
Machine learning in computer

vision

Lesson 8

Independently Constructed

Ensembles

Run the learning algorithm several times

and provide it with somewhat different data

in each run
X

X1 X2 X3 XT

C1 C2 C3 CT

C*

Original

training data

Create

training sets

Run the learning

algorithm

Combine

classifiers

Independently Constructed

Ensembles

Bagging

Randomness Injection

Feature-Selection Ensembles

Bagging

Bootstrap aggregating

We introduced the bootstrap as a way of
assessing the accuracy

Here, bootstrap is used to create the diverse
training sets

Each bootstrap sample is drawn with
replacement, so each one contains some
duplicates of certain training points and
leaves out other training points completely

Bagging

Accuracy is increased if the prediction method

is unstable, i.e. if small changes in the training

set or in the parameters used in construction

can result in large changes in the resulting

predictor

Trees, neural nets are unstable, as are other

well-known prediction methods. Other methods

such as nearest neighbors, are stable

Bagging

Classifier generation

Let N be the size of the training set

For each of T iterations:

Sample N instances with replacement from the

training set

Apply the learning algorithm to the sample

Store the resulting classifier

Classification

For each of the T classifiers:

Predict class of instance using classifier

Return class that was predicted most often

Out-of-bag error estimation

Cross-validating bagged predictors may lead to

large computing efforts

OOB error:

For each x in the training set

find base classifiers, where the training set does

not contain x

use these classifiers to make a prediction

Average the error over all samples

X

X

1

X

2

X

3

X

T

C1 C2 C3 CT

C*

Randomization Injection

Inject some randomization into a standard

learning algorithm (usually easy):

Neural network: random initial weights

Decision tree: when splitting, choose one of the

top N attributes at random (uniformly)

Feature-Selection Ensembles

Key idea: Provide a different subset of the

input features in each call of the learning

algorithm

Bagged trees

Ensemble of trees – decision forest

Improvement: random forests

Less correlated trees

Coordinated Construction of

Ensembles

Learn complementary classifiers

Instance classification is realized by taking

an weighted sum of the classifiers

Original

training data

Run the learning

algorithms

Combine

classifiers

X

C1 C2 C3 CT

C*

Coordinated Construction of

Ensembles

Adaptively change distribution of training

data by focusing more on previously

misclassified records

Boosting

Stacking

Boosting

Also uses voting but models are weighted

according to their performance

Iterative procedure: new models are influenced

by performance of previously built ones

New model is encouraged to become expert for

instances classified incorrectly by earlier models

Intuitive justification: models should be experts that

complement each other

There are several variants of this algorithm

Boosting

Weak classifier 1

Boosting

Increase weights

Boosting

Weak classifier 2

Boosting

Increase weights

Boosting

Weak classifier 3

Boosting

Strong classifier – linear

combination of weak classifiers

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Initial Distribution of Data

Train model

Error of model

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Coefficient of model

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Update Distribution

Final average

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

AdaBoost in CV

Viola-Jones face detector

Image features: 𝑓 𝐼𝑚 = σ𝑥∈𝑅1
𝐼(𝑥) − σ𝑥∈𝑅2

𝐼(𝑥)

Features – Haar wavelets

Weak classifier: ℎ 𝐼𝑚 = ቊ
1, if 𝑓 𝐼𝑚 > 𝜃
−1, otherwise

R1

R2

AdaBoost in CV

Most discriminative features

Cascade of boosted classifiers (1, 10, 25, 25, 50…)

Remarks on Boosting

Boosting can be applied without weights using
re-sampling with probability determined by
weights

Boosting decreases exponentially the training
error in the number of iterations

Boosting works well if base classifiers are not
too complex and their error doesn’t become
too large too quickly

Boosting reduces the bias component of the
error of simple classifiers

Stacking

Uses meta learner instead of voting to

combine predictions of base classifiers

Predictions of base classifiers (level-0

models) are used as input for meta

classifier (level-1 model)

Method for generating base classifiers

usually apply different learning schemes

Stacking

If the base classifiers provide class

probabilities, it is better to use them

Original

training data

Create set

of validation

predictions

Run the learning

algorithms

Learn

the meta classifier

X

C1 C2 C3 CT

C*

X*

Artificial Neural Networks

Neurons

Biological inspiration: A neuron

Dendrite – accepts signal from other neurons

Soma – integrates the signals

Axon – outputs the signal to other neurons

Neurons

The soma may give rise to numerous dendrites, but
never to more than one axon.

A synapse is a contact between the axon of one
neuron and a dendrite or soma of another.

Synaptic signals may be excitatory or inhibitory. If
the net excitation received by a neuron over a short
period of time is large enough, the neuron
generates a brief pulse called an action potential,
which originates at the soma and propagates
rapidly along the axon, activating synapses onto
other neurons as it goes.

