
Pepr3D

Authors: Bc. Štěpán Hojdar, Bc. Tomáš Iser,
Bc. Jindřich Pikora, Bc. Luis Sanchez
Supervisor: Mgr. Oskár Elek, Ph.D.

Consultants: doc. Ing. Jaroslav Křivánek, Ph.D.,
Ing. Vojtěch Bubńık (Prusa Research s.r.o.),

Tobias Rittig, M.Sc.

Faculty of Mathematics and Physics
Charles University



Contents

I Introduction 4

1 Introduction 5
1.1 3D printing basics . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Prusa environment . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Multimaterial printing . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Our project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7
2.1 Autodesk Meshmixer . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Microsoft 3D Builder . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Complex 3D editors . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II Developer Documentation 9

3 Architecture 10
3.1 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Geometry 13
4.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Model Importer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Model Exporter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Font processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5 Color Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Commands and Command Manager 25
5.1 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Command Manager . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Tools 28
6.1 Specific tool details . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 User interface 31
7.1 Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3 Toolbar and side pane . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Model view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1



8 Testing 41
8.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 Manual tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Continuous integration . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Building the project 54
9.1 Building on Windows . . . . . . . . . . . . . . . . . . . . . . . . . 54
9.2 Building on Linux / Docker container . . . . . . . . . . . . . . . . 56

III Progress and results 57

10 Progress of implementation 58
10.1 Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
10.2 Timeline of the implementation . . . . . . . . . . . . . . . . . . . 60

11 Comparison to minimal requirements 65
11.1 Minimal requirements . . . . . . . . . . . . . . . . . . . . . . . . . 65
11.2 Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12 Results 69
12.1 Acquiring and preprocessing the model . . . . . . . . . . . . . . . 69
12.2 Loading the model into Pepr3D . . . . . . . . . . . . . . . . . . . 69
12.3 Colouring the model . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.4 Exporting the model . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.5 Putting the files together in Slic3r . . . . . . . . . . . . . . . . . . 72
12.6 Printing the result . . . . . . . . . . . . . . . . . . . . . . . . . . 72

13 Conclusion 75
13.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.2 3rd party libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
13.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix I: User Documentation 80

14 System requirements and Installation 81
14.1 System requirements . . . . . . . . . . . . . . . . . . . . . . . . . 81
14.2 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

15 First run 82
15.1 First look at Pepr3D . . . . . . . . . . . . . . . . . . . . . . . . . 82
15.2 First model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

16 Tools 86
16.1 Triangle Painter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
16.2 Bucket Painter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
16.3 Brush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
16.4 Text Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
16.5 Automatic Segmentation . . . . . . . . . . . . . . . . . . . . . . . 89

2



16.6 Manual Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 91

17 Import, Export and Saved projects 93
17.1 Importing a model . . . . . . . . . . . . . . . . . . . . . . . . . . 93
17.2 Exporting a colored model . . . . . . . . . . . . . . . . . . . . . . 93
17.3 Saving and opening a project . . . . . . . . . . . . . . . . . . . . 96

18 Additional options and settings 98
18.1 Display options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
18.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Appendix II: CD Attachment 101

19 CD contents 102

3



Part I

Introduction

4



Chapter 1

Introduction

In this project, we aim to create an intuitive application that allows the user
to interactively color a 3D model and export it in a 3D printable format. This
chapter will provide a brief summary of the 3D printing environment, its pipeline
and the goals of the project which we set in the beginning.

1.1 3D printing basics
3D printing is a new technology that has seen rapid development in the last years.
It comes in many different forms, melting plastic, fusing metals, shining UV on
photopolymers, etc. Fused Deposition Modelling (FDM) is the most popular and
accessible to the general public and for the purpose of this project, when we talk
about 3D printing, we will always mean FDM printers, unless stated otherwise.

FDM printing is a relatively simple process - a printer head melts the plastic
filament and deposits it on a preheated platform layer by layer, from the bottom
towards the top. The printer has to regulate the temperature of both the filament
in the head and the moving platform for the deposited material to bond correctly.
Several types of filaments are used, namely PLA, ABS, PET and others.

1.2 Prusa environment
The Prusa environment is very similar to the general description we provided in
the section 1.1. For the purpose of our project, the most important concept in
the Prusa environment is the slicer. The slicer is a program that receives the 3D
model the user wishes to print out and creates the instructions for the Prusa 3D
Printer – a G-code file. The file is then transferred to the printer, which then
executes the commands in the G-code file. The slicer has to plan the movement
of the head for the whole print. This includes several crucial things:

• Covering the whole area of each layer

• Reinforcing the walls of the object to make them sturdier

• Filling the inside of the object with a rougher print, because it won’t be
visible when finished

• Planning the path so the head can stay in one Z level - an ”Eulerian path”.

5



• Switching the materials for multimaterial printing (more in 1.3)

Prusa develop their own slicer - a forked branch of an open-source program
called Slic3r 1, called Slic3r Prusa Edition 2. This slicer can do all we listed above
very well.

1.3 Multimaterial printing
Multimaterial printing is a very new concept, even in the fairly new world of
3D printing. Many of the simpler and cheaper 3D printers can only print one
material models - one color for the whole object. However, many users would
like to print models that include more than one color. Even though the more
advanced printers are capable of combining up to four different materials into
one print, the process to achieve this is rather cumbersome for the end user - the
user has to manually split the 3D mesh of the object into parts that he wishes to
have a different color.

For example, if we are printing a dragon, want the dragon to be black and
have white teeth, we have to take the dragon model, and split off each individual
tooth. Then tell the slicer that the remaining file - the toothless dragon should
be black and the teeth should be white.

This model splitting has to be done in a full 3D editing software like Blender
or 3ds Max, which is difficult to control for newcomers and overly complex.

1.4 Our project
Our project aims to make printing a multi-coloured object a lot easier, by devel-
oping an application that will allow the user to simply paint on the 3D model
(i.e. the dragon) with different colors (i.e. color the teeth white), then simply
click export and generate the files of the split-off models automatically.

Our application allows for free hand painting as well as some forms of guided
painting – bucket fill and some smarter tools, for example a bucket fill that
studies the object’s geometry and stops the filling if it detects a sharp edge (i.e.
the transition of the tooth into the dragon).

The main goal is to make the application for desktop PCs, with main develop-
ment time being focused on the Windows operating system. We did, however, use
software engineering tools that can also be ported to a plethora of other platforms
like Linux based OS, Mac OS and mobile, if the need should arise.

1http://slic3r.org/
2https://www.prusa3d.com/slic3r-prusa-edition/

6



Chapter 2

Related work

Based on our own research and the analysis of the experts from Prusa Research
s.r.o, there, at the moment, does not exist a software that does what this project
is trying to achieve. Here we present a simple list of software that could be used
to achieve the same results as our program delivers. We highlight the pros and
cons of each program to show that our goal is sufficiently unique.

2.1 Autodesk Meshmixer
The closest existing software is Autodesk Meshmixer 1, which is very complicated
and is not targeted for FDM printing specifically. As such, it includes a lot of
features that are not important for the FDM users and end up being confusing.

It is, probably, meant for more advanced users than Pepr3D. It is (at least in
our opinion) unintuitive and can be slow at times. The colouring and segmen-
tation of the model can only be done one color at a time – the user colors one
region, separates it and then continues with the next colour, tearing the model
into pieces piece by piece.

The export has its problems and we have found issues with the exported
objects. The objects were sometimes not printable at all.

It can do a model segmentation, which is analogous to our Automatic segmen-
tation tool. It also can select an area based on given parameters and a region
border, which is a variation on our Bucket painter tool.

On the other hand it is not capable of doing custom strokes like our Brush
tool or custom text like our Text tool.

2.2 Microsoft 3D Builder
Microsoft 3D Builder 2 is another application that handles 3D models but we
have not found a way to make it create anything remotely applicable to FDM
printing.

It is a really fast 3D model previewer, but it does not support any functionality
related to 3D printing, such as separation of objects, colouring of triangles and
so on.

1http://www.meshmixer.com/
2https://www.microsoft.com/en-us/p/3d-builder/9wzdncrfj3t6?activetab=pivot%3Aoverviewtab

7



The user can create a very simple 3D models inside this application.

2.3 Complex 3D editors
Any 3D computer graphics program designed to handle 3D models which allows
for the model to be created or split by colors manually. This section would include
software as 3ds Max, Maya or Cinema4D. Using these applications, however,
would be very time-consuming for the user and practically unusable on a larger
scale. We discuss Blender briefly.

Blender is a fully fledged 3D editor, and therefore is capable of creating any
model imaginable. To replicate the desired outcome of Pepr3D, the user has to
load the model into Blender, divide the model into several triangle meshes, which
only results in the parts of the hull of the object, not a closed polyhedron. The
user has to then manually close each part of the hull, fill the holes and ensure
the Slic3r can solve the intersections correctly. It does not support any kind of
automated separation of one model into several pieces using the triangle colors.

8



Part II

Developer Documentation

9



Chapter 3

Architecture

In this chapter we present the overall architecture of the program, describe the
individual components briefly and showcase some basic data-flow within the pro-
gram. In the following chapters we focus on the main components and describe
each in detail.

3.1 Architecture overview
The following Figure 3.1 illustrates the main components in the architecture of
the Pepr3D application. Each colour represents a separate component, while the
arrows denote how data typically flow and how components usually communicate.

Figure 3.1: An overview of the Pepr3D architecture.

• Main Application is the owner of the whole architecture. It contains func-
tionality which is important for the whole application (like thread pooling
or error logging) and owns and contains the other data structures. It acts
as a single source of truth, holding the data that is valid at every moment
(like the selected tool or the current model). This data is then fetched from
the MainApplication by other components.

10



• Views are the elements that fill the screen of the application. They handle
rendering the user interface and allowing the user to perform basic actions to
handle Pepr3D like rotating and zooming in on the model in ModelView,
choosing a tool from the Toolbar or changing the tool’s properties in
SidePane.

• Tools are the components that allow the user to interact with the data.
Each tool has its properties that can be changed by the user via the user
interface. If the user wishes to perform an action that would change the
geometry (like colouring a triangle), the tool invokes a command which will
take care of the action. The tool specifies how the right panel (SidePane)
will look for each tool and can also query the Geometry class for simple
information like the hovered triangle id.

• Command Manager and Commands are the way Pepr3D handles the
Undo and Redo operations. A Command is a single operation that can be
ran by the CommandManager or joined with other Commands. A simple
example of a command is the PaintSingleColor command. It takes a
list of triangle ids and a color, and simply changes the color of those tri-
angles to the new color. It can be joined with other PaintSingleColor
commands, which have the same color by merging the two triangle id lists.
The CommandManager then holds the stack of applied commands, saves
the snapshots of the current geometry and is able to recreate any state by
reverting to the older snapshots and running the commands again.

• Geometry is the main data structure of the application. It holds the data
of the triangles, their colors, normals, etc. It also generates the buffers for
OpenGL and provides an API for the Commands (for non-const purposes)
and Tools (for const purposes such as finding the hovered triangle id).

The arrows between these components show the typical directions of com-
munication. We can see, for example, that only CommandManager and the
MainApplication send data to Geometry, while the user interface does not
know anything about the CommandManager. Not every single communication is
represented here, as for example certain Tools need read-only access to Geometry.

During the development we tried to separate the components as much as
possible. Since our application is pretty basic, the pipeline is still connected
quite a lot. We hope that this design is extendible though, and if the need arises,
new components can be easily inserted into the overall architecture as illustrated
in Figure 3.1.

3.2 Data flow
In this section we demonstrate the data flow on a simple chain of operations an
average user might perform. The sequence is the following and can be executed
any time after launching the application: Import a model → Select Bucket Painter
tool → Change settings on Bucket Painter → Paint with the Bucket Painter →
Undo the operation.

11



1. Importing a model causes the MainApplication to launch an asyn-
chronous function that loads the new model, calculates the data for both
the MainApplication and Geometry objects. This information in-
cludes the data structures for geometry operations or the calculations to
re-orient the model correctly in the ModelView. After this step is done,
MainApplication gets updated and holds the new Geometry object,
which changes the geometry.

2. Selecting the Bucket Painter is, according to Figure 3.1, a change of
the MainApplication’s property. This is done via the Toolbar view.
Upon selecting the new tool, when the next frame starts rendering, the
SidePane will query the MainApplication object for the current tool,
which will be the Bucket Painter. The SidePane will then let the Bucket
Painter render its own settings within the SidePane.

3. Changing Bucket Painter’s settings is changing the tool’s properties.
It is done within the SidePane view, which the Bucket Painter fills with
relevant UI widgets (buttons, checkboxes, etc.). Changing these widgets
will change the Bucket Painter’s properties.

4. Painting with Bucket Painter by clicking on a certain triangle of the
model. By clicking into the model view, an event gets created. The event
is first processed in the MainApplication (e.g. if it is a drag and drop
event), then gets evaluated in ModelView (e.g. if it is a right click to rotate
the view) and the ModelView then passes it into the tool, if it is required.
The Bucket Painter gets the left click, queries the Geometry for the hov-
ered triangle id, queries the Geometry again for the bucket spread and then
executes a PaintSingleColor command. This command gets enqueued
into the CommandManager, which executes it, changing the Geometry.
In the next rendering frame, the ModelView notices, that the OpenGL
geometry buffers are dirty, asks the Geometry to recalculate the buffers
and renders the new colors.

5. Undoing the last command by clicking the Undo button invokes the
CommandManager. It restores the last snapshot of the Geometry, then
re-runs all commands except the last one and updates the Geometry. This
effectively restores the state before clicking with the Bucket Painter.

This simple sequence of operations describes the majority of the program
runtime data flow and control handling. It highlights important concepts of the
UI – such as the tool’s user interface being rendered by the tool itself or the
CommandManager semantics.

12



Chapter 4

Geometry

In this chapter we describe the Geometry class in detail. We also discuss the
other helper classes which handle geometry in Pepr3D.

4.1 Geometry

4.1.1 Geometry
Geometry is the main class of the whole data pipeline in Pepr3D. Here we explain
the high-level details of this class, to hopefully give the reader a broader picture of
the architecture, which makes navigating the code much easier. Since the class is
rather large, we will not present a complete overview as in the following sections,
but rather discuss several parts separately.

Public data members

The class itself does not provide any data as public. This is because it holds the
geometry model, which cannot and should not be easily altered, since altering
requires non-trivial re-computations (such as the acceleration tree structure or
the Polyhedral surface data structure).

Private data members

All of the class’ data is stored in private members, we present a list of the most
important ones here:

std::vector<DataTriangle> mTriangles;
std::map<size_t, TriangleDetail> mTriangleDetails;

std::unique_ptr<Tree> mTree;
std::unique_ptr<Tree> mTreeDetailed;

PolyhedronData mPolyhedronData;
std::unique_ptr<PolyhedronData::Mesh> mMeshDetailed;

std::unique_ptr<BoundingBox> mBoundingBox;
ColorManager mColorManager;

13



friend class cereal::access;
OpenGlData mOgl;

As we can see, the members are of two main functions: the ones holding
the actual data (such as mTriangles and mTriangleDetails) and data
structures built upon the data, which help us perform the operations quickly.
There are several more conversion std::map objects which help the user retrieve
the correct triangle data with an arbitrary information about the triangle (an id,
a pointer in the surface mesh, etc.), which are not listed here for clarity’s sake.

The mTriangles array functions as one would expect – this is the main
array, which stores the basic information for each triangle (the position, normals,
etc.). If the Brush or Text tools are used, the triangles get split into detailed ones,
and mTriangleDetails needs to be utilized to look up information about a
triangle.

The Tree structure is CGAL’s AABB hierarchical search tree which allows
us to intersect the model with rays. This is especially useful during the user inter-
action (retrieving the triangle id which corresponds to the user-clicked triangle).

We also point out the duality of many of these data structures – mTree
and it’s detailed version, as well as the PolyhedronData object and it’s de-
tailed version. This is required, because the user can change the geometry of the
model extensively by adding new details. Changing the geometry then alters the
behaviour of several algorithms – a breath-first search behaves differently on a
non-detailed model and a detailed model. However, completely discarding the
non-detailed version is not wise either, since some operations may be faster to
perform on the non-detailed versions, if the result does not depend on whether the
mesh is detailed or not (for example, finding a position of ray-model intersection
does not depend on any added details and should utilize the mTree member).

The last notable members are the cereal friend access and OpenGL buffer
object. Cereal requires friend access to the class if we want the class to be ex-
ported. Since Geometry is the most important data object in Pepr3D, we obvi-
ously want to be able to save parts of it. The OpenGlData object is used to trans-
port the geometry to the front-end rendering part of Pepr3D. The Geometry
class creates and updates the buffers, and the front-end only re-renders the model
when the buffers are changed. This way the front-end does not have to have any
knowledge about the geometry and can be kept separate.

Public methods

The main way to work with the Geometry class. They can be divided into two
obvious categories: the getters and the rest.

We provide a lot of getter methods, so the user has a good way of commu-
nicating with the object and can extract as much information out as he wants.
Most of the getter methods are const, since changing certain members is not
allowed. There are, however, several which permit the user to change them, since
the effect is immediate and doesn’t have deeper consequences (like changing the
colour palette in the ColorManager).

The other category of the methods are the algorithms used to implement
Pepr3D’s tools, load the data correctly and compute the necessary information.
We list a few of the most important ones here:

14



// Loading and computation
void computeSdfValues();
void loadNewGeometry(const std::string& fileName);
void recomputeFromData();
GeometryState saveState() const;
void loadState(const GeometryState&);

// Algorithms
std::optional<size_t> intersectMesh(const ci::Ray& ray) const;
template <typename StoppingCondition>
std::vector<size_t> bucket(const size_t startTriangle, const

StoppingCondition& stopFunctor);
void paintAreaWithSphere(const ci::Ray& ray, const

BrushSettings& settings);
void paintWithShape(const ci::Ray& ray, const

std::vector<Point3>& shape, size_t color, bool
paintBackfaces = false);

size_t segmentation( ... );

The first few methods are the main way to alter the Geometry and perform
computations on the loaded model. The first batch of methods provides the tools
to load and save the model correctly, as well as recompute the data if required
(e.g. if a bug was encountered and the data is corrupted). Many of these methods
utilize the GeometryProgress capability of Pepr3D, which allows the user to
know how long the selected operation will run, or at least re-assures him that
Pepr3D has not frozen.

The second group of methods are the algorithms employed to implement all
the tools in the release version. We describe these methods in greater detail here:

• intersectMesh(ray) is the main method used to transform the user’s
clicks with tools into the geometry pipeline. Given a ray, this returns the id
of the triangle which got intersected by the ray. Modern std::optional
is utilized to avoid various ”return codes” (like returning -1 for no hit).

• bucket(start, stopCriterion) is used in several tools and imple-
ments the breath-first search over a 3D triangle mesh. The BFS traverses
the mesh triangle to triangle until it is stopped by the stopping criterion.
This criterion corresponds to the user interface of the Bucket tool – the
user can either select to never stop, to stop upon meeting a different color,
to stop on sharp edges or a combination of both. Modern C++ template
approach is utilized to replace the runtime if-else decisions with compile
time template processing.

