
Machine learning in computer 

vision

Lesson 6



Decision trees

Nominal data – no interpretation of distance

Rules

Tree:

node = test, branches = possible outcomes

leaf = object class



DT classification

to classify an example:

1. start at the root

2. perform the test

3. follow the edge corresponding to the 

outcome

4. goto 2. unless leaf

5. predict the class associated with the 

leaf



DT learning

Set of tests

Splitting criterion

Stop-splitting rule

Classification rules



DT learning

Set of tests

Set of all possible tests e.g. 𝑋𝑘 ≤ 𝜃

In each node

Binary node t analyzes a subset 𝑆𝑡 ⊂ 𝑋 and 

splits it into 𝑆𝑡𝑌, 𝑆𝑡𝑁:

𝑆𝑡𝑌 ∩ 𝑆𝑡𝑁 = ∅

𝑆𝑡𝑌 ∪ 𝑆𝑡𝑁 = 𝑆𝑡

𝑋𝑘?

YES NO

𝑆𝑡𝑌 𝑆𝑡𝑁





DT learning

Splitting criterion

Specifies the feature 𝑋𝑘 and threshold 𝜃 to 

get the best split of 𝑆𝑡
In child nodes we want to decrease impurity

In pure node all data belong to one class

Measure of impurity?



Variable Quality Measures

Let S be a sample of training instances and pc be the 

proportions of instances of class 𝜔𝑐 (c=1,…,C) in S.

Define an impurity measure I(S) that satisfies:

I(S) is minimal only when pi=1 and pc=0 for ci

(all objects are of the same class);

I(S) is maximal only when pc =1/C

(there is exactly the same number of objects of all 

classes);

I(S) is symmetric with respect to p1,…,pC;



Reduction of Impurity: 

Discrete Variables

The “best” variable is the variable Xi that 
determines a split maximizing the expected 
reduction of impurity:

∆𝐼 𝑆, 𝑋𝑖 = 𝐼 𝑆 −෍

𝑗

𝑆𝑖𝑗

𝑆
𝐼(𝑆𝑖𝑗)

where Sij is the subset of instances from S s.t.
Xi=xij.

Sxi1
Sxi2

Sxij
…….

𝑋𝑖?

𝑥𝑖1 𝑥𝑖𝑁

𝑆𝑖1 𝑆𝑖𝑁
…



Impurity measure

Gini-index – how often will a random object be misclassified if 
classified randomly according to the class distribution

𝑝𝑖 =
x|x∈𝜔𝑖

𝑋𝑡
,          𝐺𝐼 = σ𝑖=1

𝑚 𝑝𝑖(1 − 𝑝𝑖) = 1 − σ𝑖=1
𝑚 𝑝𝑖
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𝐺𝐼 𝑆, 𝐹 = 𝐺𝐼 𝑆 −෍
𝑓∈val(𝐹)

𝑃 𝐹 = 𝑓 𝐺𝐼(𝑆𝑓)

Mutual information (information gain)

𝐼𝐺 𝑆, 𝐹 = 𝐻 𝑆 −෍
𝑓∈val(𝐹)

𝑃 𝐹 = 𝑓 𝐻(𝑆𝑓)

…

Probability of choosing

Probability of misclassification



DT learning

Stop-splitting rule

When to stop splitting a node and declare it 

as a leaf?

Impurity measure of the best feature is less 

than a threshold T 

The cardinality of 𝑆𝑡 is small enough 

The node is pure



DT learning

Rules

Once a node is declared to be a leaf, then it 

has to be given a class label

majority rule: 

the leaf is labeled as 𝜔𝑗, where 

𝑗 = argmax
𝑐

𝑝(𝜔𝑐|𝑆𝑡)



DT learning

TreeGrowing (S,A,y)

Create a new tree T with a single root node t

IF One of the Stopping Criteria is fulfilled THEN

Mark the root node in T as a leaf with the most common value of y in S as a label

ELSE

Find F – a best split of S => outcomes (o1,...,on)

IF best splitting metric > threshold THEN

label t with F

FOR each outcome oi:

Subtree_i= TreeGrowing (S_oi,A,y)

Connect the root node of t to Subtree_i with an edge that is labelled as oi

END FOR

ELSE

Mark the root node t as a leaf with the most common value of y in S as a label

END IF

END IF

RETURN T

S - Training Set

A - Input Feature Set

y - Target Feature



DT example
day outlook temp humidity wind play

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D03 Overcast Hot High Weak Yes

D04 Rain Mild High Weak Yes

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D07 Overcast Cool Normal Strong Yes

