\mathbf{x}) = \frac{K/N}{V}$$

Problem, when $V \rightarrow 0$

Parzen window

 $\mathcal{R}: \text{ D-dimensional hypercube, window function} \\ k(\mathbf{u}) = \begin{cases} 1 & |u_j| \le 1/2; \quad j = 1, \dots D \\ 0 & \text{otherwise} \end{cases}$

How many samples in a cube of size *h* positioned in **x**: $K = \sum_{i=1}^{N} k\left(\frac{\mathbf{x}-\mathbf{x}_{i}}{h}\right)$

$$\hat{p}(\mathbf{x}) = \frac{K}{NV} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{h^{D}} k\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{h}\right)$$

Compute for all x

Windows positioned at samples

Hypercube

Hypercube

As long as sample point x_i and x are in the same hypercube, the contribution of x_i to the density at x is constant, regardless of how close x_i is to x

Continuous kernels

http://en.wikipedia.org/wiki/File:Kernels.svg

Density estimation

CSCE 666 Pattern Analysis | Ricardo Gutierrez-Osuna | CSE@TAMU

Window size

FIGURE 4.4. Three Parzen-window density estimates based on the same set of five samples, using the window functions in Fig. 4.3. As before, the vertical axes have been scaled to show the structure of each distribution. From: Richard O. Duda, Peter E. Hart, and David G. Stork, *Pattern Classification*. Copyright © 2001 by John Wiley & Sons, Inc.

Window size

Trial and error: Try different values of h

Unimodal Gaussian: $h = 1.06\sigma N^{-\frac{1}{5}}$

Multi-modal: $h = 0.9 \min(\sigma, \frac{IQR}{1.34}) N^{-\frac{1}{5}}$ where IQR is the interquartile range Q3 - Q1

Non-Naïve Bayes

Bayesian nets Preg Age Mass Diabetes CInsulin Glucose X_2 X_n X_1 X_3 X_4