• paintWith are two methods used by the Brush and Text tools. They allow
to paint with selected settings along a target ray. paintAreaWithSphere
only paints a circular region on the surface of the mesh, where the circle
is computed as the intersection of a sphere placed on the surface of the
mesh with the mesh’s sides. paintWithShape accepts a shape vector
composed of points in 3D space and allows the user to paint a custom shape
onto the mesh’s surface.

15



• segmentation implements the Automatic segmentation tool by using the
CGAL library, namely the Triangulated Surface Mesh Segmentation 1. This
process is dependant on the SDF values being calculated, which can be done
with the computation method computeSdfValues.

Private methods

We will only describe a handful of private methods, since they are largely unim-
portant and only contain technical details which are not required for a general
understanding. We will, however, mention the OpenGL buffer generators, since
this is something not obvious from the first look on the Geometry class. As
we have already mentioned above, the Geometry class handles all the buffer
creation and keeps the buffers up-to-date, which allows us to shield the front end
from the Geometry structure completely. If the structure of the geometry class
changes, no further changes in the rendering front end code are required. The
only thing which is required is to keep these methods correct. Namely:

void generateVertexBuffer();
void generateIndexBuffer();
void generateColorBuffer();
void generateNormalBuffer();
void generateHighlightBuffer();

Further information is available in the doxygen documentation or directly in
the code.

4.1.2 Triangle Detail
TriangleDetail

The TriangleDetail class allows the user to divide a triangle of the orig-
inal mesh into smaller, differently coloured pieces. The surface of a Triangle-
Detail can be represented in two formats. We first explain the core concepts of
this class before giving a brief overview of its members.

Internal format

The primary format is a collection of PolygonSets. For each color in the trian-
gle, a new PolygonSet is created. The union of all polygons from all PolygonSets
would exactly fill the surface of the original triangle. These PolygonSets are
stored in mColoredPolys map. All painting methods on TriangleDetail, with
the exception of painting individual triangles, utilize this representation.

The secondary format is a collection of colored triangles, which are the
result of a triangulation of the PolygonSets. Usually, this representation is only
temporary, as it gets overwritten each time a new painting operation changes the
PolygonSets. These coloured triangles are stored in mTrianglesExact array.

When the user changes the color of one of these detail triangles (from the
secondary format), the PolygonSet representation no longer has the correct color
stored. This discrepancy is marked via mColorChanged boolean flag. When

1https://doc.cgal.org/latest/Surface mesh segmentation/index.html

16



this flag is set, any method that works with PolygonSets must first update the
PolygonSets from the coloured triangles.

This duality of formats allows us to use PolygonSets – required for CGAL
boolean operations, and triangles – required for rendering and other Pepr3D
tools.

Numerical precision

To be numerically stable, TriangleDetail uses an exact Kernel type, provided by
the CGAL library. The exact kernel is used for all internal “‘Polygon“‘ and exact
triangle operations. While an exact kernel is being used internally, all public
methods and their results are using an ordinary, limited-precision kernel. To
distinguish between different precision types used in TriangleDetail, the following
convention is used:

Types defined on exact kernel (TriangleDetail::K) use shorthand CGAL
type names: - Polygon, Point3, Triangle2, Segment2, etc.

Types defined on inexact kernel (DataTriangle::K) use the ”Pepr” pre-
fix before their shorthand CGAL type name: - PeprPoint2, PeprVector3,
PeprTriangle2, etc.

The ”Pepr” prefix signifies the type is the same, as in the rest of the Pepr3D
application and can be therefore passed to other methods and tools.

Class overview

We now provide a short overview of the TriangleDetail class. Due to the
complexity of the class, we will only discuss the public methods of the class (since
public members do not exist). We have discussed the private workings of the class
in the previous paragraphs. Following, are the most important methods of the
class.

void paintSphere(const PeprSphere& sphere, int minSegments,
size_t color);

void paintShape(const std::vector<PeprPoint3>& shape, const
PeprVector3& direction, size_t color);

void paintShape(const std::vector<PeprTriangle>& triangles,
const PeprVector3& direction, size_t color);

void addPolygon(const Polygon& poly, size_t color);
void addPolygonSet(PolygonSet& polySet, size_t color);

void save(Archive& archive) const;
void load(Archive& archive);

static std::vector<Triangle2> triangulatePolygon(const
PolygonWithHoles& poly);

There are several groups of methods which work the same way. The paint
methods take a input object (a sphere or a arbitrary shape) and paint it into the
triangle detail – creating new polygons when necessary. The add methods can be
used to manipulate the internal state of the class, either adding new polygon sets

17



(e.g. if new colours are required) or adding new polygons to increase detail. Since
Pepr3D saves objects of this class, there have to be save and load methods
present, for the Cereal library. The triangulatePolygon method further
highlights this duality of the class, allowing to create triangles from the existing
polygons.

4.1.3 Detailed Triangle Id
This struct is a very simple object, but important to understand, so we present
it here, even though it is not a complex or confusing concept. It is a way to
connect the original triangles with the detailed ones, once the user paints with
the Brush or uses the Text tool. Before the user uses these tools, each triangle has
its own id – a size t type number. However, once the triangles are subdivided
by use of one of these tools, this is no longer the case, since we are adding new
triangles. The tools also support re-merging and simplifying the topology if the
user removes the details by painting over them again. This would not be possible
if we simply added the new triangles to the end and kept indexing by the size t,
hence why we use this, admittedly more complex way of indexing.

struct DetailedTriangleId {
DetailedTriangleId()
explicit DetailedTriangleId(size_t baseId,

std::optional<size_t> detailId = {})

size_t getBaseId() const;
std::optional<size_t> getDetailId();

bool operator==(const DetailedTriangleId& other) const;

private:
size_t mBaseId;
std::optional<size_t> mDetailId;

};

The BaseId property is the triangle id of the original triangle, that has been
split into many more. The DetailId is the id of the one of the smaller triangles,
which form the original one (the one identified by BaseId).

A triangle which has not been subdivided, will have the DetailId empty,
which indicates it is a base triangle. A triangle which formed by subdividing an
already existing triangle, will have the BaseId equal to the id of the triangle
which it has subdivided – used to look up the TriangleDetail object in
mTriangleDetails, and the DetailId will be used to look up the actual
triangle, within this object.

4.1.4 Data Triangle
DataTriangle is the main way the geometry is stored in Pepr3D. It is a custom
wrapper around CGAL’s Triangle 3 class. Adding this wrapper allows us to
attach additional information to each triangle. The information attached in our
case is:

18



• mColor which is the color of the triangle. This is kept in a size t variable,
because it refers to the index of the color in the color palette.

• mNormal which is the normal vector of the triangle face. This is calculated
as an average of the vertex normals of the triangle.

A second important class to talk about in this section is the DataTriangle-
AABBPrimitive. This class provides the conversion between our DataTri-
angle (which contains a CGAL::Triangle 3) and the CGAL::AABB tree
which requires CGAL::Triangle 3 as input to build the tree around. We pro-
vide the tree our DataTriangle array and the tree converts it into Data-
TriangleAABBPrimitive, which it accepts as a geometry primitive.

4.2 Model Importer
One of the classes included in this section is the Model Importer. As the name
suggests, this class handles the import of a new triangle mesh model into Pepr3D.
This class heavily utilizes the Assimp library we have mentioned several times in
both the specification and documentation. Here is a quick overview of the class:

class ModelImporter {
std::string mPath;
std::vector<DataTriangle> mTriangles;

ColorManager mPalette;
bool mModelLoaded = false;

std::vector<glm::vec3> mVertexBuffer;
std::vector<std::array<size_t, 3>> mIndexBuffer;

GeometryProgress *mProgress;

public:
ModelImporter(const std::string p, GeometryProgress

*progress, ::ThreadPool &threadPool);
bool isModelLoaded();

ColorManager getColorManager() const;
std::vector<DataTriangle> getTriangles() const;
std::vector<glm::vec3> getVertexBuffer() const;
std::vector<std::array<size_t, 3>> getIndexBuffer() const;

}

We will now go through the public API of the class, explaining in detail what
each method does and why it is needed.

Firstly, ModelImporter gets initialized using its constructor. It gets the
path to the file and our persistent threadpool, as well as a GeometryProgress
object, which is used to report the import progress to the UI. This setup makes
a single ModelImporter object responsible for a single imported mesh file, which

19



follows the Resource Acquisition Is Initialization or RAII 2 principle, which is
prevalent in the C++ scene. Once initialized, the ModelImporter can now
return all the data it loaded.

A simple check of ModelImporter’s ready status can be performed using
the method isModelLoaded(). This should primarily be used in combination
with C++’s assert call.

Once the model is loaded correctly, the object now provides the data it has
loaded. There are several methods to retrieve data.

• getColorManager() is a method which returns a ColorManager ob-
ject, initialized with the colors of the imported file. This means that if
a coloured geometry file gets loaded, the ModelImporter will automat-
ically create a coloured model which is then displayed in Pepr3D. It will
also initialize the color palette with the model’s colors, not with the default
ones.

• getTriangles() is the most important method of the class. This method
returns an array of DataTriangle objects. This is the main data Pepr3D
works on. These returned triangles are preprocessed using both Assimp pre-
processing options and our own. Examples of preprocessing include triangu-
lating all non-triangle primitives (like quads), removing duplicated vertices
and removing degenerate triangles (with a zero area).

• The pair of methods getVertexBuffer() and getIndexBuffer() is
a secondary means of extracting the same geometry data as in the get-
Triangles method, but this time in the ”OpenGL” format of a vertex
buffer and an index buffer. This data is used only during the construction
of the polyhedron model for the CGAL library. Extracting the secondary
data is easier and faster than transforming the DataTriangle array back
into this buffer representation just for the polyhedron build.

Most of the private members are very self-explanatory, we will, however,
briefly comment on the mProgress object. This object takes advantage of As-
simp’s ability to report the percentage-wise progress during loading and prepro-
cessing. We use this information in the loading dialog, to notify the user on the
progress of the import. This makes it clear to the that the program is working
as intended and has not crashed or stopped.

4.3 Model Exporter
The ModelExporter is an easy to use class which handles the export of the
model. Once again, it is initialized once for every geometry object (a model) and
can get called multiple times if we are saving the same geometry data (maybe
with different parameters) multiple times. Once a new model gets loaded, a new
ModelExporter needs to be initialized. Here is a simple overview of the class:

class ModelExporter {
const Geometry *mGeometry;

2https://en.cppreference.com/w/cpp/language/raii

20



GeometryProgress *mProgress;
std::vector<float> mExtrusioCoef;

public:
ModelExporter(const Geometry *geometry, GeometryProgress

*progress);

void setExtrusionCoef(std::vector<float> extrusionCoef);

bool saveModel(const std::string filePath, const
std::string fileName, const std::string fileType,
ExportType exportType);

std::map<colorIndex, std::unique_ptr<aiScene>>
createScenes(ExportType exportType);

}

There are a few basic methods which we will cover first, as well as an extra
degree of freedom for the users of this class, which requires a bit more knowledge,
which we explain at the end.

• The constructor takes a pointer to the current Geometry object and a
pointer to a progress indicator. Here we again exploit Assimp’s progress
reporting functionality to let the user know how far along the export is.

• setExtrusionCoef() is a simple setter which allows the user to specify
the depth of extrusion for each segment.

• saveModel() is the main method the users will call if they wish to proceed
with the export in the current setup. The user specifies the file path, file
name and file type of the export, as well as which export should get used,
as there are several options.

We mentioned several options of exporting, which are decided by the Export-
Type enumerator. The whole definition of this enum is:

enum class ExportType { Surface, NonPolySurface,
NonPolyExtrusion, PolyExtrusion, PolyExtrusionWithSDF };

The only options the end user has are exporting only in Surface mode or
in Extrusion mode, with the ability to turn on SDF limitation when in the
Extrusion mode. The two options prefaced with the keyword Poly are there
for the developers, since these get invoked when the loaded model cannot be
built into a polyhedron structure (which is displayed as a warning dialog, which
is covered in greater detail in Chapter 7.

The last public method of the class is createScenes(). This is an advanced
method which gives the developer access to the segmented scenes. This can be
used, for example, to allow the user to preview the export results directly in
Pepr3D (as it is done in the Export Assistant).

21



4.4 Font processing
Big portion of the code of this class is based on the Font23D library which can be
found on GitHub 3. The team read through the code, heavily modified it to trans-
form it from the C language to the modern C++ and built a new class around
what were only free methods in Font23D. This object also uses the FreeType,
FTGL and Poly2Tri libraries.

The main goal of the FontRasterizer class is to take smooth bezier curves
of letters from the .ttf font files and transform them into a triangle mesh, with
a variable rasterization steps. These meshes are then used in the Text tool.

A simple overview of the FontRasterizer class follows:

class FontRasterizer {
private:
struct Tri {

glm::vec3 a, b, c;
};

std::string mFontFile;
bool mFontLoaded = false;

FT_Library mLibrary;
FT_Face mFace;
FT_UInt mPrevCharIndex = 0, mCurCharIndex = 0;
FT_Pos mPrev_rsb_delta = 0;

public:
FontRasterizer(const std::string fontFile);
std::string getCurrentFont() const;
bool isValid() const;

std::vector<std::vector<FontRasterizer::Tri>>
rasterizeText(const std::string textString, const
size_t fontHeight, const size_t bezierSteps);

}

As we can see, similar to the ModelImporter class, this class also uses the
RAII principle, this time to load and hold the font face, loaded from a .ttf file.
Once the font file is loaded successfully, the object can then convert any text into
a triangle mesh.

The interface of this class is rather simple – the constructor takes a sin-
gle std::string, which is the path to the font file. The API provides a
isValid() method to check whether the initialization was performed correctly.
The API also provides the font file name, without the whole path, which can be
accessed by the method getCurrentFont(). This is used in the user interface
to display the currently selected font.

The main method of the class is the rasterizeText(). It takes a string
containing the text the user wants to convert to triangles, the fontHeight
integer, which corresponds to the font height commonly found in text editors and

3https://github.com/codetiger/Font23D

22



the variable bezierSteps, which allows the user to control the roughness of the
approximation. The useful range of the bezierSteps variable is around 1 – 5.
1 yields very rough results, useful for ”blocky” fonts like Impact, while 3 should
be sufficient for any standard font. For high precision, a higher setting should be
used. Please note that the higher the bezierSteps, the more triangles will be
generated.

Last thing to note, is the custom triangle object the rasterizeText method
returns. Tri is a custom struct declared private in FontRasterizer. This
is done to achieve two things:

1. FontRasterizer::Tri should not be used outside of the class. It is a
temporary type and is useful only to the FontRasterizer class. The
private definition prevents this behaviour. Users should not create more
objects of this type at any time.

2. FontRasterizer::Tri is returned by rasterizeText. This is be-
cause we want the FontRasterizer to be an independent class, which
can be used on its own and not depend on any Pepr3D types. Returning
a custom type achieves this behaviour, and it is expected that the users
will want to convert the outcome into a custom type more often than not
anyway.

4.5 Color Manager
The ColorManager is a simple class which manages the current color palette.
At most one ColorManager is active, which is the one MainApplication
holds as a source of truth. ModelImporter also creates a new ColorManager
while importing an already-coloured model.

Now we list a simplified overview of the class:

class ColorManager {
public:
using ColorMap = std::vector<glm::vec4>;

private:
ColorMap mColorMap;
size_t mActiveColorIndex = 0;

friend class cereal::access;

public:
ColorManager();
ColorManager(const ColorMap::const_iterator start, const

ColorMap::const_iterator end);
explicit ColorManager(const size_t number);

void addColor(const glm::vec4 newColor);
void setColor(const size_t i, const glm::vec4 newColor);
void replaceColors(const ColorMap::const_iterator start,

const ColorMap::const_iterator end);

23



void replaceColors(const ColorMap& newColors);
glm::vec4 getColor(const size_t i) const;

size_t getActiveColorIndex() const;
void setActiveColorIndex(size_t index);

static void generateColors(const size_t colorCount,
std::vector<glm::vec4>& outNewColors);

}

As we can see, ColorManager is basically a simple wrapper around STL’s
std::vector, specialized on holding glm::vec4 and extended with some
color-generation features. It also is responsible for handling the current active
color in the mActiveColorIndex member variable. This is the color the user
has currently selected in his color palette widget.

There are several ways to initialize the ColorManager. You can initialize it
to the default palette, with a list of colors or simply with a number of colors you
require. In the last case, the ColorManager will generate new colors, which
will be visibly distinct from each other (you will not get 3 slightly different shades
of blue). The generation is done using the generateColors() method.

The ColorManager API has all the different calls you could expect from a
std::vector wrapper, like empty(), size() and clear(), which we have
omitted from the overview for clarity.

The most important part of the API are the addColor(), setColor()
and replaceColors() methods. These allow for changing of the palette on
the fly. Note that changing the palette changes the colors on the model in real
time. getColor() can be used to query the ColorManager on any color (for
example for user interface purposes), and when combined with the following pair
of methods, it provides a vital part of Pepr3D by allowing the color palette widget
to work.

We have already mentioned one of the two remaining methods – the get-
ter getActiveColorIndex() and the setter setActiveColorIndex().
These methods are invoked when the user changes the active color in the color
palette widget in the user interface. They are also invoked by various tools when
the tool is constructing the recolour command and needs to know which colour
the user painted with.

24



Chapter 5

Commands and Command
Manager

In this chapter, we discuss the command system that provides the Undo and Redo
capability of Pepr3D. First we explain the Command class in detail and then we
show how the CommandManager operates to provide a fully functioning Undo
and Redo.

5.1 Commands
Commands are the primary means of altering the geometry model. Each of them
gets executed and placed on the command stack, which allows for the Undo and
Redo operations to function correctly. The commands then interact with the
geometry model to modify it according to the user’s wishes.

Because each command gets put on the command stack, and each Undo step
removes one command from the stack, each command has to have a visual impact
on the user’s work. This means that internal computations, such as geometry
queries, cannot be represented as commands, because pressing the Undo but-
ton would not have any visual effect and would confuse the user. Examples of
commands include: colouring a single triangle (triangle painter tool), colouring
multiple triangles (like in bucket painter) or changing the color palette.

A single command is a class derived from the CommandBase class, which has
this structure:

template <typename Target>
class CommandBase {

template <typename>
friend class CommandManager;
public:

CommandBase(bool isSlow = false, bool canBeJoined = false);

virtual std::string_view getDescription() const = 0;
bool isSlowCommand() const;
bool canBeJoined() const;

protected:

25



virtual void run(Target& target) const = 0;
virtual bool joinCommand(const CommandBase&)

private:
const bool mIsSlow;
const bool mCanBeJoined;

};

As we can see, there are only a few methods to implement per each command.
Namely run() and joinCommand(). The only properties of the command are
mIsSlow and mCanBeJoined, which are (through their const getters) accessed
by the CommandManager.

The mIsSlow property notifies the CommandManager about a slow com-
mand, which means a snapshot should be made to allow for quicker undoing and
redoing (we will refer to both of these options as only ”undo” from now on).

The mCanBeJoined property allows the CommandManager to join two
commands of the same type together.

Now that we know how commands look like and work, we can look at the
CommandManager class and see how the entire feature is implemented in Pepr3D.