D08 Sunny Mild High Weak No

D09 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No



DT example with information gain

𝐼𝐺 𝑆, 𝐹 = 𝐻 𝑆 −෍
𝑓∈val 𝐹

𝑃 𝐹 = 𝑓 𝐻 𝑆𝑓

Compute IG(S,F) for all features in the root

Take the best feature

Compute IG(Ssplit,F) for all possible features in 1st level

Take the best feature

…



H(S) = -(9/14)*log(9/14) – (5/14)*log(5/14) = 0.940
H(Sweak) = -(6/8)*log(6/8) – (2/8)*log(2/8) = 0.811
H(Sstrong) = -(3/6)*log(3/6) – (3/6)*log(3/6) = 1.0

IG(S;wind) = 0.940 - (8/14)*0.811 - (6/14)*1.0 = 0.048

day outlook temp humidity wind play

D02 Sunny Hot High Strong No

D06 Rain Cool Normal Strong No

D07 Overcast Cool Normal Strong Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D14 Rain Mild High Strong No

D01 Sunny Hot High Weak No

D03 Overcast Hot High Weak Yes

D04 Rain Mild High Weak Yes

D05 Rain Cool Normal Weak Yes

D08 Sunny Mild High Weak No

D09 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D13 Overcast Hot Normal Weak Yes

wind

Weak
Strong

8/14
6/14

[play+, don’t-]
[9+,5-]

[play+, don’t-]
[6+,2-]

[play+, don’t-]
[3+,3-]

𝐼𝐺 𝑆, 𝑤𝑖𝑛𝑑 = 𝐻 𝑆 − 𝑃 𝑤𝑒𝑎𝑘 𝐻 𝑆𝑤𝑒𝑎𝑘 − 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝐻(𝑆𝑠𝑡𝑟𝑜𝑛𝑔)



H(Snormal) = -(6/7)*log(6/7) – (1/7)*log(1/7) = 0.592
H(Shigh) = -(3/7)*log(3/7) – (4/7)*log(4/7) = 0.985

IG(S;humidity) = 0.940 - (7/14)*0.592 - (7/14)*0.985 = 0.152

humidity

Normal
High

7/14
7/14

[play+, don’t-]
[9+,5-]

[play+, don’t-]
[6+,1-]

[play+, don’t-]
[3+,4-]

𝐼𝐺 𝑆, ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝐻 𝑆 − 𝑃 𝑛𝑜𝑟𝑚𝑎𝑙 𝐻 𝑆𝑛𝑜𝑟𝑚𝑎𝑙 − 𝑃 ℎ𝑖𝑔ℎ 𝐻(𝑆ℎ𝑖𝑔ℎ)

day outlook temp humidity wind play

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D03 Overcast Hot High Weak Yes

D04 Rain Mild High Weak Yes

D08 Sunny Mild High Weak No

D12 Overcast Mild High Strong Yes

D14 Rain Mild High Strong No

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D07 Overcast Cool Normal Strong Yes

D09 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D13 Overcast Hot Normal Weak Yes



H(Shot) = -(2/4)*log(2/4) – (2/4)*log(2/4) = 1.0
H(Smild) = -(4/6)*log(4/6) – (2/6)*log(2/6) = 0.918
H(Scool) = -(3/4)*log(3/4) – (1/4)*log(1/4) = 0.811

IG(S;temp) = 0.940 - (4/14)*1 - (6/14)*0.918 - (4/14)*0.811 = 0.029

𝐼𝐺 𝑆, 𝑡𝑒𝑚𝑝 = 𝐻 𝑆 − 𝑃 ℎ𝑜𝑡 𝐻 𝑆ℎ𝑜𝑡 − 𝑃 𝑚𝑖𝑙𝑑 𝐻(𝑆𝑚𝑖𝑙𝑑) − 𝑃 𝑐𝑜𝑜𝑙 𝐻(𝑆𝑐𝑜𝑜𝑙)

day outlook temp humidity wind play

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D07 Overcast Cool Normal Strong Yes

D09 Sunny Cool Normal Weak Yes

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D03 Overcast Hot High Weak Yes

D13 Overcast Hot Normal Weak Yes

D04 Rain Mild High Weak Yes

D08 Sunny Mild High Weak No

D10 Rain Mild Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D14 Rain Mild High Strong No

temp

Hot
Cool

4/14
4/14

[play+, don’t-]
[9+,5-]

[play+, don’t-]
[2+,2-]

[play+, don’t-]
[3+,1-]

Mild

[play+, don’t-]
[4+,2-]

