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Independently Constructed 

Ensembles

Run the learning algorithm several times 

and provide it with somewhat different data 

in each run 
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Independently Constructed 

Ensembles

Bagging

Randomness Injection

Feature-Selection Ensembles



Bagging

Bootstrap aggregating

We introduced the bootstrap as a way of 
assessing the accuracy

Here, bootstrap is used to create the diverse 
training sets

Each bootstrap sample is drawn with 
replacement, so each one contains some 
duplicates of certain training points and 
leaves out other training points completely



Bagging

Accuracy is increased if the prediction method 

is unstable, i.e. if small changes in the training 

set or in the parameters used in construction 

can result in large changes in the resulting 

predictor

Trees, neural nets are unstable, as are other 

well-known prediction methods. Other methods 

such as nearest neighbors, are stable



Bagging

Classifier  generation

Let N be the size of the training set

For each of T iterations:

Sample N instances with replacement from the 

training set

Apply the learning algorithm to the sample

Store the resulting classifier

Classification

For each of the T classifiers:

Predict class of instance using classifier

Return class that was predicted most often



Out-of-bag error estimation

Cross-validating bagged predictors may lead to 

large computing efforts

OOB error:

For each x in the training set

find base classifiers, where the training set does 

not contain x

use these classifiers to make a prediction

Average the error over all samples
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Randomization Injection

Inject some randomization into a standard 

learning algorithm (usually easy):

Neural network: random initial weights

Decision tree: when splitting, choose one of the 

top N attributes at random (uniformly)



Feature-Selection Ensembles

Key idea: Provide a different subset of the 

input features in each call of the learning 

algorithm



Bagged trees

Ensemble of trees – decision forest

Improvement: random forests

Less correlated trees



Coordinated Construction of 

Ensembles

Learn complementary classifiers

Instance classification is realized by taking 

an weighted sum of the classifiers
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Coordinated Construction of 

Ensembles

Adaptively change distribution of training 

data by focusing more on previously 

misclassified records

Boosting

Stacking



Boosting

Also uses voting but models are weighted 

according to their performance

Iterative procedure: new models are influenced 

by performance of previously built ones

New model is encouraged to become expert for 

instances classified incorrectly by earlier models

Intuitive justification: models should be experts that 

complement each other

There are several variants of this algorithm



Boosting

Weak classifier 1



Boosting

Increase weights



Boosting

Weak classifier 2



Boosting

Increase weights



Boosting

Weak classifier 3



Boosting

Strong classifier – linear

combination of weak classifiers



https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Initial Distribution of Data

Train model

Error of model

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Coefficient of model

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

Update Distribution

Final average

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf

AdaBoost

https://www.cs.princeton.edu/~schapire/papers/explaining-adaboost.pdf


AdaBoost in CV

Viola-Jones face detector

Image features: 𝑓 𝐼𝑚 = σ𝑥∈𝑅1
𝐼(𝑥) − σ𝑥∈𝑅2

𝐼(𝑥)

Features – Haar wavelets

Weak classifier: ℎ 𝐼𝑚 = ቊ
1, if 𝑓 𝐼𝑚 > 𝜃
−1, otherwise

R1

R2



AdaBoost in CV

Most discriminative features

Cascade of boosted classifiers (1, 10, 25, 25, 50…)



Remarks on Boosting

Boosting can be applied without weights using 
re-sampling with probability determined by 
weights

Boosting decreases exponentially the training 
error in the number of iterations

Boosting works well if base classifiers are not 
too complex and their error doesn’t become 
too large too quickly

Boosting reduces the bias component of the 
error of simple classifiers



Stacking

Uses meta learner instead of voting to 

combine predictions of base classifiers

Predictions of base classifiers (level-0 

models) are used as input for meta 

classifier (level-1 model)

Method for generating base classifiers 

usually apply different learning schemes



Stacking

If the base classifiers provide class 

probabilities, it is better to use them
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algorithms
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Artificial Neural Networks



Neurons

Biological inspiration: A neuron

Dendrite – accepts signal from other neurons

Soma – integrates the signals

Axon – outputs the signal to other neurons



Neurons

The soma may give rise to numerous dendrites, but 
never to more than one axon. 

A synapse is a contact between the axon of one 
neuron and a dendrite or soma of another. 

Synaptic signals may be excitatory or inhibitory. If 
the net excitation received by a neuron over a short 
period of time is large enough, the neuron 
generates a brief pulse called an action potential, 
which originates at the soma and propagates 
rapidly along the axon, activating synapses onto 
other neurons as it goes. 



McCulloch and Pitts 

logic neuron (1943)