5.2 Command Manager
The centrepiece of the CommandManager is the command stack. The Com-
mand Stack is a LIFO type structure, with the main purpose to store the executed
commands, which allows the CommandManager to perform the undo operations.
This data structure is then operated by the CommandManager. Following is the
overview of the CommandManager class.

template <typename Target>
class CommandManager {

public:
using CommandBaseType = CommandBase<Target>;
using StateType = decltype(std::declval<const

Target>().saveState());
static const int SNAPSHOT_FREQUENCY = 10;

explicit CommandManager(Target& target);

void execute(std::unique_ptr<CommandBaseType>&& command,
bool join = false);

void undo();
void redo();

bool canUndo() const;
bool canRedo() const;
const CommandBaseType& getLastCommand() const;
const CommandBaseType& getNextCommand() const;
size_t getVersionNumber() const;

26



private:
Target& mTarget;
std::vector<std::unique_ptr<CommandBaseType>>

mCommandHistory;
size_t mPosFromEnd = 0;
size_t mVersion = 0;

struct SnapshotPair {
StateType state;
size_t nextCommandIdx;

};
std::vector<SnapshotPair> mTargetSnapshots;

};

As we can see, the class is not complex. It operates over a templated class
Target, which only has to be able to be able to load its state and save its state
using the methods loadState and saveState. The state is what gets undone
during the undo operation.

The three main methods to operate the undo pipeline are execute(), undo()
and redo(), which are self-explanatory. The user interface can also use the
methods canUndo() and canRedo() to notify the user with visual cues (like
emboldening the undo signs) if the undo and redo actions are available.

The CommandManager also keeps its current cumulative version, which gets
incremented during each execute(), undo() and redo(). This is a way to
keep track of the user’s actions and notify him if the current project was modified
after it was saved.

The main data is stored in the command stack, which have already discussed.
The command stack is the member mCommandHistory, which holds all past
commands in a std::vector, which is a sufficient structure to implement a
LIFO in. It holds pointers to the commands, instead of commands themselves to
be able to use polymorphism in C++. The pointers are realised with C++’s
unique ptr for maximum memory safety.

After consideration, we chose the snapshotting technique we discussed in the
Specification document. Snapshotting happens inside the execute() method
and is regulated by one member variable inside the CommandManager – the
SNAPSHOT FREQUENCY. mTargetSnapshots is the array which holds the al-
ready taken snapshots. This std::vector gets manipulated during execute()
and redo() to correctly perform the undo and redo functions. Snapshots are
saved as a SnapshotPair, which remembers the current state and the command
id which it was taken at.

Let’s now illustrate the redo realised by snapshotting on a specific example.
Let there be C commands on the command stack, with last snapshot taken at the
S-th command, where S < C−1. If we now undo, which means point the current
Target state at C − 1, the last SnapshotPair gets inspected, and we find that
the command id of the last snapshot was S. The state gets re-instantiated to the
state we found in the SnapshotPair. Now we need to re-apply all commands
from S + 1 to C − 1 to be correctly back in the C − 1 state.

27



Chapter 6

Tools

In this chapter, we explain the concepts behind each tool and the Geometry API
the tools need.

A tool is the main programmable component which connects the low-level
command structure we outlined above and the high-level UI components (such as
color-pickers, the user performing brush strokes and file operations like export-
ing the file). Our design should allow for later advancements of the software –
adding a tool to the software should be a matter of writing the new tool’s Tool
class, unless the tool is advanced and needs some complicated custom geometry
processing functions.

Here we take a look at the Tool class overview:

class Tool {
public:
Tool() = default;
virtual ˜Tool() = default;

// UI properties
virtual std::string getName() const = 0;
virtual std::string getDescription() const;
virtual std::optional<Hotkey> getHotkey(const Hotkeys&

hotkeys) const;
virtual std::string getIcon() const = 0;
virtual bool isEnabled();

// Action methods
virtual void drawToSidePane(SidePane& sidePane){};
virtual void drawToModelView(ModelView& modelView){};

// Event methods (listed in the Table below)
...

virtual std::optional<std::size_t>
safeIntersectMesh(MainApplication& mainApplication,
const ci::Ray ray) final;

virtual std::optional<DetailedTriangleId>
safeIntersectDetailedMesh(MainApplication&

28



mainApplication, const ci::Ray ray) final;
};

As we can see, it is a simple abstract interface class. There are some UI prop-
erties like getName and getDescription, as well as some rendering methods
like drawToSidePane. It contains a few final methods, which are just a
exception-safe methods to call on the Geometry class, implemented in the inter-
face, because every tool needs them. The also are multiple Event methods, which
we have omitted from the code here and will examine further in the following
table.

Name Invoked if ...
onModelViewMouseDown mouse gets pressed down in the model view
onModelViewMouseDrag mouse gets dragged in the model view
onModelViewMouseUp mouse button gets let go of in the model view
onModelViewMouseWheel mouse wheel is scrolled in the model view
onModelViewMouseMove mouse is moved in the model view
onToolSelect this tool is selected
onToolDeselect this tool is deselected
onNewGeometryLoaded new model is loaded (imported or opened)

Table 6.1: The overview of different events available to any Tool class.

When implementing a new tool, not all of these events have to be specified.
The tool only listening and can act accordingly if it needs to.

The tool’s user interface is implemented in the drawToSidePane method.
During the rendering, if the tool is active, this method gets called to fill the
SidePane with ImGui widgets, which allow the user to alter the tool’s properties.

We will not discuss each and every tool we have implemented, we will, however,
mention a few things that most of the tools have in common.

6.1 Specific tool details
Most, if not all of the tools we implemented, need access to the Geometry and
CommandManager classes. Since the MainApplication object holds both of
these, the tool has to get a reference to the parent MainApplication object.
This is why most of our tools have this piece of code in common:

public:
explicit PaintBucket(MainApplication& app) :

mApplication(app) {}
private:

MainApplication& mApplication;

The tool then accesses the CommandManager through mApplication’s
method getCommandManager() and the current geometry data through the
getCurrentGeometry() method.

This way of communication is required as the MainApplication is the
source of truth of what geometry is currently loaded and what command manager

29



corresponds to it.
Certain tools, such as the Segmentation and Export Assistant, also override

Model View OpenGL buffers to display colors that are not in the palette or
modified geometry such as the extrusion preview.

30



Chapter 7

User interface

A user interface (UI) is the front-facing part of Pepr3D that the users interact
with. It is responsible for managing windows, showing buttons, rendering the 3D
model, handling mouse clicks, hotkeys, showing error dialogs, and much more. In
case of Pepr3D, it should be an easy-to-use, intuitive, and fast abstraction of the
complex 3D geometric algorithms at the backend, see Figure 7.1.

We divide the Pepr3D UI into the following main parts:

• the main application corresponds to the whole main window, which con-
sists of the following:
• a toolbar with toggleable buttons representing tools, undo/redo, etc.,
• a side pane with buttons, checkboxes, sliders, etc., representing configu-

ration of the currently selected tool,
• and a model view with the 3D model which the user can rotate, zoom,

paint on it, etc.

7.1 Key concepts
In the specification of Pepr3D, we explained several main ideas that the user
interface of Pepr3D is built around. We will not repeat every single idea from the
specification here as that would be redundant, but we explain the key concepts
that we kept in mind while developing the user interface.

To prevent reinventing the wheel, our concepts are based on investigating how
other developers implement user interfaces. Our UI mainly consists of real-time
3D rendering, i.e., displaying the 3D model that users can interact with, and
widgets, i.e., the windows, buttons, check boxes, text labels, etc.

7.1.1 Real-time 3D rendering
In Pepr3D, a regular user interface with a few buttons and texts is not enough.
We primarily need real-time 3D rendering and manipulation of the 3D model that
the user is editing. Hence the whole user interface needs to take this into account
and is primarily based on real-time rendering.

As explained in our specification, when we were looking for a 3D rendering
library, we mainly focused on finding an easy-to-use abstraction, e.g., for render-
ing 3D primitives, using custom shaders with uniforms, uploading textures to the

31



Figure 7.1: An overview of the Pepr3D UI architecture, based on Figure 3.1.

GPU, keeping constant framerate, etc. We decided to use Cinder, which is also
cross-platform and supports asynchronous events.

7.1.2 Widgets
As Pepr3D is based on real-time rendering, we decided to use immediate UI, i.e.,
a procedural UI redrawn every frame that is mostly stateless. This means that
we do not have to program any explicit synchronization between the UI and the
backend. Whenever we re-render the UI, it will be rendered with the newest data.
Retained state is only where necessary, e.g., for complex calculations not needed
in every frame. Our immediate UI is a part of the 3D renderer based on Cinder
and OpenGL, where the widgets are rendered on top of the scene.

We also kept in mind that presentation should be separated from the logic, i.e.,
the rest of the application should know nothing about the UI at all. Hence our
UI depends on the backend, but the backend does not depend on the UI at all. In
theory, we are able to easily replace the UI with another, should it be necessary.

For these reasons and others explained in our specification, we based our
widgets on a library called Dear ImGui. It provided us with basic handling of
mouse clicks, keyboard inputs, etc., and also with 2D drawing such as texts, icons,
buttons, etc. But the design of Pepr3D is completely ours and is based on heavily
customized widgets based on ImGui primitives.

7.2 Application
The whole application and its main window are executed via the Cinder library.
The main file main.cpp contains a Cinder macro which corresponds to cross-
platform main functions. Cinder is responsible for creating an instance of our
MainApplication class on which it calls the setup method.

After the main window is set up, Cinder keeps calling the update and draw
methods every frame in this order. Cinder also handles all necessary events from
an operating system and calls the appropriate methods of the MainApplication.

32



7.2.1 Main application
The MainApplication class is a router which interacts with other components,
mainly the three major UI components: a toolbar, a side pane, and a model
view. It instantiates them, listens for events from the operating system, and
passes them to the components so that they can handle them themselves.

This also includes delegating hotkeys, open, save, and import commands to
their dedicated classes, handling minimized application, etc. We can say that
every user interaction gets first through the MainApplication which then
delegates it to other components. The MainApplication also works as a
single source of truth that contains the current geometry and current tools. Other
components use MainApplication as a getter for the current valid state.

Because of the Cinder API, setup is not done directly in the constructor, which
only instantiates other components, but in the setup method which Cinder calls
once it is ready. It creates and configures debug and error loggers, sets the main
window properties such as its resolution and icon, initializes ImGui, hotkeys, the
default geometry (cube), and constructs all tools.

The draw method draws the major UI components and also renders existing
modal dialogs and a progress indicator when necessary. The update method
checks invariants such as that the selected tool is not disabled, application is
not rendered if minimized, and unsaved changes in a project are marked with an
asterisk * in the title.

7.2.2 Multi-threading and background tasks
Some operations such as importing or exporting a large model may take a long
time. If everything was done in the main thread, rendering of the UI would be
paused and the window would become unresponsive. In UI applications, we want
to avoid this by running slow operations in the background.

For this purpose, we use a very simple thread-pool library consisting of just
a single ThreadPool class. A single instance of this thread pool is stored as a
static member of the MainApplication.

Delegating a task into the thread pool is done by calling enqueue on the
thread pool. This method returns a C++ future which we can wait for. How-
ever, the UI in the main thread should not wait for the tasks to finish in a blocking
way, as that would defeat the purpose.

Instead, we can call dispatchAsync on the MainApplication, which
dispatches another callback via Cinder. This callback will be executed before a
new frame starts rendering. This enables the background tasks to notify the UI
that they have finished.

In summary, the pipeline works like this: the UI enqueues a slow function F
(typically a lambda function) to the thread pool and continues rendering. Right
before F finishes, the F itself calls dispatchAsync with another function A,
which will be run on the UI thread at a new frame. A is used to update the UI
to the new state, e.g., after loading a new model.

We made a simplified API for exactly this purpose that Tools can use when
enqueuing a slow operation such as SDF computation. The MainApplication
has a templated method enqueueSlowOperation to which we can pass the

33



F and A functions. Thread pool and dispatching will be used automatically and
a progress indicator will be shown.

7.2.3 Preventing race conditions in UI
Unfortunately, certain operations (e.g., with CGAL) are not thread-safe for the
UI even though the UI is read-only when a progress indicator is shown. To solve
this problem with possible race conditions, we actually render the whole user
interface in a frame buffer (off-screen rendering).

If there is no asynchronous progress going on, we simply show this frame buffer
on screen and it looks like we are rendering directly to the screen. If, however,
a progress indicator is active, we pause all UI rendering and processing, we show
the cached frame buffer on screen and overlay it with the progress indicator.
So the indicator is the only part of the UI which is actively rendered, which is
thread-safe as the progress relies on std::atomic values.

7.2.4 Resources of a minimized or obscured window
Because Pepr3D runs at a vertically synchronized framerate (typically 60 frames
per second), it uses CPU and GPU resources even when minimized or obscured.
We had to implement a way to pause rendering while the window is not visible.
Cinder provided a way to tell if the window was minimized, but it did not solve
situations where a window was obscured but not technically minimized.

This proved to be a difficult problem that we managed to partially solve for
Microsoft Windows by using the Windows API. In regular intervals, we check
whether the top left corner, center, and bottom right corner are obscured by
another window of another application. When they are, we pause the rendering.
This significantly lowers the CPU and GPU usage when Pepr3D is not used.

7.2.5 Dialogs and fatal error handling
In Pepr3D, there are 2 types of dialogs: general modal dialogs and a progress
indicator. These dialogs are drawn from the MainApplication on top of
everything else. While they are shown, all mouse and keyboard input for the rest
of the components is interrupted, meaning users cannot interact with any tools.

General modal dialogs and fatal errors General modal dialogs are repre-
sented by the Dialog class and they can be of various importance, e.g., infor-
mation dialogs, fatal error dialogs, etc. The dialogs are stored in a priority queue
with the most important dialog on top. They can be pushed to the queue by
calling pushDialog on the MainApplication instance.

When we detect an invalid state of the application, e.g., by catching a fatal
exception, a fatal error dialog (see Figure 7.2) is pushed to the queue. When
a fatal error dialog is on the top of the queue, rendering of all components is
stopped and only the dialog is shown, because it cannot be guaranteed that other
components are in a valid state. Pressing a button on the fatal error dialog
terminates the application.

34



Figure 7.2: Example of a fatal error dialog.

Sometimes an error is so fatal that even the fatal error dialog cannot be ren-
dered and Pepr3D is terminated immediately. Nevertheless, all warnings, errors,
and fatal errors are logged in pepr3d.log files which are backed up in case of
a fatal error. When Pepr3D is executed again, an information dialog is shown
explaining the user where they can find a related log file with error details.

Progress indicator A progress indicator is an animated dialog (see Figure 7.3)
which shows the elapsed and remaining progress required to process the cur-
rent command. It is used mostly when opening, saving, importing, and export-
ing geometry files, or computing SDF, because these are slow operations. Its
logic is handled in the ProgressIndicator class which has a pointer to the
Geometry which is being loaded. The current status is checked directly from
the geometry data every frame.

Figure 7.3: Example of a progress indicator during import.

7.2.6 Tooltips
As the user interface has to be as clean as possible to allow fast and easy naviga-
tion even for beginners, long and detailed explanations of buttons and input boxes
are “hidden” in tooltips. Tooltips (Figure 7.4) are dark informative rectangles
that display when user hovers over an interactive widget, e.g., a button.

35



Tooltips in Pepr3D can show a name of an action, its hotkey (if available), long
description of an action (if provided), and an explanation why an action is dis-
abled (if it is disabled). Tooltips are created by calling drawTooltipOnHover
on the MainApplication instance. They are only drawn when the item is
actually hovered.

Figure 7.4: Example of a tooltip.

7.2.7 Hotkeys
Hotkeys (keyboard shortcuts) enable users to perform common actions by pressing
a single key or a combination of keys. Using hotkeys, changing active tools and
colors is much faster and so is the whole editing process. There is no need to
move a mouse cursor over the whole window just to change a color and then move
back over the edited geometry.

Hotkeys are managed by the Hotkeys class which contains a mapping be-
tween Hotkey and HotkeyAction. There are two maps, one for each direction,
i.e., a hotkey to action, and an action to a hotkey. The former one is used for
faster event handling, the later one for faster displaying of tooltips that show
what keys to press.

A Hotkeys instance is managed by the MainApplication which loads user
specified hotkeys from a file in assets/hotkeys.json. If this file does not ex-
ist, default hotkeys are loaded. When a key is pressed, MainApplication calls
findAction on the Hotkeys instance and then performs the corresponding ac-
tion. Similarly, Toolbar and SidePane call findHotkey on the Hotkeys
instance to find which key should be shown in a tooltip. The getString method
on a Hotkey, unfortunately, only supports letters and numbers and a Ctrl+
modifier. There is no mapping between key codes and UTF-8 symbols.

Hotkeys are customizable by editing the file assets/hotkeys.json, how-
ever, they are not customizable from the user interface. The file has a simple
JSON structure as can be seen in the example:

{
"hotkeys": {

"keysToActions": [
{

"key": {
"ctrl": false,
"keycode": 100

36



},
"value": "SelectDisplayOptions"

},
{

"key": {
"ctrl": false,
"keycode": 101

},
"value": "SelectTextEditor"

},
...

]
}

}

where the key codes are based on Cinder and can be found in the user documen-
tation.

7.3 Toolbar and side pane
The toolbar and side pane are two major UI components that users interact with.
They are both rendered on top of the geometry, covering the top and right part
of the window.

7.3.1 Toolbar
The toolbar is represented by the Toolbar class. It is rendered on the top of
the window and meets with a side pane at the right side. It consists of 3 main
parts: the file drop down on the left, the undo and redo buttons, and the tool
buttons that select active tools.

All the buttons in the toolbar are rendered via the templated drawButton
method. It is a heavily modified ImGui button, because our toolbar buttons also
support multiple states (inactive, hovered, held, active, disabled) and a dropdown
option which we use for the file drop down.

The tool buttons are not hard-coded, but rendered by dynamically iterating
over all Tool instances that are part of the MainApplication. For example,
when we compile in the debug mode, there is an additional debug tool, which is
not present in the release version.

7.3.2 Side pane
The side pane is represented by the SidePane class. It is rendered on the right
side of the window and fills up the whole height of the screen. It consists of 2
main parts: the header which shows the currently active tool, and the “inside”
where properties of the active tool are shown.

There is an important concept: the tools themselves draw the inside of the side
pane. The side pane only calls the drawToSidePane method on the currently
active Tool and the tool itself decides what is drawn by calling SidePane helper
methods such as drawText.

37



So it is the side pane which knows how to draw texts, buttons, color palette,
separators, and other UI widgets in the side pane, but what exactly gets drawn
is decided by the tools. This is a design decision that makes the SidePane
independent on the specific tools and enables them to provide various properties
that the users can edit in real-time.

Standard widgets Side pane can contain standard widgets. These are for ex-
ample texts drawn by drawText, buttons and coloured buttons by drawButton
and drawColoredButton, separators by drawSeparator, checkboxes by
drawCheckbox, and more. The tools can, however, also use ImGui directly,
because all ImGui calls from inside their drawToSidePane method get auto-
matically associated with the side pane.

Colour palette The most complex widget available in the side pane is the
color palette. This is an advanced and completely custom widget built using
basic ImGui components.