6/14



H(Srain) = -(3/5)*log(3/5) – (2/5)*log(2/5) = 0.971
H(Ssunny) = -(2/5)*log(2/5) – (3/5)*log(3/5) = 0.971
H(Sovercast) = -(4/4)*log(4/4) – 0 = 0

IG(S;outlook) = 0.940 - (5/14)*0.971 - (5/14)*0.971 - (4/14)*0 = 0.247

𝐼𝐺 𝑆, 𝑜𝑢𝑡𝑙𝑜𝑜𝑘 = 𝐻 𝑆 − 𝑃 𝑟𝑎𝑖𝑛 𝐻 𝑆𝑟𝑎𝑖𝑛 − 𝑃 𝑠𝑢𝑛𝑛𝑦 𝐻(𝑆𝑠𝑢𝑛𝑛𝑦) −

𝑃 𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡 𝐻(𝑆𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡)

outlook

Rain
Overcast

5/14
4/14

[play+, don’t-]
[9+,5-]

[play+, don’t-]
[3+,2-]

[play+, don’t-]
[4+,0-]

Sunny

[play+, don’t-]
[2+,3-]

5/14

day outlook temp humidity wind play

D03 Overcast Hot High Weak Yes

D07 Overcast Cool Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D04 Rain Mild High Weak Yes

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D08 Sunny Mild High Weak No

D09 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes



DT example with information gain

Compute IG(S,F) for all features in the root

Take the best feature:

IG(S;wind) = 0.048

IG(S;humidity) = 0.152

IG(S;temp) = 0.029

IG(S;outlook) = 0.247

Outlook?

rain
overcast

sunny



Outlook?

?
PLAY

rain
overcast

[play+, don’t-]
[3+,2-] [play+, don’t-]

[2+,3-]

sunny

?

DT example with information gain

We have solved the root. What next?

day outlook temp humidity wind play

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D08 Sunny Mild High Weak No

D09 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

day outlook temp humidity wind play

D04 Rain Mild High Weak Yes

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No



DT example with information gain

day outlook temp humidity wind play

D04 Rain Mild High Weak Yes

D05 Rain Cool Normal Weak Yes

D06 Rain Cool Normal Strong No

D10 Rain Mild Normal Weak Yes

D14 Rain Mild High Strong No Outlook?

wind?
PLAY

rain overcast

[play+, don’t-]
[2+,3-]

sunny

?

DON’TPLAY

weak strong



DT example with information gain

Outlook?

wind?
PLAY

rain

overcast

sunny

humidity?

DON’TPLAY

weak strong

day outlook temp humidity wind play

D01 Sunny Hot High Weak No

D02 Sunny Hot High Strong No

D08 Sunny Mild High Weak No

D09 Sunny Cool Normal Weak Yes

D11 Sunny Mild Normal Strong Yes

DON’TPLAY

normal
high



Information gain

favors attributes with many possible values



Variables with Many Values 

Problem: 

Not good splits: they fragment the data too 
quickly, leaving insufficient data at the next 
level

The reduction of impurity of such test is often 
high (example: split on the object id).

Letter

a b c y z
…



Variables with Many Values 

Two solutions:

Change the splitting criterion to penalize 
variables with many values

Consider only binary splits  

Letter

a b c y z
…



Variables with Many Values 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝑆, 𝐹 = −σ𝑓∈val 𝐹

𝑆𝑓

𝑆
log2

𝑆𝑓

𝑆

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝑆, 𝐹 =
𝐼𝐺 𝑆,𝐹

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝑆,𝐹

Example: outlook in the play_tennis

IG (outlook) = 0.247

SplitInfo (outlook) = 1.577

GainRatio (outlook) = 0.247/1.577=0.157 < 0.247

Problem: the gain ratio favours unbalanced tests



DT example with information gain

Binary tree?

Check all possible binary splits

Temp: 
{{Cool}, {Hot, Mild}}

{{Hot}, {Cool, Mild}}

{{Mild}, {Hot, Cool}}

Outlook:
{{Sunny},{Rain, Overcast}}

{{Rain},{Sunny, Overcast}}

{{Overcast},{Rain, Sunny}}



DT example with information gain

Numerical values?

Check all possible thresholds

{ 𝑣1, … 𝑣𝑖 , 𝑣𝑖+1, … 𝑣𝑘 }

𝜃𝑖 =
𝑣𝑖+𝑣𝑖+1

2

Discretization to form an ordinal categorical attribute

Static – discretize once at the beginning

Dynamic – ranges can be found by equal interval 
bucketing, equal frequency bucketing 
(percentiles), or clustering



Tree pruning

Trees tend to grow a lot

Solution: pruning



Pruning

Pre-pruning: stop growing the tree earlier,

before it reaches the point where it

perfectly classifies the training data (Stop-

splitting rule)

Post-pruning: Allow the tree to overfit the

data, and then post-prune the tree.



