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Linear classifier

Assumption 1: there are two classes of data

Assumption 2: Classes are linearly 

separable, i.e.  hyperplane that separates 

the space s.t. data from the two classes lie 

in different subspaces



K classes (1)

For each class one decision function 

separating the class from the rest of the 

world

K decision functions 
Class k Other 

classes



K classes (1)

ω1

ω2

ω3

ω4



K classes (2)

For each couple of classes one decision 

function (not taking into account the rest of 

classes) 

K(K −1)/2 max number of decision functions



K classes (2)

K(K −1)/2 max number of decision functions



K classes (2)

Undefined areas



Linear machine

K decision functions (1 vs all)

𝑓𝑘(𝐱) 𝑘=1
𝐾

x belongs to the class, where the function 

value is the highest

𝐱 ∈ 𝜔𝑖 ⟺ ∀𝑗≠𝑖: 𝑓𝑖 𝐱 > 𝑓𝑗(𝐱)

K convex decision regions



Linear machine

ω1

ω2

ω3

ω4



Linear classifier

Assumption 1: there are two classes of data

Assumption 2: Classes are linearly 

separable, i.e.  hyperplane that separates 

the space s.t. data from the two classes lie 

in different subspaces



Hyperplane optimality



Support vector machines

SVM



SVM learning

𝐰∗ = arg max
𝐰

2

𝐰

Change the problem:

𝐰∗, 𝑏∗ = arg min
𝐰,𝑏

1

2
𝐰 2

s.t.

𝐰𝑇𝐱𝒊 + 𝑏 ≥ 1 for 𝐱𝒊 ∈ 𝜔1

𝐰𝑇𝐱𝒊 + 𝑏 ≤ −1 for 𝐱𝒊 ∈ 𝜔2



SVM learning

Change the conditions:

𝐰𝑇𝐱𝒊 + 𝑏 𝑘𝑖 ≥ 1

where 

𝑘𝑖 = ቊ
1, 𝐱𝑖 ∈ 𝜔1

−1, 𝐱𝑖 ∈ 𝜔2



SVM learning

Use Lagrange method

𝐿 𝐰, 𝑏, 𝛼𝑖

=
1

2
𝐰 2 − σ𝑖=1

𝑁 𝛼𝑖 𝐰𝑇𝐱𝒊 + 𝑏 𝑘𝑖 − 1

=
1

2
𝐰 2 − σ𝑖=1

𝑁 𝛼𝑖 𝐰
𝑇𝐱𝒊 + 𝑏 𝑘𝑖 + σ𝑖=1

𝑁 𝛼𝑖

s.t.

𝛼𝑖 ≥ 0



SVM learning
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 xwSVM learning

Use results to get dual problem

𝐿 𝐰, 𝑏, 𝛼𝑖 =
1

2
𝐰 2 −σ𝑖=1

𝑁 𝛼𝑖 𝐰
𝑇𝐱𝒊 + 𝑏 𝑘𝑖 + σ𝑖=1

𝑁 𝛼𝑖

𝛼𝑖 = arg max σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑘𝑖𝑘𝑗𝐱𝒊
𝑇𝐱𝒋

s.t.

𝛼𝑖 ≥ 0

σ𝑖=1
𝑁 𝛼𝑖𝑘𝑖 = 0



SVM learning

1. Solve the dual problem

𝛼𝑖

2. Find the support vectors SV

𝐱𝒊 ∈ 𝑆𝑉 ⟺ 𝛼𝑖 > 0

3. Find b 

𝑏 =
1

𝑆𝑉
σ𝐱𝒋∈𝑆𝑉

𝑘𝑗 − σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐱𝒊

𝑇𝐱𝒋



Find the value

𝑓 𝐱 = σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐱𝒊

𝑇𝐱 + 𝑏

SVM classification



Hyperplane



Linear classifier

Assumption 1: there are two classes of data

Assumption 2: Classes are linearly 

separable, i.e.  hyperplane that separates 

the space s.t. data from the two classes lie 

in different subspaces



Linearly nonseparable data

2 types:

Nearly separable

Nonseparable



Soft margin SVM

Nearly separable data

Allow small errors

Introduce slack variables ξi



Soft margin SVM

C – penalty for misclassification, affects the 

size of the margin

𝐰∗, 𝑏∗, 𝜉𝒊
∗ = arg min

1

2
𝐰 2 + 𝐶 σ𝑖=1

𝑁 𝜉𝑖

s.t.