It has two modes: the “read-only” color palette only shows color boxes that
can be clicked and selected, the “editable” mode allows the user to completely
customize the color palette of Pepr3D. The former is shown in most tools such
as triangle painter or brush, the later is used in Pepr3D settings.

The color palette is synchronized with the ColorManager directly. The
editable mode consists of 4 parts: the header, the “add” button and “delete”
box, the color boxes (also present in the read-only mode), and a “reset” button.

The drag-and-dropping feature is using the ImGui experimental API built for
these purposes. The color boxes hold a payload with their IDs and when they
are dropped on a different color box, the colors get swapped or reordered. The
difference between swapping and reordering is that the former also swaps the
colors in the geometry, while the later only reorders them in the palette. When a
color box is dropped on the “delete” box, the color is removed entirely from the
geometry and replaced by the first color in the palette.

7.4 Model view
The model view is the 3D part of the UI, represented by the ModelView class.
It is responsible for rendering the geometry and allowing users to interact with
the active tool by clicking and dragging over the geometry. It also handles the
camera, i.e., moving around the model, and shows an optional grid representing
the printing bed and a wireframe consisting of the triangles of the model.

7.4.1 Model matrix scaling, translations, and rotations
Before even drawing the model, we must first handle its dimensions, position,
and rotation. This is because different models, especially models imported from
different 3D editors, have various scales and origin points.

We made an updateModelMatrix method responsible for scaling, translat-
ing, and rotating the geometry with regards to the following rules. The model’s
largest dimension in the XYZ axes must be 1.0, so that the whole model is visible

38



on the screen without the need to zoom in or out. This is done by computing the
axis-aligned bounding box (AABB) of the model and using its dimensions.

The model is also translated so that it is centered over the (0, 0, 0)T point But
the lowest edge of the model must touch the grid at height y = 0, so we need to
translate in the y axis again, moving the model up a little bit.

Finally, we rotate the model so that the z axis points up, because this is the
standard in 3D printing pipelines and corresponds to what the slicer uses. This
is different than in OpenGL where the y axis is usually considered to be the up
axis. This rotation also means that what users can see in Pepr3D corresponds to
what they can see in Blender or Slicer for Prusa printers.

7.4.2 Drawing geometry
Drawing the current Geometry instance is the main responsibility of the model
view. The draw method consists of several steps that we now describe.

First it sets up the OpenGL viewport to only render to the model view part
of the window, i.e., to ignore the toolbar and side pane parts. Then we push the
camera matrices to OpenGL, which sets up the position and direction from which
we look at the model.

Then the updateModelMatrix method is called and the model matrix
is updated. The scaling, translations, and rotations only happen during the
rendering, so the original geometry is not affected at all.

Then we call the drawGeometry method, which uploads all necessary data
to the GPU via OpenGL. We push the model matrix, update vertex buffer objects,
update shader uniforms, and finally draw the batch using OpenGL vertex and
fragment shaders. Note that the vertex and index buffers may be very large and
may update every frame. For these reasons, we do two optimizations.

First, the buffers are only uploaded when a change is detected. This is handled
in the Geometry::OpenGlData class which also stores the data on the CPU
side. The second optimization is that we do not upload the colors of the model
directly to the vertices, instead every vertex has an index to the palette. The
color palette itself is uploaded to the GPU as a uniform array and then it is used
in the fragment shader.

After drawing the geometry, we also draw the grid that simulates the printing
bed of the printer. One cell of the grid measures 0.1 × 0.1, the whole grid is
1.8× 1.8, so that it is always slightly bigger than the model itself.

7.4.3 Overriding buffers
Sometimes it is necessary to draw custom colors that are not in the color palette or
to draw objects that are not the current geometry. For example the Segmentation
tool needs to provide custom colors so that users can see the different regions. The
Export Assistant needs to provide completely custom buffers including vertices,
indices, normals, and colors to preview the extruded geometry objects.

For these purposes, ModelView provides buffer overrides. There are two
of them: ColorOverrideData and VertexNormalIndexOverrideData.
Public setters and getters are provided for overriding them.

39



7.4.4 Shaders
In order to display the geometry, we need to provide the GPU with two OpenGL
shaders written in GLSL. The vertex shader is called on every vertex of a triangle
of the model. The fragment shader is then called on every single fragment (pixel)
of the displayed model. This is a standard OpenGL pipeline.

In the vertex shader located in assets/shaders/ModelView.vert, we
primarily just forward vertex attributes to the fragment shader. Additionally,
we also generate barycentric coordinates of the vertex. This uses the fact that
OpenGL interpolates attributes over the triangles, so if we set the barycentric
coordinates in the vertices, they are automatically correctly interpolated for the
fragment shader.

In the fragment shader located in assets/shaders/ModelView.frag,
we need to calculate the final color of every fragment. There are several steps
that contribute to the color. Primarily, we use Lambert shading to display the
model, where we assume the light source always points from the camera. The
main color of the model is found in the color palette with regards to the ID
attribute of the vertex.

In case the Brush tool is active, we also calculate whether the current fragment
is inside the highlighted region of the brush. And finally if the wireframe rendering
is enabled, we use the interpolated barycentric coordinates from the vertex shader
to find out whether we are on an edge of a triangle, and if so, we highlight it in
a contrast color.

In case of the Export Assistant, we additionally provide a way of discarding
pixels that are not in the specified height range. This is done using the discard;
statement of OpenGL shaders.

7.4.5 Camera
While painting the model, users of Pepr3D need to rotate and zoom the model
in order to paint details from all sides of the geometry. Typically, in all major
3D editors, a so called arc-ball camera is used. The camera moves around a pivot
point (the model in our case) by dragging the mouse on the screen. Zooming is
usually performed with the mouse wheel. Other actions may also be performed
and are explained in the user documentation.

We originally used a camera implementation from Cinder called CameraUi.
Unfortunately, during our testing, we found out that their implementation of
zooming is not perfect for all our purposes. We modified the original CameraUi
so that it supports two types of zooming.

Now, zoom in our case means changing the field of view of the camera. Dolly,
on the other hand, means moving the camera position towards or further away
from the pivot point (the model). We also fixed a bug in which dollying too close
would move the pivot point and cause unexpected behaviour.

40



Chapter 8

Testing

In this chapter we describe our testing pipeline. We have several ways how to
test if the program behaves correctly. Namely:

• Unit tests – the basic testing of several components of Pepr3D. The unit
tests are small use-cases crafted to test each functionality of the object
individually. The tests are great for catching quick and stateless errors but
do not provide any information about more complex operations.

• Manual tests – because of the simplicity of unit tests, we have several
written manual tests for each tool in Pepr3D. These are executed manu-
ally by the person doing the predefined operations, and checking the result
against the expected result.

• Continuous integration – our Git repository is equipped with Continuous
Integration software. This ensures that every pull request and merge is
compilable, which ensures every commit in the master branch is compilable
and runs the unit tests automatically. The merge will not be executed if
either of these conditions fail.

In the following sections, we explain these types of tests in detail, as well as
provide the descriptions of the manual tests.

8.1 Unit tests
Unit testing is probably the most common way to automatically test software. As
such, we will not explain in detail the benefits of this procedure. We use Google
Test library 1 as it is one of the best C++ testing frameworks we have found.
Several of our team members also already had experience with Google Test.

For better navigation in the code base, we decided to follow the common
naming convention: for class CommandManager, we have CommandManager.h
and CommandManager.cpp as the implementation files. Now to test this class,
we add CommandManager.test.cpp file and program all CommandManager
into this file. This makes searching for tests very easy.

1https://github.com/google/googletest

41



8.1.1 Library test
The test libraries.test.cpp is a special case among our unit tests. As the
name suggests, this test checks whether our 3rd party libraries are setup correctly.
This test should always succeed if it is compiled. If it does not get compiled or
linked, the libraries were set up incorrectly.

8.1.2 Class tests
All of the other tests are the ”standard” type of tests – testing the public methods
of the class. We will not describe each of the tests individually, since each test
has a documentation comment inside describing what the test does, as well as a
fitting name.

The general structure of the unit tests is cumulative – this means that if the
first test fails, there is a high chance all of the the following tests will fail too.
The advantage of this approach is clear once you imagine a different sorting of the
tests. If the first test was a complicated behaviour of the class, the test will fail
not only if the behaviour is incorrect, but also if the initialization of the class is
wrong. This is bad, because the programmer fixing the test will not immediately
know which part of the class is incorrect.

8.2 Manual tests
In this section we describe the reasoning behind manual testing. We also list all
of the manual tests the team has accumulated during the development.

Manual tests are based on scenarios, i.e., hypothetical stories simulating what
users would typically do when using the application. A person performing a
manual test is required to proceed exactly as written in the scenario and notice
any wrong or unexpected behavior.

There are number of reasons why we use manual testing along with unit
testing and continuous integration. One of the most important reasons is that
writing fully automated tests for applications with user interfaces is a very slow
and demanding process. Often, there are dedicated employees (sometimes called
Software Development Engineers in Test, or SDET) writing the software for test-
ing another software. Our team was simply not large enough to handle that.

Another reason is that human testers can quickly identify weird behavior,
glitches, or broken look of the user interface. Using automated tests for verifying
that the design of a user interface is not broken would require updating the tests
every time we add a new button. Automated tests also only do what they were
scripted to do, so they do not “explore” the application outside of their bound-
aries. Humans, on the other hand, do not have to be given precise instructions
in every single step and they naturally explore other areas as well.

8.2.1 Basic first-run tests
These scenarios are used for verifying basic common situations that every user of
Pepr3D would come across. They basically check that the application as a whole
behaves in an expected way. If these tests fail, any user could immediately notice.

42



Layout and camera control

1. Run Pepr3D. (Note: all scenarios expect the Release build to be run.)

2. Verify that a new window is open, toolbar on the top, side pane on the
right, model view in the rest of the window. The title of the main window
should say “Untitled* - Pepr3D”. No console window should open.

3. There should be 13 icons in the toolbar and all of them should be active
(black) except Undo and Redo that are disabled. Icons are visually divided
into 5 parts: File; Undo and Redo; drawing tools; Display Options, Settings,
and Information; and Export Assistant.

4. The default active tool is Triangle Painter, the icon is blue.

5. Model view should show a blue cube placed precisely in the middle of a
grid, touching the grid at the bottom.

6. Right-clicking and dragging the mouse on the model view should rotate
the cube (left-right, top-down). Rotating the cube over 90◦ at the top or
bottom should not be possible.

7. Middle-clicking and dragging the mouse should move the cube and the
grid without rotating. The same for holding Control and right-clicking and
dragging.

8. Scroll wheel should zoom the cube, scrolling up should zoom in, down should
zoom out. Zooming too close may go inside the cube, but it should be
possible to zoom out again and rotate the cube the same as before.

9. In the toolbar, left-click File (the left-most icon). A popup menu should
display with 6 options. Press Exit. The application should exit successfully.

Loading, saving, and importing basic files

1. Run Pepr3D, drag-and-drop a valid .stl model anywhere onto the main
window. Verify that the default cube has been completely replaced by the
new model. The new object should be centered on the grid and resized
perfectly so it fits on the screen. The title of the main window should say
“file name - Pepr3D”, where the file name should be without an extension,
without a full path, and without an asterisk. Repeat with valid .ply and
.obj models.

2. Verify the same files can also be successfully imported via File → Import.
Verify that a progress indicator is shown when importing bigger models
and that the user cannot interact with the application while the progress
indicator is being shown.

3. Verify that when a model that has a color palette defined is imported, the
color palette in Pepr3D also imports up to 16 colors from the model.

4. Do a change in the model, e.g., color a single triangle with a different color.
Verify an asterisk is now shown in the title denoting an unsaved change.

43



5. Select File → Save and verify it opens a file dialog with the original file
name and path as default. Save the file. Verify the asterisk in the title has
disappeared. Do a change in the model. Verify the asterisk has appread
again, select File → Save, now the file should be saved to the same file
without opening a dialog, and the asterisk should disappear.

6. Select File → Save as, verify a file dialog is now opened and save the file
with another name.

7. Exit Pepr3D and run it again. The default cube should be shown. Drag-
and-drop the previously saved .p3d file and verify it corresponds to the
model you saved. Verify the same via File → Open. The overall behavior
should be identical to importing models.

8. Verify that when changes are made and a new model is imported or open,
Undo and Redo buttons are reset to their disabled state.

Toolbar tooltips and hotkeys

1. Verify assets/hotkeys.json file exists and run Pepr3D.

2. Hover mouse above icons in the toolbar and verify tooltips are shown with
correct names, descriptions, and hotkeys.

3. Verify every single hotkey by hovering on the icon, checking which hotkey
should be pressed, and pressing that hotkey. By default, every icon in the
toolbar should have a hotkey assigned. Also check that hotkeys work for
the color palette.

4. Exit Pepr3D, remove assets/hotkeys.json, and run Pepr3D again.
There should be no error, Pepr3D should use the default hotkeys.

8.2.2 Tools tests
These scenarios verify that all tools behave as expected, except the Export As-
sistant, which is checked separately. For all tools, also verify that the side pane
shows the current tool options and that tooltips are shown for all options in the
side pane. With tools that interact with the models by clicking, hovering mouse
over triangles should highlight them, except Brush.

Triangle painter

1. Run Pepr3D, verify a color palette is shown in the side pane. Select different
colors in the palette and left-click on the triangles on the cube. They should
be colored with the selected colors. Pressing Undo should revert every single
click individually.

2. Now left-click and drag the mouse over multiple triangles. They should all
be colored in real time. Pressing Undo should revert the whole click-and-
drag operation at once.

44



Paint Bucket

1. Run Pepr3D, select Paint Bucket. Verify the side pane is populated with a
palette and options. All options should have a tooltip.

2. Default options should be “Paint while dragging”, “Color based on criteria”,
and “Stop on different color”. With these options, select a different color,
left-click a triangle, and the whole cube should be colored.

3. Select “Stop on sharp edges”, new options should appear, the default op-
tions should be 30◦ and “Neighbouring triangles”. Select a different color,
left-click a triangle. Only the two triangles on a face of the cube should
change color. Now click-and-drag over multiple triangles and the changes
should be real-time. Unselect “Paint while dragging” and verify that click-
and-drag only applies to the first triangle held. Undo should behave as in
Triangle Painter.

4. Set angle to 95◦. Clicking and coloring should now be applied to the whole
cube but still stop at a boundary with a different color.

5. Unselect “Stop on different color”, clicking and coloring should now be
applied to the whole cube.

6. Select “With starting angle”. Clicking and coloring should now be applied
to the whole cube except the one face opposite the one being clicked on.

7. Select “Color whole model”. All options below “Color based on criteria”
should disappear. With this option, clicking and coloring should now be
applied to the whole cube.

Brush

1. Run Pepr3D, select Brush. Verify the side pane is populated with a palette
and options. All options should have a tooltip.

2. Default options should be “Size” number 2, 12 “Segments”, and “Sphere”
brush shape. Everything else should be unchecked.

3. Select a different color and verify that hovering mouse over a model high-
lights a sphere (circle) on the model.

4. Clicking should paint the highlighted shape on the model, but it may not be
perfectly circular w.r.t. the number of segments. Try changing this number
and verify it also changes the number of segments that are painted.

5. Verify that “Size” changes both the highlight and actual paintings. The
maximum size (20) should roughly cover a big part of the model.

6. Check “Respect original triangles”. Verify that a new “Paint outer ring”
option has appeared (unckeched). Increase the size of the brush and verify
that whole triangles are indeed painted. By checking “Paint outer ring”,
triangles should be painted also when the brush is smaller than the triangles.

45



7. Change shape to “Flat”. Settings below should change. By rotating the
model (cube) sideways, verify that “Perspective” and “Normal” settings do
change the behavior of painting w.r.t. the camera angle or normals.

8. Verify “Paint backfaces” by painting on the back edge of the model (cube).

9. Change shape back to “Sphere”, import a test model with holes (e.g., fence),
and verify that “Continuous” option prevents painting neighboring parts
with gaps between them.

10. Change to Paint Bucket and verify that the tool respects the new details
created by Brush.

11. Change to Triangle Painter and verify that the tool does not respect the
details created by Brush and instead uses the original triangle topology.

Text Editor

1. Run Pepr3D, select Text Editor. Verify the side pane is populated with a
palette and options. All options should have a tooltip.

2. Default font should be “OpenSans-Regular.ttf”, size 12, 3 Bezier steps,
“Pepr3D” text, scale 0.20, zero rotation.

3. Select a different color and verify that hovering mouse over a model shows
a 3D line which corresponds to normal vectors.

4. Clicking should show a preview of the text (“Pepr3D”) together with the
black normal vector and two additional surface vectors.

5. Clicking multiple times on different positions should update the preview.
No text should actually be painted yet!

6. Only after clicking “Paint”, the text should actually be painted. Verify a
progress indicator is shown, progress corresponding to the individual letters
being painted.

7. Verify that changing the size, scale, and rotation updates the live preview
and also changes how the text is painted with “Paint”.

8. Verify that the text can be changed, including empty text and long texts.

9. Try loading a different font and repeat the steps above. If the font is a little
bit more complex, try increasing “Bezier steps” to see how curves are more
detailed.

Automatic Segmentation

1. Run Pepr3D and import bunny.obj. Click “Compute SDF”, which should
be the only available option in the side pane. Verify a progress indicator
appears. After computing the SDF is finished, “Segment!” button and 2
sliders should appear in the side pane.

46



2. Keep the default 20% robustness and 30% edge tolerance defaults and click
“Segment!”. The bunny should be segmented into 6 regions numbered 0 to
5. A color palette and segment buttons should also appear in the side pane
below the previous options, together with “Accept” and “Cancel”.

3. Select “Cancel”, the bunny should revert to its original blue color, side pane
should show the main options again.

4. Change edge tolerance to 50% and click “Segment!”. The bunny should be
segmented into 5 regions corresponding roughly to 2 ears separately, head,
both front legs together, and the rest of the body.

5. Hovering over triangles in model view should highlight the corresponding
segment buttons in the side pane. Left-clicking a triangle in a segment
should apply a color from the palette to the whole region and also change
the color of the segment button in the side pane. The same behavior should
apply when one clicks on the segment button in the side pane instead of on
a triangle in the model view.

6. Pressing “Accept” if not all regions are colored with palette colors should
not do anything. Color all regions and press “Accept”. Verify the bunny is
now colored with the corresponding colors and the side pane reverts to the
initial options.

7. Set robustness to 0% and edge tolerance to 100%. Two segments should be
created, corresponding roughly to the head with ears and the rest of the
bunny.

8. Verify that canceling does not affect Undo and Redo. Verify that accepting
a segmentation is undoable.

Manual Segmentation

1. Run Pepr3D and import bunny.obj. Click “Compute SDF”, which should
be the only available option in the side pane. Verify a progress indicator
appears. After computing the SDF is finished, a color palette should appear
in the side pane.

2. Verify that computing the SDF in Manual Segmentation means that it is
no more necessary to also compute it in the Automatic Segmentation, and
vice-versa.

3. Select a different color and roughly paint some triangles in both bunny
ears. Once triangles are painted, a “Spread” slider with 0% should ap-
pear together with unchecked “Hard edges” and “Region overlap” and an
“Apply” and “Cancel” button.