Reduced-error pruning

Each node is a candidate for pruning

Pruning consists in removing a subtree rooted in a node: 

the node becomes a leaf and is assigned the most 

common classification

Nodes are removed only if the resulting tree performs no 

worse on the validation set.

Nodes are pruned iteratively: at each iteration the node  

whose removal most increases accuracy on the 

validation set is pruned.

Pruning stops when no pruning increases accuracy



C4.5’s Pruning Method

Given the error f on the training data, the upper 

bound for the error estimate for a node is 

computed as

𝑒 = ൙𝑓 +
𝑧2

2𝑁
+ 𝑧

𝑓

𝑁
−
𝑓2

𝑁
+
𝑧2

4𝑁
1 +

𝑧2

𝑁

If CI = 50% then z = 0.69 (from normal distribution)

N is the number of instances covered by the leaf



Node n

Node m 

PLAYDON’T
PLAY

DON’T

[play+, don’t-]
[1+,1-]

[play+, don’t-]
[1+,1-]

[play+, don’t-]
[4+,2-]

[play+, don’t-]
[4+,2-]

f = 5/14 

e = 0.46

f=0.33 

e=0.47

f=0.5 

e=0.72

f=0.33 

e=0.47

Combined using ratios 6:2:6 gives 0.51

[play+, don’t-]
[9+,5-]

0.46 < 0.51

so prune!



DT summary

Pros:

 simple to understand and interpret

 little data preparation and little computation

 indicates which attributes are most important for 
classification

Cons:

× learning an optimal decision tree is NP-complete

× perform poorly with many classes and small data

× computationally expensive to train

× over-complex trees do not generalize well from the training 
data (overfitting)



Random Forest (Breiman 2001) 

Random Forest: 

Each classifier in the ensemble is a decision 

tree classifier and is generated using a 

random selection of attributes at each node to 

determine the split

During classification, each tree votes and the 

most popular class is returned

52

?

? ?

?

? ?

?

? ?

?

? ?

?

? ?



Random Forest (Breiman 2001) 

Two Methods to construct Random Forest:

Forest-RI (random input selection):  
Randomly select, at each node, F 
attributes as candidates for the split at the 
node. The CART methodology is used to 
grow the trees to maximum size

Forest-RC (random linear combinations): 
Creates new attributes (or features) that 
are a linear combination of the existing 
attributes (reduces the correlation between 
individual classifiers)

53



Random Forest (Breiman 2001) 

Comparable in accuracy to Adaboost, 

but more robust to errors and outliers 

Insensitive to the number of attributes 

selected for consideration at each 

split, and faster than bagging or 

boosting

54



Do you have 

any questions?

YES NO



Linear classifier

Assumption 1: there are two classes of data

Assumption 2: Classes are linearly 

separable, i.e.  hyperplane that separates 

the space s.t. data from the two classes lie 

in different subspaces



Linear classifier

Hyperplane – decision boundary: 

𝐰𝑇𝐱 + 𝑏 = 0

w – normal vector

𝑓 𝐱 = 𝐰𝑇𝐱 + 𝑏

𝑓 𝐱 ≥ 0 for 𝐱 ∈ 𝜔1

𝑓 𝐱 < 0 for 𝐱 ∈ 𝜔2



Linear classifier

Little change

𝑓 𝐱 = 𝐮𝑇𝐲

𝐮 = 𝑏,𝐰𝑇 𝑇 and 𝐲 = 1, 𝐱𝑇 𝑇

𝐲𝑖 ∈ 𝜔1 if 𝐮𝑇𝐲𝑖 ≥ 0

𝐲𝑖 ∈ 𝜔2 if 𝐮𝑇𝐲𝑖 < 0

hyperplane

possible

solutions



Linear classifier

Another trick:

𝐳𝑖 = ቊ
𝐲𝑖 , 𝐲𝑖 ∈ 𝜔1

−𝐲𝑖 , 𝐲𝑖 ∈ 𝜔2

Final problem:

Find 𝐮, s.t. for all 𝐳𝑖

𝐮𝑇𝐳𝑖 > 0

possible

solutions

hyperplane



Gradient method

Let O(u) be scalar objective function reaching 

minimum when u is the solution of the problem

Idea: 

