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Supervised methods

One variable – target (class), supervises the 

learning process, s.t. the predictors 

(features) predict the target with minimal 

error

Decision function 𝑓(x𝑖)=𝜔

Decision boundaries



Supervised classification

Training set

N observations

Correct classification

Classification problem:

find 𝑓(x) s. t. 𝑓(x𝑖)=𝑦𝒊

determine 𝑔(x) from 𝑓 x

x1, ⋯ x𝑁 , x𝑖 ∈ R𝑑

y1, ⋯ y𝑁 , y𝑖 ∈ −1,1



Probability recap

Conditional probability:

𝑃 𝐵 𝐴 =
𝑃(𝐵 ∩ 𝐴)

𝑃(𝐴)
For independent events

𝑃 𝐵 𝐴 = 𝑃 𝐵
𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐵 𝑃(𝐴)



Probability recap

Total probability: 𝐴𝑖 𝑖=1
𝑀 is a partition of sample space Ω. 

Then 

𝑃 𝐵 =
𝑖=1

𝑀

𝑃 𝐵 𝐴𝑖 . 𝑃 𝐴𝑖

Proof: Event 𝐵 ∈ Ω is a union of events 
𝐵 ∩ 𝐴1 , … , 𝐵 ∩ 𝐴𝑀 . These events are disjoint, so

𝑃 𝐵 =
𝑖=1

𝑀

𝑃(𝐵 ∩ 𝐴𝑖) =
𝑖=1

𝑀

𝑃 𝐵 𝐴𝑖 . 𝑃 𝐴𝑖



Which of {𝐴𝑖} caused B? 

𝑃 𝐴𝑖 𝐵

Apply Bayes’ rule
𝑃 𝐴𝑖 𝐵 . 𝑃 𝐵 = 𝑃 𝐴𝑖 ∩ 𝐵 = 𝑃 𝐵 ∩ 𝐴𝑖 = 𝑃 𝐵|𝐴𝑖 . 𝑃(𝐴𝑖)

𝑃 𝐴𝑖 𝐵 =
𝑃 𝐵|𝐴𝑖 .𝑃(𝐴𝑖)

𝑃(𝐵)

= 
𝑃 𝐵|𝐴𝑖 .𝑃(𝐴𝑖)

σ𝑗=1
𝑀 𝑃 𝐵|𝐴𝑗 .𝑃 𝐴𝑗

Bayes’ rule



Randomly pick one of two boxes.

One box contains 100 gold coins, the other one 50 

gold and 50 silver coins.

Randomly pick a coin from the box.

If it is a gold coin, what is the probability that the 

box contain only gold coins?

Example

http://www.steves-workshop.co.uk



Example



𝐴1: Box with 100 gold coins

𝐴2: Box with 50 gold and 50 silver coins

B: gold coin

𝑃 𝐴1 𝐵 =
𝑃 𝐵|𝐴1 . 𝑃(𝐴1)

𝑃(𝐵)
=
1.0,5

0,75
=
2

3

𝑃 𝐴2 𝐵 =
𝑃 𝐵|𝐴2 . 𝑃(𝐴2)

𝑃(𝐵)
=
0,5.0,5

0,75
=
1

3

Example



Box = class

Coin = object to classify

Metal = feature describing the object

Relation to classification?



Bayes’ classifier

The object is assigned to class 𝜔𝑖, which is the most probable 

given the feature vector x

𝑃 𝜔𝑖 x =
𝑃 x|𝜔𝑖 . 𝑃(𝜔𝑖)

𝑃(x)

We need to know:

𝑃 x|𝜔𝑖 for each class ωi

𝑃(𝜔𝑖) a priori probability of each class ωi (a priori = before 

observing x)

P x = σ𝑗=1
𝑀 𝑃 x|𝜔𝑗 . 𝑃 𝜔𝑗



Decision function

The object is assigned to class 𝜔𝑖, which is 

the most probable given the feature vector x

𝑃 x|𝜔𝑖 . 𝑃(𝜔𝑖)