4. Increase the spread to roughly 5%, verify that both ears get fully colored
and the coloring stops at the place where the ears connect with the head.
Increasing towards 35% also colors the head, 100% colors the whole bunny.

47



5. Verify that Cancel and Accept work as expected similar to Automatic Seg-
mentation, also with Undo.

6. Undo back to the original blue bunny. Select two different colors, color ears
with one and tail with another. Verify that increasing the spread increases
the colored regions. With “Hard edges” enables, one color should never
appear “inside” another region and the “Region overlap” option should be
hidden. With “Region overlap”, spread at 100% should color the whole
bunny with one color, without “Region overlap” it should not happen.

Display Options

1. Run Pepr3D, select Display Options.

2. With “Dolly”, zooming in is able to get inside the default cube. With “Field
of view”, this is not possible. “Reset camera” resets the view to the default
position and rotation.

3. “Model roll” rotates with the object in the third axis which is not possible
to rotate with right mouse button dragging over the model view. Changing
model position moves the model on the grid, when height is changed, the
grid moves together with the model. “Reset model transformation” reverts
all these changes back to the default ones.

4. When “Show grid” is enabled, a grid is shown, and vice-versa. When “Show
wireframe” is enabled, every single triangle is highlighted and hovering
mouse over them in Triangle Painter highlights them with an opposite color.

Settings

1. Run Pepr3D, select Settings. Two categories should be shown, “Edit Color
Palette” and “User Interface”, both open by default. Clicking their headers
should toggle between open and close.

2. Verify that changing the “Side pane width” changes the side pane width,
with the possible minimum of 200 pixels. Maximum should never be as high
to completely cover model view, but icons in the toolbar may be covered.

3. Verify that the color palette shows the same colors as in the tools. By
default, there are 4 colors, which can always be reverted by clicking “Reset
all colors to default”.

4. Clicking “Add color” adds a new color with a random hue, maximum of
16 is allowed. If more colors want to be added, an error dialog is shown
explaining the problem.

5. Drag-and-dropping a color rectangle to the “Drag color here to delete”
region removes a color. It is forbidden to remove all colors, an error dialog
is shown explaining the problem. When a color is deleted, it is also removed
from the model. Verify that by painting the cube. Triangles painted with
a removed color should get the first color in the palette.

48



6. Drag-and-dropping a color rectangle to another color rectangle reorders the
colors in the palette, but does not change any colors on the model. But
when Control is held during the drag-and-drop, verify that the colors are
also swapped on the model as well as in the palette.

7. Left-clicking a color rectangle opens a popup where the color can be changed.
Verify that changing a color changes it on the model as well in real time.

Information

1. Run Pepr3D, select Information. Verify that the URL of Pepr3D GitHub
repository is shown.

8.2.3 Exporting
These scenarios verify that the Export Assistant and exporting geometry work
as expected and exported models can be used in 3D printing.

Exporting an extruded cube

1. Run Pepr3D, select Export Assistant. Verify that File→ Export also opens
Export Assistant. By default, “Depth extrusion” export should be selected,
the “Update extrusion preview!” button should be highlighted, and “Ex-
port preview” and “Please update the extrusion preview.” captions should
appear on the top-left corner of the model view. Default extrusion depths
are 2.50% absolute, all colors are previewed, and .stl is selected with-
out creating a new folder. Preview height is the whole range of zero and
hundred percent.

2. Click “Update extrusion preview!”. The blue cube should appear, button
should not be highlighted anymore and the red caption should disappear.
Changing the preview range should “open” the cube from the bottom and
top respectively.

3. Select Triangle Painter and color one face with a different color. Select
Brush and make a circle with another color on another face.

4. Select Export Assistant. Verify that the update button is highlighted again.
Click it. The preview should now get updated reflecting the new coloring.
Inspect the interior of the cube by deselecting “Preview” of the various
colors and changing the preview height. Verify that the cube is extruded
inside!

5. Change the depths of the colors. Verify that the update button gets high-
lighted. Try setting the depth to 0% for one color and verify that it disables
extrusion for that color.

6. Change depth values to “relative to SDF”. Verify that the update button
gets highlighted. Click it. The extrusion should now get a little bit uneven
as the SDF values for a cube are not constant for all vertices. Verify!

49



7. Check that the extruded model can get exported in all three different for-
mats. Clicking “Export files” should open a file dialog, enter a file name
and verify the files got saved. If you followed this scenario, 3 different files
should be exported for the model for every format as there were 3 different
colors used.

8. Verify that “Create a new folder” indeed creates a new folder when “Export
files” is clicked. The folder name should be the same as the name written
in the file dialog.

9. Try importing the exported files back to Pepr3D. Inspect them, verify they
correspond to the different parts of different colors, and verify they are
indeed extruded unless 0% was chosen for the color.

10. Open Slic3r PE and drag-and-drop the 3 files together at the same time to
the main window of Slic3r PE. Confirm the dialog asking if you want to
import them as a single object with multiple parts.

11. Verify that the parts are correctly positioned so that together they form the
original cube that you painted. Click “Slice now” (on the right), it should
succeed. Go to “Preview” tab (on the bottom) and move the sliders on
the right to inspect the layers of the model. It should correspond to the
extrusion parameters you set in Pepr3D and it should correspond to the
Export Assistant preview.

12. Optionally, try printing the cube.

Exporting surfaces of a cube

1. Run Pepr3D, select Export Assistant. Select “Surfaces only”. Verify that
the whole extrusion part of the side pane gets hidden and that a “No preview
available for surface export.” caption is shown in the top-left corner of the
model view. Nothing except a grid should indeed be shown in the preview.

2. Select Triangle Painter and color one face with a different color. Select
Brush and make a circle with another color on another face.

3. Select Export Assistant and try exporting the cube in the various formats.

4. Import the exported parts back to Pepr3D and verify they are indeed only
surfaces and they are not extruded. Different colors should still be separated
into different files.

Exporting an SDF extruded bunny

1. Run Pepr3D, import bunny.obj, paint it using Triangle Painter and
Brush.

2. Select Export Assistant, select “relative to SDF” depth values. Keep all
depths at a same value. Click to update the preview.

50



3. Verify that the depth of the extrusion depends on the thickness of the parts
of the bunny. For example, ears should be extruded in lower depth than the
body of the bunny. This is because SDF is lower in the ears, so the depth
should also be lower. Inspect various parts of the bunny.

4. Try exporting and verifying in Slic3r PE as explained in the first scenario
with the cube.

8.2.4 Error behaviors
These scenarios verify that error situations such as loading a corrupted file are
handled correctly. This means that errors should be explained to users in an
error dialog. In case Pepr3D crashes entirely, the crash should be logged in a log
file and a dialog explaining the log file should appear when the user runs Pepr3D
again. All files mentioned in this section are located in the Pepr3D repository in
the assets/models/invalid directory.

Opening and importing invalid models Run Pepr3D and try opening and
importing the following files by drag-and-dropping them onto the main Pepr3D
window, by using File→ Open, and also by using File→ Import. These files are
invalid and error dialogs should be shown when trying to handle them in Pepr3D.

• Opening and/or importing invalid.obj, README.md, or other random
files such as JPEG files should result in “Error: Invalid file” dialog. The
geometry that was loaded before (e.g., the default cube) should stay opened.

• Importing invalid sdf.stl should work without any problems, but
pressing “Compute SDF” in the segmentation tools or using “relative to
SDF” in Export Assistant should result in “Error: Failed to compute SDF”
dialog. After the dialog is shown, both segmentation tools should be dis-
abled. In Export Assistant, the “relative to SDF” option should be hidden.
Exporting should still work, just not with SDF values anymore.

• Importing invalid polyhedron.stl should work but a “Warning: Failed
to build a polyhedron” dialog should be shown explaining the model is prob-
ably non-manifold. For these models, only Triangle Painter should work,
other editing tools should be disabled. Exporting should also work, but the
“relative to SDF” extrusion option should be hidden.

• Opening corrupted.p3d should result in “Error: Pepr3D project file
(.p3d) corrupted” dialog. The geometry that was loaded before (e.g., the
default cube) should stay opened.

• Opening corrupted crash.p3d may crash Pepr3D entirely as it looks
like valid serialization data but is not. This is a limitation of our serialization
library Cereal. Verify that “pepr3d.crashed” file was created. Run Pepr3D
again and a dialog “Pepr3D previously terminated with a fatal error” should
appear explaining the crash and where the user can find the log file. Pressind
“Continue” should close the dialog and everything should be back to normal.

51



Error when saving or exporting a file Run Pepr3D and open a .p3d file
that is set as read-only in Windows (right-click the file, Properties, check Read-
only). Try to save the file. An error dialog should be shown explaining the file
to save into could not be opened. Same should happen when exporting a file to
a read-only directory or file.

Other errors Some other error situations (such as removing the only remaining
color in a palette) have already been described in other testing scenarios and are
not mentioned here again. There are also other error situations which may occur
(such as providing a geometry file which is corrupted but in a way that cannot
be detected early) and are covered by Pepr3D by showing error dialogs, but we
were not able to provide reasonable example files here in the manual testing.

8.3 Continuous integration
Continuous integration is a software engineering term used to describe the work
flow of a team based project, which is based on merging the work of many in-
dividuals into a main stream often 2. In particular, Circle CI is a free service
which can be integrated into GitHub’s interface, which allows the users of the
repository to perform all kinds of checks and tests before the code is merged into
a branch (most commonly the master branch.

We performed three checks before allowing the merge into a different branch,
namely:

• clang-format check – by running clang-format on the whole codebase and
comparing it to the one before the run, the software determined if all of the
code is properly aligned and follows our coding standards. This benefits us
in two ways. Firstly, we minimize the number of git conflicts, because the
code is properly formatted. Secondly, this makes the code uniform and such
it removes any personal preference in coding styles. The second property
is important because it makes reading the code much more programmer
friendly – once formatted, you cannot distinguish between your and the
others’ code, which makes reading it much easier, as you are not bothered
by different standards of formatting.

• ability to compile – code that does not compile is very dangerous in a
repository, especially in the master branch. If we need to step back in the
master branch history to trace the origins of a bug, we want to be building
the program and testing it for the bug to find the commit that introduced
the bug. If we run into code that does not compile, this methodology is
much harder to execute. Our check was performed on a Linux machine,
so it had another positive outcome for the team. The team developed on
MSVC as our main target was the Windows OS. However, g++ has different
and sometime better checking for errors than MSVC, which allowed us to
catch some mistakes during compile time on Linux, which we did not see
on MSVC.

2https://en.wikipedia.org/wiki/Continuous integration

52



• unit testing – the last check the code needed to pass was the unit tests,
which we already discussed. This point is rather simple, if the tests fail, the
added code would break Pepr3D, and as such should not be committed.

We used Circle CI 3 and integrated the service into GitHub.

3https://circleci.com/

53



Chapter 9

Building the project

In this chapter, we explain how Pepr3D can be built from the source codes. We
assume some knowledge of build systems, compilers, and operating systems as
this is a guide for developers.

9.1 Building on Windows
We explain how the 64-bit Pepr3D can be built on Windows 8 and 10, which are
the officially supported platforms.

9.1.1 Repository
First of all, the official Pepr3D git repository has to be cloned.1 This requires git
to be installed on the machine and then cloning the repository using the following
command in the Windows command line:
git clone --recurse-submodules -j8 https://github.com/tomasiser/pepr3d.git

If you have already accidentally cloned without submodules, run this com-
mand from the root directory of this repo:

git submodule update --init --recursive

9.1.2 Dependencies
The following dependencies have to be downloaded and/or installed on the ma-
chine according to these steps:

1. Download and install the latest CMake from https://cmake.org/.

2. Download and install either Visual Studio 2017 (Community version is
enough) or alternatively only Build Tools for Visual Studio 2017. Both
can be found at https://visualstudio.microsoft.com/downloads/.

1Alternatively, use the attached CD (see Appendix II).

54



3. Download and install CGAL from https://www.cgal.org/download/win-
dows.html. Make sure CGAL DIR environment variable is set to the in-
stalled CGAL path, which is done by default when using the official in-
staller.

4. Download and install Boost from https://www.boost.org/. You can either
build Boost yourself or download pre-built binaries for the 14.1 toolset.
Make sure to point BOOST ROOT environment variable to the installed
Boost path.

5. We use our own built version of Assimp from the latest master branch.
Either build Assimp yourself from https://github.com/assimp/assimp, or
download and unzip our prebuilt version2. Our version is built with two
.dll, one for Debug and one for Release. Do not mix them up! Make sure
to point ASSIMP ROOT environment variable to the Assimp directory.

6. Download Freetype from https://github.com/ubawurinna/freetype-win-
dows-binaries, preferably version 2.9.1. After downloading, it is neces-
sary to rename the win64 subdirectory to lib. Make sure to point
FREETYPE DIR to the Freetype directory.

All other libraries are part of the Pepr3D repository and will be built auto-
matically by our build system.

9.1.3 Building
From the root directory of the cloned repository, run the following from the
command line, which creates a new build directory and runs CMake inside:

mkdir build
cd build
cmake -G"Visual Studio 15 2017 Win64" ..

Now the build project is prepared inside the build subdirectory and we
can now open build/pepr3d.sln in the Visual Studio 2017 application and
compile Pepr3D from there.

Building from command line Alternatively, we can build Pepr3D from the
command line using the build tools. We have to start MSBuild Command
Prompt for VS2017 or Developer Command Prompt for VS 2017 from
Start Menu, or we can also start the command prompt from a standard command
line using:

%comspec% /k "C:\Program Files (x86)\Microsoft Visual
Studio\2017\Community\Common7\Tools\VsDevCmd.bat"

In the Visual Studio command prompt, we can build Pepr3D using:

msbuild pepr3d.sln /m

2https://github.com/tomasiser/pepr3d/releases/download/v1.0/Assimp for Pepr3D.zip or
use the attached CD (see Appendix II)

55



9.1.4 Running
The executable of Pepr3D should be located in build/pepr3d/Debug/pe-
pr3d.exe (or Release instead of Debug).

After building in Visual Studio, we have to make sure the appropriate .dll
files are copied next to the executables. If you used Visual Studio 2017 ap-
plication to build it, some of the .dll files should be automatically copied to
the executable directory. If you used command line to build, you need to copy
libgmp-10.dll, libmpfr-4.dll, and assimp-vc140-mt.dll manually
from the build/ directory to the same directory as pepr3d.exe.

Copying correct Assimp .dll Note that by default, the Release version
of Assimp .dll is copied. If you built a Debug version of Pepr3D, you need
to replace assimp-vc140-mt.dll by the file located in the directory where
you unziped our Assimp library. The Debug library is in the bin/x64-Debug
subdirectory of Assimp instead of in bin/x64. If you built Assimp on your own,
you need to compile it in the same Debug or Release as Pepr3D.

Copying Freetype .dll If you do not have freetype.dll as a part of your
operating system already, you also need to copy this file next to the executable
from the lib subdirectory of the Freetype you downloaded as described in the
Dependencies subsection.

Running unit tests By default, the Debug executable of all Pepr3D unit tests
is build into build/Debug/pepr3dtests.exe. It is necessary to also copy
the .dll files there.

9.2 Building on Linux / Docker container
There is a possibility to build Pepr3D on Linux systems, but please note that is
in only supported for verifying that the source codes do compile as necessary for
continuous integration (Section 8.3). It is not indended for running and using
Pepr3D in release.

We have a Linux Docker container3 in our special repository at GitHub:
https://github.com/tomasiser/docker-cinder. The latest image setups a De-
bian environment to build Cinder applications. The prebuilt image actually
builds Cinder on top of the latest image. Pepr3D can be built in the prebuilt
container by running cmake and make commands from the Pepr3D repository.

Note that in order to compile Pepr3D using the container, one needs to have
at least a minimal experience with Docker. We advise to follow the tutorials on
the official Docker website4.

3https://www.docker.com/resources/what-container
4https://docs.docker.com/get-started/

56



Part III

Progress and results

57



Chapter 10

Progress of implementation

In this chapter we first cover the tasks and responsibilities of each of the team
members. Then we outline the progress of the implementation of this project.

10.1 Responsibilities
Here we list the members of the team alphabetically and summarize all the work
each of them has done over the course of the project.

10.1.1 Bc. Štěpán Hojdar
• Implementation of the Geometry class as a data structure, which entails

both computational geometry (colouring the triangles, etc.) and render-
ing capabilities (creating buffers for OpenGL). Testing and integrating the
CGAL library into the project and using this library to perform the com-
putational geometry.

• Implementing the following tools both on the backend and the frontend:
bucket painter, manual segmentation and automatic segmentation.

• Researching a way to convert a font file (.ttf) into a 2D triangle mesh,
implementing the FontRasterizer class and implementing the basics of the
text tool, using this knowledge.

• Serializing and deserializing our data using the Cinder library, which allows
us to save work in progress as a .p3d file.

• Writing a major part of both the specification and the documentation.

10.1.2 Bc. Tomáš Iser
• The majority of the user interface of the application, including the design

of the GUI, the architectural design of the backend of the UI.

• Small widgets – wrappers around Dear ImGui calls to make it easier to use
for the rest of the team while developing the UI.

58



• The color palette editor, shortcuts, correctly scaling and rotating the model,
all of the display options (wireframe, two zoom options), tooltips, dialogs,
error handling and logging and application settings.

• Prototyping, testing and integrating the Cinder and Dear ImGui libraries
which we based the project on.

• The Export Assistant (the visualization part) and Triangle Painter tools.

• Writing a part of both the specification and the documentation (UI, build).

• Connecting our GitHub repository to Circle CI, which is a continuous in-
tegration service based on linux. We used the CI throughout the whole
process, which made sure every single merge into the master branch was
buildable and passed all unit tests.

10.1.3 Bc. Jindřich Pikora
• Communication with Prusa Research s.r.o., including several meetings with

our contact in Prusa Research.

• Testing and familiarizing himself with the FDM printing in practice, print-
ing a lot of test subjects to measure the printer’s capabilities and downsides,
to note during our export development.

• Testing and integrating the Assimp library into the project.

• Implementing the whole import process, with mesh pre-processing, simpli-
fication and repairs provided by the Assimp library.

• Implementing the whole export process, researching and developing a usable
heuristic to make the process smoother and less error prone. Testing the
export by physically printing the results on our printer.

10.1.4 Bc. Luis Sanchez
• Setting up the project environment using CMake, making sure all our li-

braries compile and link correctly.

• Designing and implementing the whole command architecture, with func-
tioning undo and redo operations on the geometry data.

• Implementing the Brush and Text tool backend and frontend, requiring
long and extensive research and developing a brand new way to solve this
problem, which we did not find in any available literature or research papers.

• Modifying and extending the Geometry data structure to allow for custom
triangle subdivisions.

• Performing complex operations using the CGAL library on the modified
Geometry in order to make the brush work correctly.

59



• Modifying the rest of the tools to be able to work on the new custom
modified geometry, as well as to allow it to correctly export and serialize as
a .p3d project.

10.2 Timeline of the implementation
In this section, we describe the process of implementing this project from start
to finish. We start by explaining the project setup, rules and other measures we
employed to get more productive, then we describe the process itself.