Inputs and output are binary

A set of n excitatory inputs, xi

A set of m inhibitory inputs, xn+j

A threshold, u

A unit step activation function

A single neuron output, y



McCulloch and Pitts model

𝑦 = ൝
1, σ𝑖=1

𝑛 𝑥𝑖 − σ𝑗=1
𝑚 𝑥𝑛+𝑗 ≥ 𝑢

0, σ𝑖=1
𝑛 𝑥𝑖 − σ𝑗=1

𝑚 𝑥𝑛+𝑗 < 𝑢



McCulloch and Pitts model

A unit step activation function

𝑠 𝜉 = ቊ
1, 𝜉 ≥ 0
0, 𝜉 < 0

𝑦 = 𝑠 σ𝑖=1
𝑛 𝑥𝑖 − σ𝑗=1

𝑚 𝑥𝑛+𝑗 − 𝑢

Alternatively we can express the neuron activity by  

± 1 weight coefficients 

𝑦 = 𝑠 σ𝑖=1
𝑛+𝑚𝑤𝑖𝑥𝑖 − 𝑢



Boolean functions by M-P neurons

AND

σ𝑖=1
𝑛 𝑥𝑖 ≥ 𝑛

OR

σ𝑖=1
𝑛 𝑥𝑖 ≥ 1



Boolean functions by M-P neurons

NOT

−𝑥 ≥ 0

implication

−𝑥1 + 𝑥2 ≥ 0

𝑥1 𝑥2 −𝑥1 + 𝑥2 𝑦

0 0 0 1

0 1 1 1

1 0 -1 0

1 1 0 1



M-P inhibition

Original M-P units: absolute inhibition 

If at least one of the inhibitory signals is 1, 

the unit is inhibited and the result of the 

computation is 0.

Networks with absolute inhibition are 

equivalent to networks with relative 

inhibition.

Raul Rojas Neural Networks - A Systematic Introduction, Springer-Verlag, Berlin, New-York, 1996

https://page.mi.fu-berlin.de/rojas/neural/chapter/K2.pdf



M-P inhibition

Relative  Absolute?



McCulloch and Pitts networks

Weights and thresholds in neurons are given 
to compute a certain Boolean operation –
no possibility to learn 

The networks are designed to compute 
arbitrary Boolean operation 

All logical functions can be implemented 
with a network composed of units which 
exclusively compute the AND, OR, and 
NOT functions



McCulloch and Pitts networks

The networks are built from fixed building 

blocks – neurons with specified properties

The networks do not learn to complete a 

given task



Hebbian learning (1949)

Two neurons which are simultaneously active should 
develop a degree of interaction higher than those 
neurons whose activities are uncorrelated

1. If two neurons on either side of a connection    
are activated synchronously, then the weight of 
that connection is increased.

2. If two neurons on either side of a connection    
are activated asynchronously, then the weight of 
that connection is decreased.         

activity product rule ∆𝑤𝑖𝑗 = 𝜂𝑥𝑖𝑦𝑗



Rosenblatt perceptron (1957)

Mark 1 Perceptron

a vision machine

http://www.glass-bead.org/article/machines-that-morph-logic/?lang=enview



Rosenblatt perceptron (1957)

Adjustable weights

Linear classifier (previous class)

x1

xn

x2

w1

w2

wn

y

w0

0



Nonseparable data?

1969 Minsky - XOR problem

Solution: more layers

No learning algorithm for multilayer network 

Problem too complex



Multilayer network learning

Error backpropagation 

Worked on since 60-ies

80-ies – used in NN

(Rumelhart et al., 1986) popularization



A bit of history

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html



Artificial neural networks

Feed forward

Networks of connected nodes 

Oriented connections

Can have various topologies



Feed forward ANN procedure

The outputs from the previous layer are 
weighted and summed

Nonlinear activation function φ is applied on 
the sum

The output is sent to the next layer

j



Activation function

Step function

𝜑 𝑥 = ቊ
1, 𝑥 ≥ 0
0, 𝑥 < 0

𝜑 𝑥 = ቊ
1, 𝑥 ≥ 0

−1, 𝑥 < 0



Activation function

Continuous (and quick) change 

Logistic fn (sigmoid for α = 1) 

𝜑 𝛼, 𝑥 =
1

1+𝑒−𝛼𝑥

hyperbolic tangent

𝜑 𝛽, 𝑥 = tanh(𝛽𝑥) =
𝑒𝛽𝑥−𝑒−𝛽𝑥

𝑒𝛽𝑥+𝑒−𝛽𝑥



Multilayer perceptron

inputs  output layer  outputs inputs           hidden layers      output layer  outputs



ANN learning

Deriving the weight matrix 

(weight vectors for neurons in all layers)

inputs  output layer  outputs inputs           hidden layers      output layer  outputs



ANN learning

1. Random initialization of 𝐖
2. Feature vectors arrive at the input layer, 

bubble through the network to the output layer 

3. Output vector is compared against the 
expected classification output and the value of 
the objective function E is computed 

4. The error is back-propagated through the 
network and the weights are adjusted

𝐖 ← 𝐖+ ∆𝐖
∆𝐖 = −𝜂 ቚ𝛻𝐸

𝐖



ANN learning

http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning



ANN learning

j



ANN learning



Backpropagation – output layer

Mean square error (MSE)



Backpropagation – hidden layers



ANN learning



Learning rate



Low learning rate – very slow training, can 

end up in local minimum

Optimal learning rate – slow training, without 

oscillations, ends up in global minimum

High learning rate – faster training, possible 

oscillations, can end up in local minimum

Learning rate



Heuristics – variable learning rate:

When the new error is higher than the previous and the 
difference is bigger than a threshold, we follow the 
wrong path. New weights are discarded and learning 
rate is decreased.

We allow small increase in the error in order to be able to 
leave a local minimum. If the error increase is less 
than a threshold, we accept the new weights.

If the new error is lower than the previous, we are 
heading to the minimum, we can increase the learning 
rate. 

Learning rate



Other learning algorithms

Newton's method

Uses Hessian

Quasi-Newton method

Approximation of Hessian

Conjugate gradient

new gradient and the previous search direction

Levenberg-Marquardt

Hessian approximated by Jacobian



Other learning algorithms

https://www.neuraldesigner.com/blog/5_algorithms_to_train_a_neural_network