𝑃(x)
≥
𝑃 x|𝜔𝑗 . 𝑃(𝜔𝑗)

𝑃(x)

𝑓 x = 𝜔𝑖 ,where 𝑖 = argmax
𝑗

𝑃 x 𝜔𝑗 𝑃 𝜔𝑗



Decision function

𝑃 𝜔𝑖 x =
𝑃 x|𝜔𝑖 . 𝑃(𝜔𝑖)

𝑃(x)

MLE – Maximum Likelihood Estimation

MAP – Maximum A Posteriori Estimation 

likelihood prior

posterior

evidence



Decision boundaries



Decision boundaries

Same covariance matrix in each class

Same variances

Independent features (diagonal covariance 

matrix)



Decision boundaries

Same covariance matrix in each class

Different variances

Independent features (diagonal covariance 

matrix)



Decision boundaries

Same covariance matrix in each class

Different variances

Correlated features



Decision boundaries

Different diagonal covariance matrix in each 

class



Decision boundaries

Different covariance matrix in each class



Optimality of Bayes’ classifier

𝑃 x|𝜔𝑖 . 𝑃 𝜔𝑖 ≥ 𝑃 x|𝜔𝑗 . 𝑃(𝜔𝑗)

𝑃 𝑒𝑟𝑟𝑜𝑟 = න
ℛ1

𝑃 x,𝜔2 dx + න
ℛ2

𝑃 x,𝜔1 dx



Optimality of Bayes’ classifier

Change the decision boundary

𝑃 𝑒𝑟𝑟𝑜𝑟 = න
ℛ1

𝑃 x, 𝜔2 dx + න
ℛ2

𝑃 x, 𝜔1 dx



Naïve Bayes’ classifier

The object is assigned to class 𝜔𝑖, which is the 
most probable given the feature vector x

𝑃 𝜔𝑖 x =
𝑃 x|𝜔𝑖 . 𝑃(𝜔𝑖)

𝑃(x)

Naïve assumption: Features are independent 
given the class label

P(x1,x2,...xD|ωi)=P(x1|ωi)P(x2|ωi)...P(xD|ωi)



Training

Estimate 𝑃 𝑥𝑘|𝜔𝑖 and 𝑃(𝜔𝑖) for all k, i

For categorical features count the evidence:

𝑃 𝑥𝑘|𝜔𝑖 =
𝑁𝑖,𝑘

𝑁𝑖

𝑃 𝜔𝑖 =
𝑁𝑖

𝑁

𝑁𝑖,𝑘 - number of objects from class 𝜔𝑖 where feature k 
takes the value 𝑥𝑘

𝑁𝑖 - number of objects from class 𝜔𝑖

𝑁 - number of all objects



Example

I have a red Skoda Kodiaq. Will it be stolen?

P(Yes|Red, SUV, Domestic) > P(No|Red, SUV, Domestic)?

P(Yes)=P(No)

P(Red, SUV, Domestic|Yes)  ?  P(Red, SUV, Domestic|No)

P(Red|Yes)

P(SUV|Yes)

P(Domestic|Yes)

P(Red|No)

P(SUV|No)

P(Domestic|No)



Frequency tables

Stolen

Color Yes No

Red 3 2

Yellow 2 3

Stolen

Type Yes No

Sports 4 2

SUV 1 3

Stolen

Origin Yes No

Domestic 2 3

Imported 3 2

P(Red|Yes) = 3/5

P(SUV|Yes) = 1/5

P(Domestic|Yes) = 2/5

P(Red|No) = 2/5

P(SUV|No) = 3/5

P(Domestic|No) = 3/5



Problem?

What if there are 100s of features?

P(x1,x2,...xD|ωi)=P(x1|ωi)P(x2|ωi)...P(xD|ωi)=

ς𝑘=1
𝐷 𝑃(x𝑘|𝜔𝑖)

Order of magnitude?