10.2.1 Rules and project setup
Team management

To manage the work in the team, we set several goals. We met regularly each
week with our supervisor, and had a structured meeting. The first part of the
meeting had each of us tell the rest of the team what we worked on the last
week, describe what went well and if/where we got stuck. This had two effects
– firstly, it allowed us to help the stuck member and not waste too much time,
and secondly, this made sure that all the team members are up to date with the
progress of the whole project, which motivated further progress. The second part
of the meeting had us setting goals for the next week, assigning clear and doable
tasks to each team member, which would get reviewed on the next meeting.
Each meeting took around an hour, including a general discussion after these two
structured points.

Git repository

The second major part of the teamwork was our git repository, which we setup
on GitHub 1. We employed several measures to ensure the quality of the code
and to avoid issues like a master branch that cannot be compiled.

Firstly, we disabled any way to push directly into the master branch. This
had the effect that every contribution has to go through GitHub’s pull request
mechanism. We also set the pull request merge to require one approving review.
This means that for each merge (and therefore commit), two people were required
to read the code - the one who wrote and tested it, and the reviewer, whose only
job was to go over it, try to compile it and point out any weak programming in
the code.

Secondly, as we already mentioned in the previous section, one of our team
member set up a continuous integration service, called Circle CI 2. We required
the CI to be run on every pull request that was sent towards the master branch.
The CI would notify us if the pull request either did not compile, or did not
pass all of the unit tests. Because Circle CI utilizes a linux server to build the
program, it also meant that we would be sure it compiles on both Windows and
Linux all the time.

1https://github.com
2https://circleci.com/

60



Last but not least, we also made sure to set the CI to check the code for-
matting. We have discussed and configured the clang-format tool 3 to format
our code in the same way, to avoid mixed coding standards. If the code was not
formatted correctly, the pull request wouldn’t go through.

These two measures helped us immensely and made the code more reliable in
the long run.

10.2.2 The process of the implementation
Here, we will go over the process of the implementation, week by week, as can be
seen in the git log, starting on 01.10.2018, when we sent the specification to the
committee.

01.10. - 08.10.

By now, we have had a functioning repository, since we used it to create the
specification as well. We also had the continuous integration working. This
week we started to implement the basic functionality, so far in separate projects,
because the CMake of the whole project was not finished yet, so the project didn’t
include all the necessary libraries (e.g. CGAL or Assimp). The application was
running, but there were no responses to the buttons and nothing to render. The
basics of the command manager also got implemented, even though they would
wait for another month before being applied to the Geometry class.

09.10. - 16.10.

This week we added the basic Geometry class and ray-shooting capabilities us-
ing CGAL, because the CMake finally accepted the CGAL library. We started
rendering the geometry in the ModelView (for now a triangle) and could shoot
rays.

17.10. - 24.10.

This week the Assimp library got added into CMake, and the ModelImporter
was merged, which meant we could import models into the geometry, and render
them in the ModelView window. We had begun to try to debug normals of the
mesh Assimp gave us, which will take a bit more time, since the library is not
clear on what it does in the documentation.

25.10. - 1.11.

We added ray-casting from the model view, which happens on a mouse click,
which allowed us to finally get the Triangle Painter functionality to be complete
– we could click on a triangle and change its color. We also started adding unit
testing, for now only for the Geometry class. Drag and drop was now also a
supported way to load a model. We redid the color palette as a integer based
data structure, instead of RGB color notation.

3https://clang.llvm.org/docs/ClangFormat.html

61



2.11. - 9.11.

This week we struggled with the CGAL library and managed to get the bucket
painter to do a breath-first-search over the model. We also modified the shader
to accept the the colors as integers and then a color palette array, which allows
for real-time color swapping done in the color palette.

10.11. - 16.11.

Assimp finally stopped loading degenerate triangles, which was due to the wrong
setup and what we believe is a bug in the library, which we solved by double check-
ing the output. We also extended the bucket painter tool to allow for stopping
on different criteria (like edge sharpness or color), and modified the Command
Manager to be more memory friendly and customizable. The UI received a high-
light for the hovered triangle, and an editable color palette. We also added some
basic error handling, bucket painter UI, and made the Undo and Redo work on
bucket painter.

17.11. - 23.11.

Geometry got a big refactoring, which removed a lot of lower quality code that
got detected in a code review and fixed a few warnings that were showing up
on g++ and not on MSVC. The camera handling got improved and now always
fit the model, instead of always pointing in the same direction. Bucket painter
got a prettier UI and better stopping criteria. A working export is finished, and
the team notices a few cases, which break the export. Research and testing will
continue in the following weeks to try to find a way to make the export more
robust.

24.11. - 1.12.

Loading a new geometry is now done in parallel, using a threadpool. Brush de-
velopment is starting and the backend for automatic segmentation is done. The
frontend for automatic segmentation is developed, and a new way of rendering
custom colors is added. Work also starts on implementing the manual segmen-
tation. Tools that are disabled (because the user loaded a non-valid model) are
now greyed out and cannot be selected. Dialogs get implemented to show the
user progress while loading a new model.

2.12. - 9.12.

Manual segmentation is done, but the team is not happy with the handling. We
discuss the behaviour during a meeting and the behaviour is changed to a different
one, which we are happy with. UI Tooltips get implemented, both for Tools and
for the tool configuration. Work is also starting on serializing and deserializing
the geometry. The brush starts to work, but is really slow and needs optimization.

62



10.12. - 17.12.

Brush is still getting improved, now is able to undo and redo the operations.
Serializing and deserializing is done, the unsaved asterisk mark gets added, as
well as Save and Save as options. The OpenGL buffers get redone, so they do
not recalculate every frame. A few crashes are fixed and a lot of refactoring is
done on the existing code.

18.12. - 01.01.2019

Hotkeys are updated, more tooltips get added. The brush is getting UI settings
(like size of the brush) and gets a highlight around the cursor. It’s Christmas,
so work gets slowed down. Work on export is done, using the CGAL library to
determine the thickness is accepted by the team as a viable way to prevent the
majority of bugs.

01.01. - 08.01.

Font conversion from a .ttf into triangle meshes gets researched and added. The
UI is getting final polishing, spell-checking and gets a scrollbar. The new ge-
ometry from Brush is getting fixed in other already existing Tools, and a lot of
error dialogs and crash prevention is done. Logging is improved and exception
handling for multi-threaded load and import is fixed.

09.01. - 16.01.

Export is getting reviewed, brush is getting reviewed and bug fixed. The functions
that convert the Brush tool into the Text tool get added. The team decides to
start writing this document, since the program is almost feature complete.

17.01. - 24.01.

This document gets started. The brush is still getting polished and the export is
getting merged into master. The attention of half of the team is shifted towards
this document, while the remaining two members finish the few remaining features
of the program.

25.01. - 01.02.

Documentation is being written, mostly by Štěpán as other team members need
to focus on fixing the remaining bugs. After meeting with Oskar, we decide to
implement the Export Assistant tool to improve the export process significantly.

02.02. - 09.02.

The Export Assistant tool is finished, exporting is being verified. The remaining
bug in the Brush tool is being debugged and fixed. The documentation is being
finished. We focus on the documentation and finding a good model to showcase
the results of our work.

63



10.02. - 17.02.

Debugging the application and trying to find every case of a crash and make the
program print out an error message, instead of crashing. Documentation is being
written by half the team, while the other half handles the final polishing.

18.02. - 25.02.

More memory crashes are fixed and tests for the TriangleDetail class are
added.

26.02 - 05.03.

More polishing on the program – fixing serialization, tests, removing unused
debug code. The build process for UNIX operating systems has been fixed and
Pepr3D can now be built on Linux machines.

06.03. - 13.03.

Improving the UI of the newly implemented tools (brush and text). Geometry
class details have been added to the programmer documentation.

14.03. - 21.03

Meeting with doc. Ing. Jaroslav Křivánek, Ph.D. and Ing. Vojtěch Bubńık from
Prusa Research s.r.o. has taken place. We demonstrated the software to both
gentlemen and decided it was ready for submitting.

22.03. - 31.03.

Final polishing, filling in the last pieces of documentation, compiling a bunch of
models that we would like bundled with the application for users to be able to
try the application.

64



Chapter 11

Comparison to minimal
requirements

In this chapter, we focus on comparing the finished product with the minimal and
advanced requirements we set in the specification, before we started to implement
the project.

11.1 Minimal requirements
We go through the minimal features one by one and elaborate on if and how well
we achieved this goal.

• Loading a model from a basic 3D format – our application supports .STL,
.OBJ and .PLY, which are the three most used formats on the 3D printing
market today.

• Export a multi-coloured .STL file, which can be entered into the slicer –
Upon discovering the slicer more, and having time to physically print some-
thing, we realised, that the slicer does not actually support a single mul-
ticoloured .STL file. We changed this goal to exporting a single .STL file
for each color, which only contains the triangle of the chosen color. Our
application supports this export, even though it is simpler and more error
prone than the other (fully 3D) supported export.

• Bucket painter with a simple criterion – Our bucket painter currently sup-
ports edge sharpness, whose threshold the user can alter, a different color
stopping, or the combination of both.

• Basic form of edit history with undo and redo steps – This feature is working
exactly as promised, with infinite amount of steps to Undo and Redo. It is
not a tree-like structure and it will overwrite the future upon Undoing and
then applying new commands. We observed that this is the case in many
3D applications.

• Functional 3D UI allowing zooming and rotating the model – We tried sev-
eral methods of zooming (which are selectable in the settings menu) and we
fit the model into the default view. This means that the size of the loaded
model does not matter, it will always fit into the view when loaded.

65



Using this summary we conclude that we met the minimal requirements.

11.2 Additional features
We will now discuss the advanced features we disclosed in the specification, and
compare the proposed feature with the implemented one.

11.2.1 Automatic and semi-automatic segmentation
While writing the specification, we thought that the semi-automatic segmentation
(called Manual segmentation in the application) would be the most used feature
of the program. Upon implementing both segmentations, we actually think the
automatic segmentation achieves the goal of quickly colouring the model much
better. Meanwhile the manual segmentation is better for fine tuning some parts
of the model, because it allows for colouring one part consistently, while leaving
the rest intact (which the automatic one cannot do).

In conclusion, we placed the automatic segmentation as second to last on our
feature list, but we strongly disagree with the placement in hindsight and think
the tool is one of the most usable tools in the application.

11.2.2 Text tool
In the specification, we discussed two extension to this tool: text projection
and fonts.

Text projections Starting with text projections, we added more than just
X/Y/Z – the user is now able to click on individual triangles, and the projection
angle will be taken as the clicked triangle’s normal vector. A real-time preview
is displayed (the text is hovered above the clicked triangle) so the user can see
what is going to happen after projecting. We chose this option because it was not
much harder to do than the promised X/Y/Z, while adding a lot of functionality.
The main perk of this method is the ability to reproduce the results reliably (the
angle will be the same every time you click on a particular triangle), while giving
the user more freedom than just X/Y/Z.

On the other hand, we did not implement the cylindrical or any other special
projections, mainly because we lacked the manpower to do everything we set out
to do. The second reason is a more practical one. The application focuses on the
WYSIWYG pattern – What you see is what you get to be as intuitive as possible.
Dealing with cylindrical and other complicated projections is not a task we can
expect from a basic user.

Fonts Regarding the fonts, we were able to implement a class, called FontRaster-
izer, which takes the .ttf file and a font string, and creates triangle meshes out of
it. This allows us to work on any font the user provides. However, the library we
used (you can get more details about this class in the implementation section of
the documentation) seems to have trouble with the non-letter characters (like the
WiFi icon) we mentioned in the specification, which means this extension goal
was fulfilled half way.

66



11.2.3 Brush and adaptive triangulation
This topic is very in-depth, and we would advise the reader to read through the
implementation chapter first, but simply put, our implementation is the closest
we could get to making it safe to use. This means that repeated painting on the
same spot of the model, with the same color, does not subdivide the triangulation
more. The brush also tries to simplify the topology already created – for example,
if you select the red color and paint over a blue detail, erasing it, the triangles
of the detail do not stay, but get merged back together, which simplifies the
topology.

11.2.4 Hotkeys and customizability
As we mentioned in the specification, very few users generally use hotkeys. How-
ever, we wanted to provide the option of changing the hotkeys anyway. In our
application, the hotkeys are saved as a .json file, structured as the following ex-
ample illustrates.

{
"key": {

"ctrl": false,
"keycode": 112

},
"value": "SelectPaintBucket"

},
...

This .json is readily available next to the application’s main executable file to
edit by the user, as he sees fit. The keycode values are provided in a separate file
next to it, in the following format:

KEY_a = 97,
KEY_b = 98,
KEY_c = 99,
...

We understand that this is not the most user-friendly way to change the
hotkeys, but we believe, that if the user is advanced enough to want to customize
his hotkeys, this process is simple enough as to not cause any issues.

11.2.5 Radial menu
In the specification we mentioned the possibility of adding a radial menu around
the cursor. In the end, we did not implement this feature. This decision was made,
because we saw many more areas of the application that could be improved and
focused on instead. We thought that the users would benefit more from these
improvements than the radial menu feature.

67



11.2.6 Triangle subdivision and decimation
While writing the specification we put this feature as the lowest priority feature,
because we thought only the most advanced users would be able to utilize it.
While developing the application, we downloaded and tested many models that
are on the internet for anyone to download and print. The websites we used
include Thingiverse 1 and yeggi 2. We noticed on many of these models, that
many are unoptimized, include holes, unreasonably small or wastefully many
triangles. From this observation we concluded that the users do not generally
optimize and micromanage their models since a few operations done in software
like Blender can reduce this waste by a big percentage. All of this made us decide
to not include the feature, as we generally do not believe the users would use it
or be able to use it to greatly improve the model.

11.2.7 Model exporting
For completeness’ sake, we discuss the model exporting feature here. We did a
lot of research and tried many different approaches, and the one implemented in
the application looked to the team as the best solution. You can read more about
the chosen method in the implementation part of the developer documentation.

Here we state that this feature was a priority for us, as we have shown in
Section 10.1, one of our team members spent a big amount of time trying to
optimize this feature. We believe we came up with a way that should at least
help, if not solve clipping and other unwanted occurrences in the majority of the
scenarios, though we do have examples of wrong behaviour. We also add manual
control over the feature, to allow the user to fix the issue manually, should any
issue arise.

1www.thingiverse.com
2www.yeggi.com

68



Chapter 12

Results

In this chapter, we showcase the pipeline we have managed to create on a simple,
low polygon-count model. We also attach all the necessary files to recreate the
steps taken here. We use a model downloaded from the internet, which is the
expected use case of our application.

12.1 Acquiring and preprocessing the model
As a beginner, the user will not create his own model, but download the free
ones from the internet. Here we hope to demonstrate the pipeline from the
user’s perspective, so we will do the same. We will be using this model 1 from
Thingiverse 2.

Before we can get to Pepr3D, we unfortunately have to pre-process the model
somewhat, as the artist forgot to specify the model’s normals. This is a very easy
correction in Blender, but already showcases the fact, that the models found on
the internet suffer from a plethora of problems, some of which are detectable and
correctable within the program and some of which are not. We attach the already
corrected .STL file as well.

12.2 Loading the model into Pepr3D
Once we have our model cleaned up – removing all duplicate vertices, reducing
the model to a manifold object and making sure the normals are pointing out,
we can load the model into Pepr3D. This is done by selecting File – Import or
simply dragging and dropping the .STL file into Pepr3D.

In our case, the model gets loaded successfully in under a second. Larger mod-
els (like the bunny.obj, which we have attached), load slower and an asynchronous
dialog informing the user about the loading progress is displayed. Other models
can be corrupted, the files do not correspond to a single object or be otherwise
unloadable. In this case, a dialog is displayed, notifying the user that the file is
damaged and explaining what can be done to prevent this. In some scenarios,
Pepr3D remains usable with a limited functionality, in others, the model does not
load. You can refer to the following figures 12.1 and 12.2 for illustration.

1https://www.thingiverse.com/thing:327753
2https://www.thingiverse.com

69



Figure 12.1: Loading a file that does not contain any geometry will result in this
error.

Figure 12.2: While this file could be loaded, the file does not conform to a cer-
tain assumption of some of the algorithms. Tools using these algorithms will be
disabled, but the other tools will work correctly.

70



Figure 12.3: Our demonstration colouring, achieved by using the Triangle and
Bucket painters.

12.3 Colouring the model
Once the model gets loaded, the user is free to select any available tools and color
the model as he wishes. We have opted for a quick colouring of triangles, with
all four colors. Our result is showcased in Figure 12.3.

12.4 Exporting the model
After we are happy with our colouring, we go to the Export Assistant. This is
done by either navigating the menu File – Export or clicking the icon from the
toolbar. We are now presented with the user interface seen in Figure 12.4. There
is a plethora of options here and all the options are described in detail in chapter
17. For our simple model, we can leave the options to their default values, since
2.5% is a good extrusion throughout the whole print. We also select the checkbox
to create a new folder for the exported files. After that, we select the volumetric
export (depth extrusion) and select the .STL format for our files. A new folder is
created, containing four different .STL files. We can now also save the project as
the Pepr3D project file – .p3d, in case we want to alter our colouring later. We
include this coloured model in our attachments.

71



Figure 12.4: The demonstration of the GUI of Export Assistant. Here we select
the parameters mentioned in the text and can preview all our export options.

12.5 Putting the files together in Slic3r
In this section, we showcase how the parts we exported in the previous section
look in the Slic3r application. In Figure 12.5, the model is already loaded into
Slic3r. This was done by loading one of the exported .STL files and then adding
parts to it, in the Settings menu of the object in Slic3r. We can now slice the
model, and prove that the Pepr3D export worked correctly.

12.6 Printing the result
After we are happy with the slicing we got, as shown in Figure 12.6, we can print
the model. We include a picture finished print of the model in Figure 12.7, as
well as a compilation of other coloured models we printed with our application
in Figure 12.8.

72



Figure 12.5: The parts exported from Pepr3D loaded correctly into the Slic3r
software.

Figure 12.6: The sliced, multimaterial model, ready to be printed.

73



Figure 12.7: The printed model, with a custom wipe tower next to it.

Figure 12.8: Other printed models, all painted in Pepr3D.

74



Chapter 13

Conclusion

In this chapter, we summarize the project, outline our experience with the 3rd
party libraries that we have used, and elaborate on future work that can be done
on the project.

13.1 Summary
In our software project, we aimed to design and fully implement an intuitive
application for interactive colouring and exporting 3D models for 3D printing.
Within this documentation, we described the whole process behind this work
together with our results.

We explained the basics of 3D printing and related works in Part I. In Part II,
we continued with a developer documentation describing our architecture and how
we decided to implement the software. Finally, here, in Part III, and especially
in Chapters 11 and 12, we prove that we have successfully fulfilled the goals and
requirements initially set in our specification.

The whole application has been successfully verified together with our super-
visor Oskár Elek and with our consultants Vojtěch Bubńık from Prusa Research,
Jaroslav Křivánek, and Tobias Rittig. Possible future work that can be done
together with Prusa Research is discussed later in this chapter.

13.2 3rd party libraries
Now we provide a quick summary of our experiences with the 3rd party libraries
we decided to use.