McCulloch and Pitts

logic neuron (1943)

Inputs and output are binary

A set of n excitatory inputs, xi

A set of m inhibitory inputs, xn+j

A threshold, u

A unit step activation function

A single neuron output, y

McCulloch and Pitts model

𝑦 = ൝
1, σ𝑖=1

𝑛 𝑥𝑖 − σ𝑗=1
𝑚 𝑥𝑛+𝑗 ≥ 𝑢

0, σ𝑖=1
𝑛 𝑥𝑖 − σ𝑗=1

𝑚 𝑥𝑛+𝑗 < 𝑢

McCulloch and Pitts model

A unit step activation function

𝑠 𝜉 = ቊ
1, 𝜉 ≥ 0
0, 𝜉 < 0

𝑦 = 𝑠 σ𝑖=1
𝑛 𝑥𝑖 − σ𝑗=1

𝑚 𝑥𝑛+𝑗 − 𝑢

Alternatively we can express the neuron activity by

± 1 weight coefficients

𝑦 = 𝑠 σ𝑖=1
𝑛+𝑚𝑤𝑖𝑥𝑖 − 𝑢

Boolean functions by M-P neurons

AND

σ𝑖=1
𝑛 𝑥𝑖 ≥ 𝑛

OR

σ𝑖=1
𝑛 𝑥𝑖 ≥ 1

Boolean functions by M-P neurons

NOT

−𝑥 ≥ 0

implication

−𝑥1 + 𝑥2 ≥ 0

𝑥1 𝑥2 −𝑥1 + 𝑥2 𝑦

0 0 0 1

0 1 1 1

1 0 -1 0

1 1 0 1

M-P inhibition

Original M-P units: absolute inhibition

If at least one of the inhibitory signals is 1,

the unit is inhibited and the result of the

computation is 0.

Networks with absolute inhibition are

equivalent to networks with relative

inhibition.

Raul Rojas Neural Networks - A Systematic Introduction, Springer-Verlag, Berlin, New-York, 1996

https://page.mi.fu-berlin.de/rojas/neural/chapter/K2.pdf

M-P inhibition

Relative Absolute?

McCulloch and Pitts networks

Weights and thresholds in neurons are given
to compute a certain Boolean operation –
no possibility to learn

The networks are designed to compute
arbitrary Boolean operation

All logical functions can be implemented
with a network composed of units which
exclusively compute the AND, OR, and
NOT functions

McCulloch and Pitts networks

The networks are built from fixed building

blocks – neurons with specified properties

The networks do not learn to complete a

given task

Hebbian learning (1949)

Two neurons which are simultaneously active should
develop a degree of interaction higher than those
neurons whose activities are uncorrelated

1. If two neurons on either side of a connection
are activated synchronously, then the weight of
that connection is increased.

2. If two neurons on either side of a connection
are activated asynchronously, then the weight of
that connection is decreased.

activity product rule ∆𝑤𝑖𝑗 = 𝜂𝑥𝑖𝑦𝑗

Rosenblatt perceptron (1957)

Mark 1 Perceptron

a vision machine

http://www.glass-bead.org/article/machines-that-morph-logic/?lang=enview

Rosenblatt perceptron (1957)

Adjustable weights

Linear classifier (previous class)

x1

xn

x2

w1

w2

wn

y

w0

0

Nonseparable data?

1969 Minsky - XOR problem

Solution: more layers

No learning algorithm for multilayer network

Problem too complex

Multilayer network learning

Error backpropagation

Worked on since 60-ies

80-ies – used in NN

(Rumelhart et al., 1986) popularization

A bit of history

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

Artificial neural networks

Feed forward

Networks of connected nodes

Oriented connections

Can have various topologies

Feed forward ANN procedure

The outputs from the previous layer are
weighted and summed

Nonlinear activation function φ is applied on
the sum

The output is sent to the next layer

j

Activation function

Step function

𝜑 𝑥 = ቊ
1, 𝑥 ≥ 0
0, 𝑥 < 0

𝜑 𝑥 = ቊ
1, 𝑥 ≥ 0

−1, 𝑥 < 0

Activation function

Continuous (and quick) change

Logistic fn (sigmoid for α = 1)

𝜑 𝛼, 𝑥 =
1

1+𝑒−𝛼𝑥

hyperbolic tangent

𝜑 𝛽, 𝑥 = tanh(𝛽𝑥) =
𝑒𝛽𝑥−𝑒−𝛽𝑥

𝑒𝛽𝑥+𝑒−𝛽𝑥

Multilayer perceptron

inputs output layer outputs inputs hidden layers output layer outputs

ANN learning

Deriving the weight matrix

(weight vectors for neurons in all layers)

inputs output layer outputs inputs hidden layers output layer outputs

ANN learning

1. Random initialization of 𝐖
2. Feature vectors arrive at the input layer,

bubble through the network to the output layer

3. Output vector is compared against the
expected classification output and the value of
the objective function E is computed

4. The error is back-propagated through the
network and the weights are adjusted

𝐖 ← 𝐖+ ∆𝐖
∆𝐖 = −𝜂 ቚ𝛻𝐸

𝐖

ANN learning

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

ANN learning

j

ANN learning

Backpropagation – output layer

Mean square error (MSE)

Backpropagation – hidden layers

ANN learning

Learning rate

Low learning rate – very slow training, can

end up in local minimum

Optimal learning rate – slow training, without

oscillations, ends up in global minimum

High learning rate – faster training, possible

oscillations, can end up in local minimum

Learning rate

Heuristics – variable learning rate:

When the new error is higher than the previous and the
difference is bigger than a threshold, we follow the
wrong path. New weights are discarded and learning
rate is decreased.

We allow small increase in the error in order to be able to
leave a local minimum. If the error increase is less
than a threshold, we accept the new weights.

If the new error is lower than the previous, we are
heading to the minimum, we can increase the learning
rate.

Learning rate

Other learning algorithms

Newton's method

Uses Hessian

Quasi-Newton method

Approximation of Hessian

Conjugate gradient

new gradient and the previous search direction

Levenberg-Marquardt

Hessian approximated by Jacobian

Other learning algorithms

https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network