If a function F(𝐱) is defined and differentiable in a 

neighborhood of a point 𝐲 , then F(𝐱) decreases 

fastest if one goes from 𝐲 in the direction of the 

negative gradient of F at 𝐲:   |𝛻𝐹 𝐲



Gradient method

Iterative method 

Start with random vector u1

Compute |𝛻𝑂 𝐮1

Update the value of u by choosing a vector from 
the neighborhood of u1 in the direction of 
negative gradient

𝐮𝑖+1 = 𝐮𝑖 − 𝜂(𝑖) ቚ𝛻𝑂
𝐮𝑖

where η(i) is the learning rate in step i



Gradient method

Objective function is differentiable

Taylor expansion:

O(a) is approximated in the neighborhood of ui

𝑂 𝐚

≈ 𝑂 𝐮𝑖 + 𝛻𝑂𝑇 𝐚 − 𝐮𝑖 + 1
2
𝐚 − 𝐮𝑖

𝑇𝐇 𝐚 − 𝐮𝑖

where H is the Hessian matrix of second partial 
derivatives of function O



Gradient method

𝑂 𝐚 ≈ 𝑂 𝐮𝑖 + 𝛻𝑂𝑇 𝐚 − 𝐮𝑖 + 1

2
𝐚 − 𝐮𝑖

𝑇𝐇 𝐚 − 𝐮𝑖

𝐮𝑖+1 = 𝐮𝑖 − 𝜂(𝑖) |𝛻𝑂 𝐮𝑖

Let 𝐚 = 𝐮𝑖+1

𝑂 𝐮𝑖+1 ≈ 𝑂 𝐮𝑖 − 𝜂(𝑖) 𝛻𝑂 2 + 1

2
𝜂2(𝑖)𝛻𝑂𝑇𝐇𝛻𝑂

Minimized for

𝜂 𝑖 =
𝛻𝑂 2

𝛻𝑂𝑇𝐇𝛻𝑂



Objective function

Piece-wise linear perceptron function

𝑂𝑃 = σ𝐳𝜖𝒵−𝐮
𝑇𝐳

Z – set of misclassified objects

Batch processing – classify all objects 

𝛻𝑂𝑃 = σ𝐳𝜖𝒵−𝐳

𝐮𝑖+1 = 𝐮𝑖 + 𝜂(𝑖)σ𝐳𝜖𝒵𝑖
𝐳



Sequential learning

Evaluate objects one by one

set 𝐮0 = 𝟏, k = 0, i = 0

repeat

if 𝐳𝑘 is misclassified

𝐮𝑖+1 = 𝐮𝑖 + 𝐳𝑘
i = i+1

endif

k = (k+1) mod N

until convergence (𝐮𝑇𝐳𝑗 ≥ 0 for all 𝐳𝑗)



Sequential example

-

u = (1,1,1)T

z0 = (1,3,3)T

z1 = (1,-1,-2)T

z2 = - (1,-3,1)T

x1 is misclassified

u = u + z1 = (1,1,1) + (1,-1,-2) = 

(2,0,-1)

+

-

w

x0

x1

x2

w = (1,1)T

x0 = (3,3)T

x1 = (-1,-2)T

x2 = (-3,1)T



Sequential example

x2 is misclassified

u = u + x2 = (2,0,-1) - (1,-3,1) = (3,3,-2)

u = (2,0,-1) T

z0 = (1,3,3) T

z1 = (1,-1,-2) T

z2 = - (1,-3,1) T

+

-

w



Sequential example

u = (3,3,-2) T

z0 = (1,3,3) T

z1 = (1,-1,-2) T

z2 = - (1,-3,1) T

w

+

-



Objective function 2

Quadratic function

𝑂𝑄 = σ𝐳𝜖𝒵(𝐮
𝑇𝐳)2

Continuous gradient

Too smooth

Can converge on 

the boundary

possible

solutions



Objective function 3

Normalization: 𝐳 2

Border in the space of possible solutions: 𝜀

𝑂𝑅 =
1

2
σ𝐳𝜖𝒵

(𝐮𝑇𝐳−𝜀)2

𝐳 2

𝛻𝑂𝑅 = σ𝐳𝜖𝒵
𝐮𝑇𝐳−𝜀

𝐳 2 𝐳

possible

solutions



Sequential learning

set 𝐮0 = 𝟎, k = 0, i = 0

repeat

if 𝐮𝑇𝐳𝑘 ≤ 𝜀

𝐳 = 𝐳𝒌

𝐮𝑖+1 = 𝐮𝑖 − 𝜂(𝑖)σ𝐳𝜖𝒵
𝐮𝑇𝐳−𝜀

𝐳 2 𝐳

i = i+1

endif

k = (k+1) mod N

until 𝐮𝑇𝐳𝑗 > 𝜀 for all 𝐳𝑗