13.2.1 Cinder
Cinder 1 is a C++ library which serves as a wrapper around OpenGL. It provides
a multi-platform solution to creating an OpenGL window, handling keyboard and
mouse input, simplifies the OpenGL buffer handling and much more. It is written
with a modern C++11 standard and seemed like a good fit for our project.

1https://libcinder.org/

75



Our experiences were mixed. On one hand, the library performed all the
tasks we required and allowed us to spend little time worrying about Linux com-
patibility. On the other hand, the library itself forced a few very non-practical
decisions on us, like the already mentioned C macro in the main.cpp file, which
we discussed in Section 7.2.

We also suspect, that the Cinder library is the main culprit behind our rather
long compile times, since the problem existed basically from the beginning of the
development, when the project did not include so much code.

13.2.2 Dear ImGui
Dear ImGui 2 is a graphical user interface library for C++. We already discussed
our reasons for choosing this library in the Section 7.1.2.

Our experience with this library has been very positive, as we have expected.
The library is simple to use and simple to pick up. One of our team members
was able to quickly start working with the library within a few days, without
any prior knowledge. The limitation of this graphical user interface is the limited
support for skinning, though this feature is not important at this time. It is
difficult to use for an entirely custom user interface though, as some things are
not yet exposed in the API, such as more advanced column layouts.

13.2.3 CGAL
The Computational Geometry Algorithms Library (CGAL) 3 is the main library
we chose to solve the geometry computations for this project, since it included
several useful features, which we described in more detail in Chapter 4.

The team’s experience with this library is conflicting. On one hand, the library
performed everything we hoped for very well, did not raise many issues and we
did not find any bugs, weird or wrong behaviour. On the other hand, the library
is so heavily templated, that sometimes it is very hard to navigate. This problem
is furthermore highlighted by its documentation, which is lacking in several places
(with phrases like Advanced feature. as the only explanation to a public
method). Since it looks to be generated from the code, the code does not provide
any more information.

The members who have worked with the library were not satisfied with the
library mainly for the user-friendliness, however, it is important to state that once
you figure out the API and the general ideas behind the library, it performs well.

13.2.4 Assimp
Assimp 4 is a library that handles importing and exporting of the models. This
library holds a unique space in the C++ libraries for geometry loading and saving,
because it is basically the only one which supports so many different formats for
both importing and exporting. This makes it almost a must-include in a C++
geometry project and we hoped for an easy and fast integration.

2https://github.com/ocornut/imgui
3https://www.cgal.org/
4http://www.assimp.org/

76



In reality, we have had the most issues with Assimp out of all the libraries
used. While the documentation is not plainly generated from code and explains a
lot of concepts and ideas, it is not complete and the only thing left is reading the
internal source code (not just the header files providing the API, the actual imple-
mentation as well). This happened several times during our development (while
implementing post-processing during the import, while trying to use Assimp’s
progress reporters). Exporting a custom built scene (that did not get loaded by
Assimp earlier), is only explained in the Issues tab on Assimp’s GitHub page,
which also further highlights the lacking documentation.

We also encountered weird behaviour in the post-processing during the import
phase – we set Assimp to completely remove all degenerate triangles (triangles
with an area equal to zero), which is described at length in Assimp’s documen-
tation. We found out that this pre-process, while configured exactly as the doc-
umentation stated, did not, in fact, remove all degenerate triangles, and we had
to implement one additional check, after Assimp finishes.

In conclusion, while this library is the best on the market right now, it still
has long ways to go, at least in our experience.

13.2.5 Cereal
Cereal 5 is a header-only library for (de)-serialization. The library has a mini-
malistic API and a solid documentation which explains all the major concepts
behind it.

In our experience, it was very easy to pick up and add to our project and
worked really well. So far we have not encountered any issues or found any bugs
within the library. We have, however, discovered one limitation which the library
imposes on the code it is used on. Any object which is to be loaded from serialized
data either has to have a default constructor, or be stored by a pointer. If you
have an object stored by value and it is not default constructible, the library will
not know how to load it.

13.2.6 Threadpool
Threadpool library 6 is a very simple C++ library providing a simple threadpool.
We used this library since we required a basic threadpool without too many
features or overhead. This free code is simple, easy to check and functional.

13.2.7 FreeType, FTGL and Poly2Tri and Font23D
While doing research for the Text tool on how to take a font file and a text string,
and transform the bezier curves into triangle meshes, we found the Font23D
library/project.

Font23D is a library/project on GitHub 7 without too much activity, but
solving exactly the issue we faced as well. It incorporates the Freetype, FTGL
and Poly2Tri libraries to solve the issue and we used it parts of this project in

5https://uscilab.github.io/cereal/
6https://github.com/progschj/ThreadPool
7https://github.com/codetiger/Font23D

77



our own. You can read the exact development discussion about this library in
Section 4.4.

We made severe improvements and adjustments to the code from the reposi-
tory, as the code is mainly written in C, instead of C++.

13.2.8 Boost
Last but not least is the Boost library which came as a pre-requisite for Cereal.
Since we already had this library in the project, we decided we might as well use
it. In the end, we did not use it for any major features but it was still handy to
have around.

We will not discuss the quality of the documentation or the performance of
this library, since it is a staple in the C++ environment.

13.3 Future work
In this section, we discuss the future work that could be done on this project.
We divide the improvements that could be implemented into several categories:

• Improving existing core features

• Adding quality of life (QoL) changes to the GUI

• Extending the toolset of the application

13.3.1 Improving existing core features
A few of Pepr3D’s features and algorithms were developed by the team from
scratch, since no solution satisfying our needs existed. These features are mainly
the Brush tool and the volumetric Export.

The brush tool uses computational geometry to subdivide triangles on the fly,
which is not an easy task. Further work could be done by optimizing the brush
tool to create better subdivisions and increasing the speed of the tool on bigger
and more complex models. Our finished product is the best the team was able to
come up with but with some more research, the tool can probably be optimized
further.

The volumetric export (meaning the export which extrudes the faces inwards)
is also a very complicated task, for which we have not found many solutions in any
academic research or commercial products. We think that making this feature
more robust would greatly improve the Pepr3D user experience.

13.3.2 New quality of life features
Since Pepr3D is a user-targeted application, the range of features the users have
come to expect from the GUI of the program is vast. We implemented the basic
subset of, what we think, are the most useful and important features – such as
hotkeys, tooltips and clear and simple user interface. However, there are many
more features the users might benefit from, for example the radial menu around
the mouse cursor, which we already discussed in Section 11.2.

78



Other quality of life feature we got asked about by our colleagues during
the development was a branching Undo & Redo history. This means that the
command history would not be linear, but the user could go back a few commands
from version B to version A, make new changes to version A, which would take
him to version C. He could then compare versions B and C, which are both based
on A and decide which he likes better.

The export GUI could additionally benefit from a tighter integration with
3D printing slicers. They could show the user in real time how the exported
segments will look like layer by layer after being sliced for 3D printing. Our
current visualization is not as advanced as we do not have the necessary data
and algorithms for actually slicing the objects. This would make exporting the
objects faster as users would not need to run another application.

13.3.3 Extending the toolset
When we designed the application’s architecture, we put strong emphasis on
allowing a potential developer to extend the toolset by adding other tools. We
think we achieved this goal very well, because several of the tools require the
same Geometry and Command API, which means we could add the tools and
extend the functionality without implementing any additional functionality into
Geometry or adding new Commands. This is the intended behaviour for the
potential future developers.

If the new tool should require extending either the Geometry or Commands
API, we strived to make the code educational – if you need to create another
command, you can read through one or two existing commands and then have a
good understanding of how you should create your own.

79



Appendix I: User Documentation

80



Chapter 14

System requirements and
Installation

In this chapter we will describe the system requirements of Pepr3D and the
installation process.

14.1 System requirements
We divide the system requirements into must have items and recommended
ones. The must have requirements are the following:

1. a 64-bit CPU with SSE instructions

2. a GPU supporting OpenGL version 3.2

These two requirements are mandatory and Pepr3D might not work if you do
not meet one or both of these.

Now we mention recommended system parameters. These are derived from
what the team has been developing the software on, since we do not have an
access to any larger data.

• System: Windows 8 / 10 (64-bit)

• Processor: Dual core Intel CPU with clock speed 2.0 GHz or higher and
64-bit and SSE instructions

• Memory: 2 GB or more

• GPU card: GPU card compatible with OpenGL 3.2

• Storage: 200 MB

14.2 Installation
Installing Pepr3D is very easy. If you use the attached CD, you can run the
executable files directly (see Appendix II). Otherwise, a compressed archive can
be downloaded1 and unpacked into a folder anywhere on your hard drive. Pepr3D
should now be ready to run.

1https://github.com/tomasiser/pepr3d/releases

81



Chapter 15

First run

In this chapter we show the usage of Pepr3D for complete beginners. It covers
every step from starting Pepr3D to exporting a simple colored model including
importing, manipulating and using tools.

15.1 First look at Pepr3D
When you run Pepr3D, you will see a cube at the center of the application. There
is a toolbar at the top of application which contains file menu, undo/redo buttons,
set of tools and some settings. There is also a side pane on the right with settings
of individual tools as you can see in figure 15.1.

15.1.1 Model manipulation
You can manipulate the model by using your mouse. There are several ways to
manipulate so you can reach and see any part of the model:

• Rotation – Click and hold right mouse button and move.

• Translation – Press Ctrl + right mouse button and move, or press and
hold the middle mouse button (mouse wheel) and move the mouse.

• Zoom – Scroll with the mouse wheel.

Left mouse button is dedicated to using selected tool.

15.2 First model
Now we can start working on a simple model with Pepr3D. First we have to
acquire a 3D model, it should be in one of these file formats: .stl, .ply,
.obj. The simplest way to acquire model is choose any model on the internet
and download it. Or you can use any 3D modelling software and create one on
your own. In this tutorial we use a simple low-polygon model of a Bulbasaur
downloaded from Thingiverse1.

To import the model we can use a drag and drop gesture with the model file
or we can browse for a model file after clicking Import in the file menu.

1https://www.thingiverse.com/thing:327753

82



Figure 15.1: Pepr3D appearance after start-up.

15.2.1 Painting the model
After importing the model we can use any tool that our application provides to
color the model as we want. In a few steps, we will show how to quickly color
the imported model of our Bulbasaur with basic tools.

1. Select the Triangle Painter tool, choose black color in the color palette.

2. Paint all triangles in each eye by clicking on them with the left mouse
button. It is possible to click and drag to paint multiple adjacent triangles
at once.

3. Use the same technique to paint its ears.

4. Choose another color (red) and select the Paint Bucket tool.

83



5. Check Stop on sharp edges in the side pane and set the Maximum angle to
45◦.

6. Use the Paint Bucket on any triangle on the ”onion” on the back of the
Bulbasaur. Click two more times on any unpainted triangle to paint the
whole ”onion” with red color.

7. Select the Triangle Painter and the first color (blue) and recolor two trian-
gles near the neck which have been painted extra by the Paint Bucket in
the previous step.

8. Select the Brush tool and check both the Respect original triangles checkbox
and the Paint outer ring checkbox in the settings of the tool.

9. Set the brush size to about 4.0.

10. Choose orange and paint each leg. Do not forget to paint the legs from
below.

You can undo any step you did with any tool. For example, if you paint on
a incorrect triangle, you can press Undo (left arrow) in the toolbar to revert the
mistake.

84



Figure 15.2: Example of Export Assistant with colored model.

15.2.2 Exporting the model
Now the model is painted and we can proceed to model exporting. Before export-
ing the model itself we need to set the depth of color extrusion into the model.
Exporting can be summarized in the following steps:

1. Open the Export Assistant on the toolbar or click Export in the file menu.

2. Click the Update extrusion preview! button.

3. Lower the percentage of Max Preview height to see into the model and see
the thickness of model walls – the extrusion depth.

4. Adjust the percentage of Depth for the desired extrusion depth.

5. Update the preview by clicking on the Update extrusion preview! button.

6. Repeat adjusting the depth and updating the preview until you are satisfied.

7. Click on Export files and complete the export.

Exported files can be now imported into any supported slicer and printed on
a multimaterial 3D printer.

85



Chapter 16

Tools

This chapter covers all the tools the user has at his disposal. We explain each
tool’s purpose and all the parameters the user can set.

16.1 Triangle Painter
Triangle Painter is the simplest tool of Pepr3D. It allows the user to color a single
triangle with a selected color. This can be performed either by a single click on
the model’s triangle or by dragging the mouse over several triangles with the left
mouse button pressed down.

The triangle that is currently hovered (has the mouse cursor over it) will be
highlighted on the model’s surface with a different border color.

The only property the user is able to select in this tool is the current color
from the color palette.

Pressing the Undo will undo the last stroke of the triangle painter. This
means it will undo the whole stroke, if the user dragged the mouse over several
triangles.

16.2 Bucket Painter
Bucket Painter is a simple tool that can be used to achieve sophisticated results
easily. This tool works as one is used to from image editing software like GIMP
1 or Adobe Photoshop 2 – it starts colouring every triangle it can reach, starting
with the triangle the user clicked on.

16.2.1 Properties
The properties of this tool revolve around the spread of the bucket. This is
something we call stopping criteria. We now list all properties of the tool and
explain each one in detail.

• Color Palette – This widget allows the user to select the current active
color. The selected color will be spread by the bucket. Customizing the
palette can be performed in the Settings panel.

1https://www.gimp.org/
2https://www.adobe.com/products/photoshop.html

86



• Paint while dragging – On / Off – This checkbox specifies whether the
bucket painter will only function by clicking on single triangles (Off ) or will
bucket spread continuously if the user drags the mouse in a stroke (On).
We recommend leaving this On unless it disrupts you or the model you are
working on is very big.

• Color whole model – On / Off – We have mentioned stopping criteria
in the beginning. This is the first choice the user can make that affects the
stop of the bucket spread. If the user selects this option, the Bucket Painter
will simply color the whole region of the model. If the model is a single
mesh, it will color the whole model. Turning this On will hide the other
options. Turning this Off allows the user to specify the stopping criteria.

• Stop on different color – On / Off – The simplest stopping criterion.
The spread will only re-paint triangles which have the same color as the
triangle the user clicked on. Additionally, the spread will stop if a new
color is met. If this is the only criterion that is enabled, the Bucket Painter
will work exactly as we are used to from image editors. This is the default
setting of the tool.

• Stop on sharp edges – On / Off – A second stopping criterion which can
be enabled or disabled. Enabling it expands the user interface to allow the
user to modify the criterion. This criterion will not care about the color the
user clicked on, and only stops from spreading to the neighbouring triangle,
if the neighbouring triangle is at a greater angle than specified. The exact
behaviour is specified by the following properties.

• Maximum angle – 0◦–180◦ – Specifies the angle which the two neighbour-
ing triangles have to be angled at for the bucket painter to stop spreading.
If the angle between the two triangles is greater than this value, the spread
will not color the triangle and will stop.

• Angles to compare – With starting triangle / Neighbouring triangles –
The last choice in the sharp edges stopping criterion. If the user selects
With starting triangle, the angle will be measured between the triangle the
user clicked on and the triangle currently being coloured. For example,
if this option is chosen, the angle is set to 95◦ and a single face of the
cube is clicked, all faces of the cube except the opposite one are coloured.
This is because the opposite face is at an 180◦ angle. If the user selects
Neighbouring triangles and uses the 95◦ setting again, the whole cube will
get coloured, because there are no faces on the cube that are at an angle
greater than 95◦.

Both of the stopping criteria can be selected together. The spread stops when
one of the criteria is not fulfilled – both of the criteria must be fulfilled for the
spread to continue.

16.3 Brush
Brush tool is more complicated tool for coloring the model. User can draw strokes
with mouse depending on a brush properties. Just like the Bucket Painter, this

87



tool works as a brush in ordinary image editing software when you are drawing
on flat side of model. It has different behavior on the edges which depends on set
properties.

16.3.1 Properties
There is a list of properties that user can change to customize the tool.

• Brush Size – float number – Defines the size of the brush. Larger size
means larger brush diameter so that the user can paint larger area at once
using the brush. The size number is equal to world units.

• Number of Segments – positive integer – This setting adjust the shape
of the brush. The shape is a polygon and the parameter corresponds to a
number of polygon sides. If it is high enough, the shape of the brush looks
like a circle. The smallest number can be set to 3, it means that the brush
will have triangular shape.

• Paint backfaces – On / Off – If the property is set off the brush will paint
only visible faces that direct towards the user. If it is set on, it will paints
parts of the model even if they are facing away from the camera. The entire
area that is within the scope of the tool will be painted.

• Spherical brush shape – Turns on spherical brush (this is set by default).
Spherical brush paints everything within a radius from a mouse cursor, and
will create additional edges to smooth transition over triangle boundaries.

– Continuous painting – On / Off – With this option turned on user
can paint only triangles that are connected inside the painting radius.
This prevents accidentally painting two parts connected only via an
air-gap.

– Respect original triangles – On / Off – Turning this feature on
prevents brush from creating new triangles. This makes Brush tool
behave like a Triangle Painter tool with a radius.

– Paint outer ring – On / Off – This can be set on only if Respect
original triangles option is set on. It allows the user to paint the whole
original triangle even if it is not fully inside the brush.

• Flat brush shape – Turns on flat brush shape. Flat brush paints the shape
directly to the surface, ignoring any distance limitation. With the Paint
backfaces turned on it will paint the whole cylinder through the model.

– Flat brush settings – Perspective / Normal – With Perspective op-
tion the brush paints from the direction of the camera. If Normal
option is set, it will paint area aligned against triangle normal.

88



16.4 Text Editor
Text editor tool allows user to write some text onto the model. User can preset
properties of the text and place the text on the model by left mouse button click
on a specific location on the model. After that a floating text appears beside
this location. Pepr3D also shows a normal vector in the center of the floating
text that determines the direction in which the text will be projected onto the
model. After showing the floating text, user can still adjust the tool properties
to improve the appearance.

16.4.1 Properties
The properties that user can adjust are following.

• Load new font – button – This button opens a file dialog to select and
import user’s own text font from the computer in .ttf format. However,
text tool does not support complicated fancy fonts such as ornamental or
picture fonts.

• Font size – 10–200 – By adjusting this property user can change size of
the text. It is base font size in font-units.

• Bezier steps – 1–8 – This parameter specifies how much the edges of
the letter of the text will be smooth. Higher number of Bezier steps will
increase painting time.

• Text – text field – In this text field user can type custom texts that he or
she want to paint on the model. The preview floating text will be changing
during typing into this text field.

• Text scale – 0.01–1.0 – Another way to change size of the font is adjusting
this parameter. It allows user to make really big or small texts on models.

• Text rotation – 0◦–180◦ – This parameter allows user to rotate the text
around the normal vector. With the default value (0◦) the text lays hori-
zontally, no matter what angle the normal vector has.

• Paint – button – Finally, the last option paints the prepared floating text
onto the model. The text is projected along the normal vector. The com-
putation may take some time.

16.5 Automatic Segmentation
Automatic segmentation is a powerful tool which allows the user to quickly achieve
the baseline colouring of the model, which then can be detailed to the user’s
liking. This is achieved by separating the model into several segments based on
the thickness. These segments then can be quickly coloured individually. The
user can select the sensitivity of this segmentation, which allows him to control
the level of detail (for example, low sensitivity might only segment the body and
limbs of a character, whilst high sensitivity will also segment the fingers, ears and
horns).