𝐰𝑇𝐱𝒊 + 𝑏 𝑘𝑖 ≥ 1 − 𝜉𝑖



Soft margin SVM

Derive dual problem:

𝛼𝑖 = arg max σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑘𝑖𝑘𝑗𝐱𝒊
𝑇𝐱𝒋

s.t.

𝐶 ≥ 𝛼𝑖 ≥ 0

σ𝑖=1
𝑁 𝛼𝑖𝑘𝑖 = 0

Classify as before



Soft margin SVM

Use cross validation to find optimal value of 

C



Nonlinear SVM

Linearly nonseparable data

Transform to higher dimensions, where they 

are separable



Nonlinear SVM

Recall the separable case

𝛼𝑖 = arg max σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑘𝑖𝑘𝑗𝐱𝒊
𝑇𝐱𝒋

𝑏 =
1

𝑆𝑉
σ𝐱𝒋∈𝑆𝑉

𝑘𝑗 − σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐱𝒊

𝑇𝐱𝒋

𝑓 𝐱 = σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐱𝒊

𝑇𝐱 + 𝑏

In nonseparable case we work with transformed 

data 𝜑(𝐱𝒊)



Nonlinear SVM learning

1. Solve the dual problem

𝛼𝑖 = arg max σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑘𝑖𝑘𝑗𝜑(𝐱𝒊)
𝑇𝜑(𝐱𝒋)

2. Find the support vectors SV: 𝐱𝒊 ∈ 𝑆𝑉 ⟺ 𝛼𝑖 > 0

3. Find b 

𝑏 =
1

𝑆𝑉
σ𝐱𝒋∈𝑆𝑉

𝑘𝑗 − σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝜑(𝐱𝒊)

𝑇𝜑(𝐱𝒋)

4. Find the value

𝑓 𝐱 = σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝜑(𝐱𝒊)

𝑇𝜑(𝐱) + 𝑏



Nonlinear SVM

How to find 𝜑(𝐱𝒊) ?

We don’t have to.

𝐾 𝐱𝒊, 𝐱𝒋 = 𝜑(𝐱𝒊)
𝑇𝜑(𝐱𝒋)

K – kernel (dot product of transformed data)



Kernel trick

𝜑:
𝑥1
𝑥2

→

𝑥1
2

𝑥2
2

2𝑥1𝑥2

𝐾 𝐱, 𝐲 = 𝑥1
2, 𝑥2

2, 2𝑥1𝑥2

𝑦1
2

𝑦2
2

2𝑦1𝑦2
= 𝑥1

2𝑦1
2 + 𝑥2

2𝑦2
2 + 2𝑥1𝑦1𝑥2𝑦2

= 𝑥1𝑦1 + 𝑥2𝑦2
2

= 𝐱𝑇𝐲 2



Kernel example

𝐾 𝐱, 𝐲 = 𝐱𝑇𝐲 2 = 𝑥1
2𝑦1

2 + 𝑥2
2𝑦2

2 + 2𝑥1𝑦1𝑥2𝑦2

𝜑(𝐱) →

𝑥1
2

2𝑥1𝑥2
𝑥2
2

𝜑(𝐱) →

𝑥1
2

𝑥1𝑥2
𝑥1𝑥2
𝑥2
2

𝜑(𝐱) →
1

2

𝑥1
2 − 𝑥2

2

2𝑥1𝑥2
𝑥1
2 + 𝑥2

2



Mercer’s Theorem

A symmetric function 𝐾 𝐱, 𝐲 can be 

expressed as a dot product 

𝐾 𝐱, 𝐲 = 𝜑 𝐱 𝑇𝜑 𝐲

for some 𝜑 iff

𝐾 𝐱, 𝐲 is positive semidefinite (psd). 



How to check psd?

𝐾 𝐱, 𝐲 is psd, when matrix 
𝐾(𝐱1, 𝐱1) ⋯ 𝐾(𝐱1, 𝐱𝑛)

⋮ ⋱ ⋮
𝐾(𝐱𝑛, 𝐱1) ⋯ 𝐾(𝐱𝑛, 𝐱𝑛)

is psd for any collection {𝐱1, … 𝐱𝑛}

Matrix 𝐌[𝑛×𝑛] is psd iff ∀𝐚∈ℝ𝑛: 𝐚
𝑇𝐌𝐚 ≥ 0



Kernel properties

If 𝐾1 and 𝐾2 are kernels, so are 

𝐾 𝐱, 𝐲 = 𝐾1 𝐱, 𝐲 +𝐾2 𝐱, 𝐲

𝐾 𝐱, 𝐲 = 𝑎𝐾1 𝐱, 𝐲 , a > 0

𝐾 𝐱, 𝐲 = 𝐾1 𝐱, 𝐲 𝐾2 𝐱, 𝐲

𝐾 𝐱, 𝐲 = 𝑝 𝐾1 𝐱, 𝐲 , 𝑝 polynomial with non-

negative coefficients

𝐾 𝐱, 𝐲 = exp(𝐾1 𝐱, 𝐲 )