Solution

Compute logs:

𝑃 x|𝜔𝑖 . 𝑃 𝜔𝑖 > 𝑃 x|𝜔𝑗 . 𝑃(𝜔𝑗)

log(𝑃 x|𝜔𝑖 . 𝑃 𝜔𝑖 ) > log(𝑃 x|𝜔𝑗 . 𝑃 𝜔𝑗 )

log(𝑃 x|𝜔𝑖 . 𝑃 𝜔𝑖 )

= log(ς𝑘=1
𝐷 𝑃 x𝑘 𝜔𝑖 . 𝑃 𝜔𝑖 )

= σ𝑘=1
𝐷 log 𝑃 x𝑘 𝜔𝑖 + log(𝑃 𝜔𝑖 )



Example 2

I have a red Skoda Kodiaq. Will it be stolen?

P(Yes|Red, SUV, Domestic) > P(No|Red, SUV, Domestic)?

P(Yes)=P(No)

P(Red, SUV, Domestic|Yes)  ?  P(Red, SUV, Domestic|No)

P(Red|Yes)

P(SUV|Yes) = 0

P(Domestic|Yes)

P(Red|No)

P(SUV|No)

P(Domestic|No)



Frequency tables

Stolen

Color Yes No

Red 3 2

Yellow 1 3

Stolen

Type Yes No

Sports 4 2

SUV 0 3

Stolen

Origin Yes No

Domestic 2 3

Imported 2 2

P(Red|Yes) = 3/4

P(SUV|Yes) = 0/4

P(Domestic|Yes) = 2/4

P(Red|No) = 2/5

P(SUV|No) = 3/5

P(Domestic|No) = 3/5



Laplace smoothing

Adds 1 to each count

𝑃 𝑥𝑘|𝜔𝑖 =
𝑁𝑖,𝑘 + 1

𝑁𝑖 + 𝑉𝑘

𝑉𝑘 - number of values feature k can have



Frequency tables

Stolen

Color Yes No

Red 3+1 2+1

Yellow 1+1 3+1

Stolen

Type Yes No

Sports 4+1 2+1

SUV 0+1 3+1

Stolen

Origin Yes No

Domestic 2+1 3+1

Imported 2+1 2+1

P(Red|Yes) = 4/6

P(SUV|Yes) = 1/6

P(Domestic|Yes) = 3/6

P(Red|No) = 3/7

P(SUV|No) = 4/7

P(Domestic|No) = 4/7



Continuous variables

Probability density function

Training



Parametric methods

Unimodal PDF – estimate the parameters of 
Gaussian (or other PDF)

Sample mean ҧ𝑥𝑖𝑗

Sample variance 𝜎𝑖𝑗
2

𝑃 𝑥𝑖 = 𝑥 𝜔𝑗 =
1

𝜎𝑖𝑗 2𝜋
exp

− 𝑥 − ҧ𝑥𝑖𝑗
2

2𝜎𝑖𝑗
2





Parametric methods

Multimodal PDF – GMM (Gaussian mixture model)

𝑃(𝑥𝑖 = 𝑥|𝜔𝑗) = 

𝑚=1

𝑀
𝑤𝑖𝑗𝑚

𝜎𝑖𝑗𝑚 2𝜋
exp

− 𝑥 − ҧ𝑥𝑖𝑗𝑚
2

2𝜎𝑖𝑗𝑚
2

σ𝑚=1
𝑀 𝑤

𝑖𝑗𝑚
= 1



GMM

•Fix i and j

•Unknowns: 𝜃 = 𝑤𝑚, ҧ𝑥𝑚, 𝜎𝑚
2

𝑚=1
𝑀

• 𝑃 𝑥 𝜃 = σ𝑚=1
𝑀 𝑤𝑚

𝜎𝑚 2𝜋
exp

− 𝑥− ҧ𝑥𝑚
2

2𝜎𝑚
2

• = σ𝑚=1
𝑀 𝑤𝑚𝜑𝑚(𝑥|𝜃)



EM algorithm



EM algorithm

•Iterative algorithm

•2 repeating steps: 