89



16.5.1 Properties
• Compute SDF values – button – Before anything can be done in this

tool, the user is asked to compute the SDF values. This is the data that
is required to perform a successful segmentation. This computation might
take a long time to perform, depending on your model size. For low-poly
models (e.g. 1000 triangles), this computation is instantaneous. If you
already performed the computation in a different tool (like export or the
other segmentation), this option will not be visible.

• Segment! – button – This button starts the segmentation process. The
default values are set so the segmentation returns viable results in most
cases. If you did not set any of the following properties and the segmentation
returned an undesirable number of segments (like only one or too many),
modify the following properties.

• Robustness – 0%–100% – a magic parameter. The meaning of this pa-
rameter is somewhat obscured but the best way to imagine this setting is
the quality or robustness of the segmentation. Higher values take longer to
compute but might give better results – a higher value might merge two seg-
ments that are somewhat related, which the lower values will not recognize.
The default setting is the team’s best effort to balance the performance and
quality.

• Edge tolerance – 0%–100% – This parameter specifies how the algorithm
should understand ”thickness”. If you set this value very high, the algorithm
will tend to merge more segments together, resulting in a lower amount
of segments. If you set this very low, every nook and crease will signal
the algorithm to create a new segment, thus resulting in a higher amount
of segments. This is the primary means to control this tool and we
recommend adjusting this slider over the previous one to change the main
behaviour.

• Color Palette – Same as in the previous tools, this widget allows the user
to select a color to assign to each segment.

16.5.2 Segmentation
To adjust the segmentation, we recommend first trying to adjust the Edge toler-
ance slider, and only after experimenting with this slider to change the Robust-
ness.

After these settings are adjusted and the user clicks on the Segmentation but-
ton, a list of segments will appear, along with the number of segments created.
The user is then instructed to assign a color from the color palette to each seg-
ment. This can be done in two ways – either by clicking directly on the model
or by clicking on the ”Segment #” button. After clicking on one of these two
regions, the color selected in to color palette will get assigned to the segment.

After all segments have been assigned a color from the color palette, the user
is able to click Accept to color the model this way. Should the user be dissatisfied
with the colouring, he can either click Cancel or Segment! again, to completely
undo the whole segmentation and start from scratch.

90



16.6 Manual Segmentation
Manual segmentation is a similar tool to the Automatic segmentation we discussed
in the last section. The difference in these two tools is that while Automatic
segmentation is a very global tool (since it segments the whole model at once),
Manual segmentation is designed to be local. The user can color a handful of
triangles with a single color and then manually adjust the spread of this color
over the segment the triangles define. This description is rather abstract, but
hopefully it will get clearer once we discuss the properties.

16.6.1 Properties
• Compute SDF values – button – before anything can be done in this

tool, the user is asked to compute the SDF values. This is the data that
is required to perform a successful segmentation. This computation might
take a long time to perform, depending on your model size. For low-poly
models (e.g. 1000 triangles), this computation is instantaneous. If you
already performed the computation in a different tool (like export or the
other segmentation), this option will not be visible.

• Color palette – once SDF values of the object have been computed, the
user is presented with a sidepane very similar to the Triangle painter tool.
This widget allows the user to select the current color. The color will be
used while initializing the segments on the model.

• Spread – 0%–100% – once a single triangle is coloured on the model, ad-
ditional options appear. One of them is the Spread slider. This slider is
analogous to the Edge tolerance slider in Automatic segmentation, since it
controls how much each coloured triangle will spread its color among its
local neighbourhood. If the spread is 0%, only the triangle is coloured.
Increasing it to 100% will color all triangles of the model (unless a second
segment is competing).

• Hard edges – On / Off – if this option is turned on, the spread of one
color will stop upon meeting a second one’s border and will not attempt to
color any other triangles. Use this option if the segments you are colouring
are well defined and differ in thickness a lot.

• Region overlap – On / Off – once the user turns this option on, the
spreading regions will overlap freely and the last color (rightmost) will al-
ways win if Spread is turned to 100%. Use this option if the borders of
the segments converged a little soon or late and you would like one color
to expand a little more. This option is not good if the spread is turned to
high percentages, since a lot of the segments will overlap and information
will be lost.

16.6.2 Segmentation behaviour
If no checkboxes are turned on, the color spreads to the global optimum segmen-
tation. This means that if you set the Spread to a high percentage, there might

91



be several discontinuous segments coloured by the same color, because that is
globally optimal to the input. This setting is a good starting point, since it does
not restrict the spread too much, but does not allow it to roam unlimited as well.
Use the other options to tweak the spread after you understand how this model
will get segmented.

The spreading algorithm uses the SDF function (thickness of the model) to
calculate segments. This means that this tool is not able to grow segments on a
model which does not vary in thickness. It is also very important to be aware of
the fact that several non-neighbouring parts of the model might have the same
thickness (like ears, hand fingers and feet fingers) and thus the global optimum
colors all of these with the same color (use Hard edges to counter this behaviour).

After the user is satisfied with the spread, clicking Apply will confirm this
re-colouring. Clicking cancel will return the model into the state before Manual
segmentation started.

As a last tip, we recommend using a single-triangle strokes to initialize the
segments at the beginning. This is using many triangles accelerates the spread a
lot, which ultimately gives the user less fidelity and time to see what is happening.

We want to stress that this tool is an advanced tool, which should be used to
fine-tune an already coloured model’s details, not as a means to primarily color
the model upon importing it (Automatic segmentation is a lot better tool in that
case).

92



Chapter 17

Import, Export and Saved
projects

In this chapter we explain in-depth how the users should import their models, all
the different methods of exporting their work and the ability to save their work
as a Pepr3D project to continue at a later date.

17.1 Importing a model
Importing the model is the first step in the Pepr3D workflow. There are several
ways how to import a model and all of them are equally easy and the choice is
entirely up to you.

1. File→ Import will open a typical Open dialog of you respective operating
system. Navigate to the model you want to import and click the button
Open.

2. Drag and drop is a very fast way to import the model if you already have
it located in any file explorer. The model can be dropped into any part of
Pepr3D.

3. Control + I is the keyboard shortcut for importing a model. Upon pressing
this shortcut, the Open dialog of you respective operating system will open.
Navigate to the model you want to import and click the button Open.

After you perform either of the two previous steps, the model will start load-
ing. There is a detailed dialog which explains what is currently happening and
Pepr3D is trying to give you accurate information about the progress of the pro-
cess. However not every computation has a well known length, so several loading
bars will just cycle through until the loading is complete. Please be patient, load-
ing a large model can take a long time. See Table 17.1 for a rough idea about
the loading times.

17.2 Exporting a colored model
When you finish painting a model in Pepr3D and you would like to use it in
3D printing or another application, it is necessary to export the colored model.

93



File size [MB] Estimated loading time [s]
80 3
15 2
5 1

1.2 0.5
<1 <0.5

Table 17.1: Loading times during the import into Pepr3D.

This saves your work to files which are compatible with other software. To be
more precise, 3D printing a model with different colors typically requires separate
colors in separate files, which exporting in Pepr3D does.

To export a model you have painted in Pepr3D, use our Export Assistant.
You can access it by clicking on its icon in the Toolbar, by using the default
hotkey Ctrl + E, or from the File menu File → Export.

Once you select the Export Assistant, you can change its options in the side
pane. On the left side, a preview of the export will be shown, but only for certain
options described later.

In the side pane, as the very first decision, you can choose between exporting
only the surfaces, or exporting with depth extrusion of the colors. As these two
options influence the rest of the export process, we describe them separately in
the following subsections.

17.2.1 Exporting surfaces only
Exporting only surfaces of your painted model is the simplest option. All triangles
with the same color are grouped together and saved to a separate file. The result
are multiple files containing the differently colored surfaces of the model.

This option is useful when you want to use your painted model in another 3D
editor such as Blender. It is not entirely useful for 3D printing as common slicers
are not capable of actually printing these exports reasonably. That is because
volumetric information, i.e., how deep the colors should be extruded, is missing
in this export.

The only options in the side pane are the file formats and then a simple “Ex-
port files” button which opens a file dialog to save the files. Follow Section 17.2.4
for more details.

17.2.2 Exporting extruded colors
Unlike surface export, extrusion export has various options and also provides you
with a preview of the options. The biggest difference is that extrusion export is
much more suitable for 3D printing as it provides volumetric information, i.e.,
how deep the colors should be extruded. The user can specify this extrusion
information in the various options.

At any time you can press the “Update extrusion preview!” button and
a preview of the export will be shown on the left side of the Pepr3D window. The
point of the preview is so that you as the user can see how the model is going to

94



look like after being exported. Generally, the preview should look exactly as the
model you painted, unless there are errors and the options are wrong.

By changing the range in the “Preview Height” option, you can see inside
the model. Raising the minimum height removes a bottom part of the model.
Lowering the maximum height removes an upper part of the model. This only
affects the preview, not the actually exported files!

Being able to see inside the model is very useful in extrusion export, as it
helps you understand how deep the colors will actually penetrate. One of the
most important things to remember is that the extrusion should never penetrate
the original surface! If the extruded part penetrates the surface on the opposite
side, you have to lower the depth of that color!

This can be done by changing the “Depth” in the table of colors. The depth
percentage is with regards to the size of the object, where 100% corresponds to
the size of the whole object. This means that if you set an extrusion that high,
it will almost for sure penetrate the surface and be wrong. We should always
operate with lower extrusion depths such as a few percent only.

In models that have SDF (shape diameter function) values available, you can
set the depths to be “relative to SDF” instead of “absolute”. This is very useful
for complex models with varying thickness, e.g., models with spikes, little details,
etc. Relative depths are not only based on the percentage you set, but they also
vary locally with regards to the local thickness of the model. So for a certain
color and percentage you set, the depth will be higher than your percentage in
thick parts of the model and lower in thin parts of the model. This is different
than in “absolute” thickness where all triangles are extruded the same.

To verify how the extrusion looks inside the model, you may also disable the
“Preview” of certain colors in the table of colors. This will simply hide all
triangles and extrusions of a certain color from the preview, but not from the
exported files that you actually export.

The export is finished using the “Export files” button (see Section 17.2.4).

17.2.3 Advice for 3D printing
When exporting for 3D printing, try to follow the following recommendations:

• Always use the “Depth extrusion” option unless it gives completely
wrong results with whatever extrusion options you try. In that case, it
might be necessary to use “Surfaces only” and do the extrusions manu-
ally in a 3D editor such as Blender.

• Make sure the extruded parts never penetrate the object surface from the
opposite side. This penetration will be visible in the 3D printing! If that
happens, make sure to lower the “Depth” of that color. On the other
hand, too low depths may be impossible to print as the model would be too
hollow. It is necessary to find the right balance.

• For certain slicers such as Slic3r Prusa Edition, the extrusions may intersect
in the interior of the model. The slicer will fix this automatically when
generating the G-code for printing.

95



• In models with various thickness in different parts, e.g., models with spikes,
little details, etc., try to use depths “relative to SDF”.

• If parts of a model with a certain color are too deep or too shallow but
changing the percentage for the whole color breaks in another part of the
model, consider adding a new color to the palette. You can paint the
two parts with different colors but still print them with the same color!
Remember that in the 3D printing slicers, you can set multiple parts from
Pepr3D to be printed with the same color. The Pepr3D color palette
does not have to correspond to the colors you actually print!

• If you want a part of a model to be filled instead of partially hollow, in
certain slicers such as Slic3r Prusa Edition, try to import the original model
as one of the extrusion parts. The slicer will then try to fill in the part
completely. A similar trick may be achieved by setting color depth to 0.00%,
but not all versions of slicers can successfully import these.

• Always verify the extrusion by importing the exported files to a slicer,
generating the G-code, and previewing the model layer by layer, if it is
supported by the slicer.

17.2.4 Supported formats
When exporting the files, before clicking on the “Export files” button which
opens a file dialog to save the files, there are options to choose from. First, you
can choose from 3 file formats described below. Then, you can also check the
“Create a new folder” option, which means that a new folder will be created
and all the exported files will be saved in the new separate folder (directory).
This is useful when using multiple colors and neatly organizing your exports.

The supported file formats are:

• binary .stl (stereolithography) files, they are suitable for example for 3D
printing with Prusa printers and Slic3r Prusa Edition,

• binary .ply (Stanford Triangle Format) files, they are supported by common
3D editors,

• non-binary .obj files that are also saved with their corresponding .mtl files,
also supported by common 3D editors.

17.3 Saving and opening a project

17.3.1 Saving a project
Saving a project to work on it later is very simple in Pepr3D. There are two save
options in Pepr3D:

1. File → Save will overwrite your last save file with the current state of the
model. If you have not yet saved the project at all, this option also acts as
Save As. The keyboard shortcut for Save is Ctrl + S.

96



2. File → Save As will prompt you with a Save As dialog of your respective
operating system. Upon selecting the folder and choosing the name, the
project will be saved inside the folder with the chosen filename. There is
no keyboard shortcut for Save As.

If your project has been modified since the last save, you will see an asterisk
(*) next to the project’s name.

Please note that Pepr3D does not save your work undo history. If you save
a project and re-open it, you will not be able to undo any operations done by
the previous session.

17.3.2 Opening a project
Opening a project can be done through File → Open or simply by pressing
Ctrl + O. Both of these options will display the Open dialog of you respective
operating system. Here you can choose the .p3d file and press open.

Opening a project can also be performed by drag and drop. Simply grab
your .p3d file and drop it anywhere into Pepr3D.

As we have mentioned in the section about saving projects, keep in mind that
Pepr3D does not save your work undo history.

97



Chapter 18

Additional options and settings

In this chapter, we showcase and explain all the preferences and settings Pepr3D
contains. There are two main categories of the settings the user can alter in
Pepr3D: Display options and Settings. Display options contains all settings
regarding the displaying of the model and handling the camera. The Settings
tab contains the important Color Palette manager and some extra UI settings.
We now discuss each category in more detail.

18.1 Display options
This tab of the interface contains all properties related to the user’s view and
interaction with the model. These preferences are divided into three segments
and we will explain every one in detail.

18.1.1 Camera zoom behavior
This option provides the choice between two most common camera zoom behav-
iors, namely the dolly and field of view. Both of these are widely used in
computer graphics and there is no clear consent on which of these two is better.

• Dolly – as the short text next to the option explains, this setting physically
moves the camera within the space of the program, while the field of view
stays the same. This option is the default setting, since the zooming in and
out is more intuitive because it replicates moving the observer’s eye closer
to the object. The disadvantage of this method lies in editing fine details
on the surface. This is because the dolly allows the camera to enter the
inside of the object, which means the user is not able to zoom as close as
he might like.

• Change field of view – the second widely used option amongst the graph-
ics editors. This option does not move the camera but only changes the field
of view (FOV for short). This means the camera will never fly inside the
object and is able to provide as close of a look as the user desires. The main
disadvantage of this approach is slightly worse handling when zoomed in
really close.

98



• Reset camera – a simple button to reset the camera to the default position.
This is the position the object appeared in after the model import was done.

Feel free to change this camera zoom behavior to the one you like, it does not
affect the performance or model quality in any way.

18.1.2 Model transformation
While Pepr3D tries to orient your model correctly from the start, it only succeeds
if your model follows the Blender axis alignment. This is the X left-right, Y
forward-backward, Z down-up axis alignment. This is the most common
spread axis system and is the one Pepr3D supports without any adjustments.
This is the axis system that Prusa Slic3r uses, so if your model works in Slic3r,
it should natively work in Pepr3D. Should you need to use a different system,
this segment of the settings provides you with means to correct for this change
manually.

• Model roll – 0◦ – 180◦ – If the model is incorrectly oriented, you can rotate
the model with this slider. You can control the camera with the right click
drag, which rotates the camera in two axes around the model. This option
rotates the model along the third axis, which allows you to fully customize
the object’s orientation. If your model is incorrectly oriented, this slider
should always be able to fix the issue.

• Model position – −1.00 – 1.00 in X/Y/Z axes – Pepr3D tries to center
your model onto the guiding grid. Should Pepr3D not succeed, these options
allow you to position the model correctly.

• Reset model transformation – button – a simple button to reset the
model to the default position. This is the position the object appeared in
after the model import was done.

18.1.3 Guidance graphics
The last section contains a couple of guiding tools that the user might want to use
to help his orientation in the space or understand the model’s geometry better.

• Show grid – On / Off – determines whether the model should be posi-
tioned on a guiding grid or not. This is done to simulate the printing bed
of the 3D printer itself. It also should help the user with orientation, if the
model is symmetrical.

• Show wireframe – On / Off – if enabled, every triangle on the model will
have its borders displayed in a high contrast color. This option is turned off
by default since it is distracting on complex models but might be a really
useful tool to see how the model geometry looks like and how it got changed
by the Brush or Text tool.

99



18.2 Settings
For now, there are only a couple options in the Settings menu. They are, however,
very important to understand.

18.2.1 Editing the color palette
This is probably the most important setting in Pepr3D, because it affects every
tool and the outcome of the export. Here you can add or remove additional
colors into the palette, change the already existing colors, as well as reorder
them or reset them into the default stage. Let’s talk about these options in more
detail.

• Add color – button – adds a new color into the palette. The hue of the
color is randomized. See changing the color to learn how to change the hue.
The maximum number of colors for now is 16. Even the most advanced
FDM printers cannot print more than a few colors and 16 offers a lot of
flexibility while keeping the user interface simple and easy to use.

• Delete color – drag and drop field – deleting a color is as simple as grab-
bing it and dragging it onto the red zone with the Drag color here to delete
description. Be careful, since this will permanently delete all informa-
tion associated with the color. Any triangles painted by this color will get
a new color (the previous one in the palette). This operation is undoable.

• Reordering the colors – drag and drop within palette – you can rear-
range the colors by dragging and dropping them accordingly. Note that
this does not change the colouring of the model and is only cosmetic.
This operation is undoable.

• Changing one color – right click on the color – if the user wishes to change
the the color, it is done by left-clicking the color patch. Once clicked, a color
picker gets displayed and the user can change the color there. Note that
this does change the color on the model in real time, which allows the
user to preview the change. This operation is undoable.

• Resetting colors to the default values – button – once clicked, the
colors will be reset into the default values and the model will be re-coloured
according to the positions of the first four colors. This operation is un-
doable.

18.2.2 User interface preferences
This section allows the user to modify the appearance of the Pepr3D software.

• Side pane width – in pixels, relative to Pepr3D’s width – this modifies the
width of the side pane area. This is especially useful if the user is working
with more than four colors or on a high resolution display.

100



Appendix II: CD Attachment

101



Chapter 19

CD contents

The contents of the accompanying CD are organized as follows:

• Assimp for Pepr3D contains our build of Assimp library for compiling.

• Pepr3D-Documentation contains this documentation in .pdf.

• Pepr3D-SampleModels contains a set of 3D models as examples.

• Pepr3D-Windows-x64 contains an executable file and other files required
for running the application.

• Source contains source codes of Pepr3D and certain libraries.

The organization of the files corresponds to our GitHub repository releases
that are available at https://github.com/tomasiser/pepr3d/releases.

102