Common kernels

Polynomial

𝐾 𝐱, 𝐲 = 𝑎 + 𝐱𝑇𝐲 𝑝

Gaussian

𝐾 𝐱, 𝐲 = exp(−
𝐱−𝐲 2

2𝜎2
)



Kernel SVM

1. Solve the dual problem

𝛼𝑖 = arg max σ𝑖=1
𝑁 𝛼𝑖 −

1

2
σ𝑖=1
𝑁 σ𝑗=1

𝑁 𝛼𝑖𝛼𝑗𝑘𝑖𝑘𝑗𝐾 𝐱𝒊, 𝐱𝒋

2. Find the support vectors SV: 𝐱𝒊 ∈ 𝑆𝑉 ⟺ 𝛼𝑖 > 0

3. Find b 

𝑏 =
1

𝑆𝑉
σ𝐱𝒋∈𝑆𝑉

𝑘𝑗 − σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐾 𝐱𝒊, 𝐱𝒋

4. Find the value

𝑓 𝐱 = σ𝐱𝒊∈𝑆𝑉
𝛼𝑖𝑘𝑖𝐾 𝐱𝒊, 𝐱 + 𝑏





Ensemble methods



Classifiers

Performance

None of the classifiers is perfect

Complementary

Examples which are not correctly classified 
by one classifier may be correctly classified by 
the other classifiers

Idea

Combine the classifiers to improve the 
performance

Slides adapted from Evgueni Smirnov



Ensemble methods

Independently Constructed Ensembles

 the base classifiers are generated in parallel

 exploit the independence between them 

Coordinated Construction of Ensembles

 the base classifiers are generated sequentially

 exploit the dependence between them

Various names: ensemble methods, committee, 

classifier fusion, combination, aggregation,…



Base classifiers

Homogeneous classifiers – use of the same 

algorithm over diversified data sets

Heterogeneous classifiers – different 

learning algorithms over the same data



Ensembles

Dietterich(2002) showed that ensembles 

overcome three problems:

Statistical

Computational

Representational

Thomas G. Dietterich: Ensemble Methods in Machine Learning



Ensembles

The Statistical Problem:

The hypothesis space is too large for the 

amount of available data

There are many hypotheses with the same 

accuracy on the data and the learning 

algorithm chooses only one of them

There is a risk that the accuracy of the chosen 

hypothesis is low on unseen data



Ensembles

The Statistical Problem:

By constructing an ensemble out of all of 

these accurate classifiers, the algorithm can 

“average" their votes

and reduce the risk of

choosing the wrong

classifier.



Ensembles

The Computational Problem:

The learning algorithm cannot guarantee finding 

the best hypothesis 

An ensemble constructed by running the 

local search from many 

different starting points 

may provide a better 

approximation to the true 

unknown function



Ensembles

The Representational Problem:

The hypothesis space does not contain any 

good approximation of the target class(es)



Ensembles

The statistical problem and computational 

problem result in the variance component of 

the error of the classifiers

The representational problem results in the 

bias component of the error of the classifiers

Hence, ensemble methods can reduce both 

the bias and the variance of learning 

algorithms



Combining classifiers

Majority voting:

Every base classifier makes a prediction 

(votes) for each test instance and the final 

output prediction is the one that receives 

more than half of the votes

C1 1 1 0 0 0 1 0 0 0

C2 0 0 1 1 1 1 0 1 1

C3 1 0 0 1 1 0 0 1 1

C* 1 0 0 1 1 1 0 1 1



Voting

Modifications:

Plurality voting

the most voted prediction (even if that is less 

than half of the votes) as the final prediction

Weighted Voting

increase the importance of one or more models

In weighted voting you count the prediction of 

the better models multiple times 



Why Majority Voting works?

Suppose there are 25 base classifiers

Each classifier has error rate,  = 0.35

Assume errors made by the 
classifiers are uncorrelated

Probability that 
the ensemble classifier 
makes a wrong prediction:


