Machine learning in computer vision

Lesson 9

When to stop learning?

Max iteration

Goal achieved

We arrive at the global minimum of the error function

Problem Overfitting – small training error, big testing error

Early stopping

Train and validation sets stop when the validation error starts to grow

Number of Hidden Layers

#	Result
none	Only capable of representing linear separable functions or decisions.
1	Can approximate any function that contains a continuous mapping from one finite space to another.
2	Can represent an arbitrary decision boundary to arbitrary accuracy with rational activation functions and can approximate any smooth mapping to any accuracy.

Jeff Heaton. 2008. Introduction to Neural Networks for Java, 2nd Edition (2nd ed.). Heaton Research, Inc.

Number of neurons in the hidden layers

rules-of-thumb:

- between the size of the input layer and the size of the output layer.
- 2/3 the size of the input layer, plus the size of the output layer.
- less than twice the size of the input layer.

Number of parameters

Weights and biases: $[3 \times 4] + [4 \times 2] = 20$ weights 4 + 2 = 6 biases

http://cs231n.github.io/neural-networks-1/

Number of parameters

[3 x 4] + [4 x 4] + [4 x 1] = 12 + 16 + 4 = 32 weights 4 + 4 + 1 = 9 biases

Raw image input

M. Mitchell Waldrop: What are the limits of deep learning? https://doi.org/10.1073/pnas.1821594116

Convolutional neural networks

Discrete 2D convolution

$$h(k, l) = (I * w)(k, l)$$

= $\sum_{m=-M}^{M} \sum_{n=-N}^{N} I(m, n) \cdot w(k - m, l - n)$

i_{11}	i_{12}	i_{13}	i_{14}	i_{15}	i_{16}
i_{21}	i_{22}	i_{23}	i_{24}	i_{25}	i_{26}
i_{31}	i_{32}	i_{33}	i_{34}	i_{35}	i_{36}
i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

w_1	w_2	w_3	i_{14}	i_{15}	i_{16}
w_4	w_5	w_6	i_{24}	i_{25}	i_{26}
w_7	w_8	w_9	i_{34}	i_{35}	i_{36}
i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

i_{11}	w_1	w_2	w_3	i_{15}	i_{16}
i_{21}	w_4	w_5	w_6	i_{25}	i_{26}
i_{31}	w_7	w_8	w_9	i_{35}	i_{36}
i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

i_{11}	i_{12}	w_1	w_2	w_3	i_{16}
i_{21}	i_{22}	w_4	w_5	w_6	i_{26}
i_{31}	i_{32}	w_7	w_8	w_9	i_{36}
i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

i_{11}	i_{12}	i_{13}	w_1	w_2	w_3
i_{21}	i_{22}	i_{23}	w_4	w_5	w_6
i_{31}	i_{32}	i_{33}	w_7	w_8	w_9
i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

i_{11}	i_{12}	i_{13}	i_{14}	i_{15}	i_{16}
w_1	w_2	w_3	i_{24}	i_{25}	i_{26}
w_4	w_5	w_6	i_{34}	i_{35}	i_{36}
w_7	w_8	w_9	i_{44}	i_{45}	i_{46}
i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

$$h(0,0) = ?$$

$$h(k,l) = (I * w)(k,l)$$

$$= \sum_{m=-M}^{M} \sum_{n=-N}^{N} I(m,n) \cdot w(k-m,l-n)$$

w_1	w_2	w_3				
w_4	w_5	w_6	i_{13}	i_{14}	i_{15}	i_{16}
w_7	w_8	w_9	i_{23}	i_{24}	i_{25}	i_{26}
	i_{31}	i_{32}	i_{33}	i_{34}	i_{35}	i_{36}
	i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}
	i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}
	i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}

Border padding

w_1	w_2	w_3	i_{63}	i_{64}	i_{65}	i_{66}	i_{61}
w_4	w_5	w_6	i_{13}	i_{14}	i_{15}	i_{16}	i_{11}
w_7	w_8	w_9	i_{23}	i_{24}	i_{25}	i_{26}	i_{21}
i_{36}	i_{31}	i_{32}	i_{33}	i_{34}	i_{35}	i_{36}	i_{31}
i_{46}	i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}	i_{41}
i_{56}	i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}	i_{51}
i_{66}	i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}	i_{61}
i_{16}	i_{11}	i_{12}	i_{13}	i_{14}	i_{15}	i_{16}	i_{11}

w_1	w_2	w_3	0	0	0	0	0
w_4	w_5	w_6	i_{13}	i_{14}	i_{15}	i_{16}	0
w_7	w_8	w_9	i_{23}	i_{24}	i_{25}	i_{26}	0
0	i_{31}	i_{32}	i_{33}	i_{34}	i_{35}	i_{36}	0
0	i_{41}	i_{42}	i_{43}	i_{44}	i_{45}	i_{46}	0
0	i_{51}	i_{52}	i_{53}	i_{54}	i_{55}	i_{56}	0
0	i_{61}	i_{62}	i_{63}	i_{64}	i_{65}	i_{66}	0
0	0	0	0	0	0	0	0

Kernels used in CV

Edge detection Blurring Sharpening

Original

Blur (with a mean filter)

Convolutional neural networks

 $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$

h(k,l) = (I * w)(k,l)

Convolutional neural networks

Convolution layer

Image 32x32x3 Filters 5x5x3

1x1xD filter size?

Convolution layer

Stride – next filter position Size of output: (N-F)/stride+1

stride=1 \rightarrow 5 stride=2 \rightarrow 3 stride=3 \rightarrow 2.33

(N-F+2P)/stride+1

Number of parameters

Weights and biases: 2 x [3 x 3 x 3] = 54 weights 2 biases

http://cs231n.github.io/neural-networks-1/

Non-linear layer

Activation function

ReLU $f(x) = \max(0, x)$ And modifications: Leaky ReLU, SRELU...

Pooling layer

Decreases size, nr. of parameters

3 2 1 0	1	1	2	4
	5	6	7	8
	3	2	1	0

max pool with 2x2 filters and stride 2

6	8
3	4

Max, average, sum

Size, stride

Receptive field

Input area of a neuron

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Sample architecture

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Alexnet

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

CNN usage I

Classifier: classify new images

Standalone Feature Extractor: pre-process images and extract relevant features.

https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/

CNN usage II

Integrated Feature Extractor: integrated into a new model, but layers of the pre-trained model are frozen during training

Weight Initialization: integrated into a new model, and the layers of the pre-trained model are trained with the new model

Unsupervised methods

Unsupervised methods

- **Definition 1**
 - Supervised: human effort involved Unsupervised: no human effort
- **Definition 2**
 - Supervised: learning conditional distribution P(Y|X), X: features, Y: classes
 Unsupervised: learning distribution P(X), X: features

Unsupervised methods

Nonhierarchical – the space is divided into one set of clusters

Hierarchical – levels of clusters form a tree structure

2 approaches

Agglomerative (Bottom-up) Divisive (Top-down)

Hard vs. Soft

Hard: same object can only belong to single cluster

Soft: same object can belong to different clusters

E.g. Gaussian mixture model

Hierarchical methods

Dendrogram

- A binary tree that shows how clusters are merged/split hierarchically
- Each node on the tree is a cluster; each leaf node is a singleton cluster

Dendrogram

A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

Dendrogram

A clustering of the data objects is obtained by cutting the *dendrogram* at the desired level, then each connected component forms a cluster

Divisive approach

Put all object into one cluster REPEAT Pick the cluster to split Split the cluster UNTIL individual objects

or desired number of clusters

DIANA (Divisive Analysis)

Introduced in Kaufmann and Rousseeuw (1990)

Basic algorithm for divisive clustering

Splitting Process of DIANA

Initialization:

- 1. Choose the object O which is most dissimilar to other objects in C
- 2. Let C1={O}, C2=C-C1

Splitting Process of DIANA

3. For each object O_i in C2, compare average distances to C1 and C2:

- $D_i = \arg_{O_j \in C2} d(O_i, O_j) \arg_{O_j \in C1} d(O_i, O_j)$
- 4. Choose the object O_k with greatest D score
- 5. If $D_k > 0$, move O_k from C2 to C1, and repeat 3-5.
- 6. Otherwise, stop splitting process.

Principal Directions Divisive Partitioning

- 1. Find the principal axis
- 2. Split point at mean projection
- 3. Find new centroids

1. Find the principal axis

Split point at mean projection
 Find new centroids

Principal Directions Divisive Partitioning

Improvements exist

Tasoulis, S. K., Tasoulis, D. K., and Plagianakos, V. P. (2010). Enhancing principal direction divisive clustering. Pattern Recognition, Vol. 43,

Median cut

Idea – the prototypes of clusters represent the same number of objects

The prototype = the mean

- 1. Find the smallest box which contains all the objects
- Sort the enclosed objects along the longest axis of the box (variance)
- 3. Split the box into 2 regions at median of the sorted list
- 4. Repeat the above process until the space has been divided into K regions

Median Cut

Individual objects form clusters REPEAT Merge 2 closest clusters (depends on metrics) UNTIL 1 cluster containing all objects

or desired number of clusters

Liang Shan: Clustering Techniques and Applications to Image Segmentation

1st iteration

00

2nd iteration

3rd iteration

4th iteration

5th iteration

k clusters left

Cluster distance

single-link:

Distance of the closest points from A and B complete-link:

Distance of the furthest points from A and B centroid-link:

Distance of the centroids

average-link:

Average distance between pairs of points from A and B

Ward's method

Merge clusters with minimal merge cost: $C_{A,B} = \frac{N_A N_B}{N_A + N_B} \|c_A - c_B\|^2$

 N_k number of objects in cluster K c_k cluster centroid

J.H. Ward (1963): Hierarchical grouping to optimize an objective function, J. Am. Statist. Assoc. 58

Example of cost calculations

$$MergeCost(a,b) = \frac{1 \cdot 9}{1+9} \cdot 36 = \frac{9}{10} \cdot 36 = 32.40$$
$$MergeCost(b,c) = \frac{3 \cdot 9}{3+9} \cdot 25 = \frac{27}{12} \cdot 25 = 56.25$$

Hierarchical Clustering: Comparison

Iterative shrinking

Individual objects form clusters REPEAT

Select cluster to remove (smallest removal cost) Repartition the object to the nearby clusters UNTIL 1 cluster containing all objects or desired number of clusters

$$C_{A} = \sum_{x_{i} \in A} \left(\frac{N_{Q_{i}}}{N_{Q_{i}} + 1} d(x_{i}, c_{Q_{i}}) - d(x_{i}, c_{A}) \right)$$

 Q_i nearest cluster for object x_i having the minimal merge cost

Pasi Fränti, Olli Virmajoki (2006): Iterative shrinking method for clustering problems, Pattern Recognition, Volume 39

Shrinking