• Expectation – compute membership with 

the current parameters

• Maximization – find parameters that 

maximize the likelihood expectation

Set initial values 𝜃0



E step

In iteration t+1:

Compute membership – how “responsible” 

is Gaussian m for data point 𝑥(𝑛):

𝛾𝑚 𝑥(𝑛) = 𝑃(𝑥(𝑛)came from 𝜑𝑚)

𝛾𝑚 𝑥(𝑛) =
𝑤𝑚,𝑡𝜑𝑚(𝑥

(𝑛)|𝜃𝑡)

σ𝑔=1
𝑀 𝑤𝑔,𝑡𝜑𝑔(𝑥

(𝑛)|𝜃𝑡)



M step

Maximize  E(𝐿 𝜃 ), 𝐿 𝜃 = 𝑝 𝑥 𝜃

𝑤𝑚,𝑡+1 =
σ𝑛=1
𝑁 𝛾𝑚 𝑥(𝑛)

𝑁

ҧ𝑥𝑚,𝑡+1 =
σ𝑖=1
𝑁 𝛾𝑚 𝑥(𝑛) 𝑥(𝑛)

σ𝑖=1
𝑁 𝛾𝑚 𝑥(𝑛)

𝜎𝑚,𝑡+1
2 =

σ𝑖=1
𝑁 𝛾𝑚 𝑥(𝑛) 𝑥(𝑛) − ҧ𝑥𝑚,𝑡+1

2

σ𝑖=1
𝑁 𝛾𝑚 𝑥(𝑛)



BCS Summer School, Exeter, 2003 Christopher M. Bishop



BCS Summer School, Exeter, 2003 Christopher M. Bishop



BCS Summer School, Exeter, 2003 Christopher M. Bishop

T=1



BCS Summer School, Exeter, 2003 Christopher M. Bishop

T=2



BCS Summer School, Exeter, 2003 Christopher M. Bishop

T=5



BCS Summer School, Exeter, 2003 Christopher M. Bishop

T=20



Nonparametric methods

Probability of x ∈ ℛ: 𝑃 = ℛ 𝑝 x dx

For ℛ small enough

𝑃 = න
ℛ

𝑝 x dx ≈ 𝑝 x න
ℛ

dx = 𝑉. 𝑝 x

where V is the area of  ℛ



Nonparametric methods

Let’s have n independent draws from p(x), if

K belong to ℛ: 𝑃 = Τ𝐾 𝑁 - histogram 

𝑃 ≈ 𝑉. 𝑝 x

ො𝑝 x =
ൗ𝐾 𝑁
𝑉

Problem, when V → 0



Parzen window

ℛ: D-dimensional hypercube, window function

𝑘 𝐮 = ቊ
1 𝑢𝑗 ≤ Τ1 2 ; 𝑗 = 1,…𝐷

0 otherwise

How many samples in 

a cube of size h positioned in x:

𝐾 = σ𝑖=1
𝑁 𝑘

𝐱−𝐱𝒊

ℎ

Ƹ𝑝 x =
𝐾

𝑁𝑉
=
1

𝑁


𝑖=1

𝑁
1

ℎ𝐷
𝑘

𝐱 − 𝐱𝒊
ℎ

Compute for all x



Windows positioned at samples

Ƹ𝑝 x =
1

𝑁


𝑖=1

𝑁
1

ℎ𝐷
𝑘

𝐱 − 𝐱𝒊
ℎ



Hypercube



Hypercube

As long as sample point xi and x are in the 

same hypercube, the contribution of xi to 

the density at x is constant, regardless of 

how close xi is to x



Continuous kernels

http://en.wikipedia.org/wiki/File:Kernels.svg



Density estimation



Window size



Window size

Trial and error: Try different values of h 

Unimodal Gaussian: ℎ = 1.06𝜎𝑁−
1

5

Multi-modal: 

ℎ = 0.9min 𝜎, 𝐼𝑄𝑅
1.34

𝑁−
1
5

where IQR is the interquartile range 𝑄3 − 𝑄1



Non-Naïve Bayes

Bayesian nets


