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Abstract: Modern non-destructive approaches for quality control in manufactur-
ing often rely on X-ray computed tomography to measure even difficult-to-reach
features. Unfortunately, such measurements require hundreds or thousands of
calibrated X-ray projections, which is a time-consuming process and may cause
bottlenecks. In the recent state-of-the-art research, tens and hundreds of pro-
jections are still required. In this thesis, we examine the radiography physics,
technologies, and existing solutions, and we propose a novel approach for non-
destructive dimensional measurements from a limited number of projections. In-
stead of relying on computed tomography, we formulate the measurements as a
minimization problem in which we compare our parametric model to reference
radiographs. We propose the whole dimensional measurements pipeline, includ-
ing object parametrizations, material calibrations, simulations, and hierarchical
optimizations. We fully implemented the method and evaluated its accuracy and
repeatability using real radiographs of real physical objects. We achieved accu-
racy in the range of tens or hundreds of micrometers, which is almost comparable
to industrial computed tomography, but we only used two or three reference ra-
diographs. These results are significant for industrial quality control. Acquiring
two or three radiographs only takes a couple of seconds, so we significantly reduce
the X-ray machine time and the time required to detect manufacturing errors.
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Introduction
“All is number” or “all things are numbers”. These are said to be the fundamental
concepts of the ancient school founded by the Greek philosopher Pythagoras
in the sixth century BC [Zhmud, 1989, Russell, 2004]. This perhaps a little
mystical conclusion was coming from their early discoveries about numbers and
their relation to astronomy, geometry, or even music. Nowadays, numbers are
an every-day concept used for describing the world around us. And to assign
meaningful numbers to the physical objects, we need measurements.

Measurement is probably one of the most essential tools in science. It connects
mathematics with the matter, enables conducting experiments and objectively
describing physical phenomena [Finkelstein, 2014]. But it was not until 1875
that the International Bureau of Weights and Measures (BIPM) was set up with
the goal of worldwide measurements unification. And in 1960, their metric system
adopted the name Système International d’Unités, abbreviated SI [BIPM, 2019].

Measurement is not only about numbers and their units. In order to get to
these numbers, we need measurement technology and instruments for measuring
the physical entities around us. And with the development of modern electrical
sensors and computer science, we significantly extend the range of what can be
measured and how accurately we can do it.

Background and motivation
This thesis aims at measuring objects in the manufacturing context (Figure 1).
Typically, products are designed with a set of requirements and tolerances defining
the intended quality. Manufacturing is never hundred percent accurate1, so when
physical products are made, their real quality has to be verified. For example, an
automobile typically consists of several thousand components and if any of them
is too big or too small, the parts may not fit together well, and the car may not
perform as intended by the designers and engineers [Montgomery, 2009].

In case of automobiles or airplanes, it is also an important safety aspect:
imagine if bolts holding an airplane engine were too small and engine vibrations
would cause them to fall off the plane. That is, of course, unacceptable, so the
designers of the individual parts and components need to specify dimensional
tolerances, i.e., the minimum and maximum permissible dimensions.

The tolerances depend on how exactly the products are going to be used.
LEGO R⃝ bricks are an interesting example: to ensure their perfect fit, tolerances
as low as 0.02 mm are used for their manufacturing [Nguyen et al., 2019]. But
such low tolerances are not possible with all technologies. For example, with
stereolithography 3D printing, it is generally not possible to achieve accuracies
better than ±0.1 percent plus 1 mm, whereas with computer numerical control
(CNC) machining, 0.01 mm accuracies are practically achievable [Lefteri, 2012].

The lower our tolerances are, the more accurate measurements we need. One
of the oldest way to measure objects with good precisions is using contact methods.

1A review of various manufacturing technologies and materials, including their achievable
accuracies, was written for example by Lefteri [2012].
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Figure 1: Illustration of a typical manufacturing workflow. An object is designed
with certain parameters. When we manufacture the object, we must verify that
the actual parameters conform to the design. Based on the results, we either
accept the object, or if it does not meet the requirements, we may need to adjust
the manufacturing process to prevent the errors in the future.

Contact methods Dimensional measurements with contact methods such as
rulers and calipers date back to ancient Rome [Ulrich, 2007]. Modern calipers
with vernier scales easily provide a precision to 0.02 mm, so-called micrometers
even 0.004 mm [Bewoor and Kulkarni, 2009]. With the development of electronics,
these devices are available with linear encoders and digital displays.

More advanced and modern contact inspection devices include coordinate
measurement machines (CMM). These have a moveable sensing probe whose
three-dimensional coordinates are tracked in space with resolutions as high as
0.0001 mm [Bewoor and Kulkarni, 2009]. By touching the measured object with
the probe at various positions, dimensions can be computed from the coordinates.

Complex geometries and non-destructive evaluation Despite the great
accuracies of the contact methods, it is not always possible to use them. Nowa-
days, modern manufacturing processes are getting faster and more complex, which
requires more sophisticated solutions for measurements and quality control. Es-
pecially the recent research in additive manufacturing (3D printing) brings in-
creasing complexity of the geometries that can be created from various materials.

This presents very demanding challenges for product inspections [Du Plessis
et al., 2018, Villarraga-Gómez et al., 2018, Xu et al., 2019]. First, how can
we accurately measure dimensions of easy-to-deform or flexible materials if they
deform under the pressure of contact instruments? And second, how to measure
dimensions of difficult-to-reach or even fully internal geometrical features without
cutting or otherwise destroying the object so that we can still use it after?
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This is a sub-problem of a more general field called non-destructive evaluation
which is not only about dimensional measurements but also other kinds of defects
and there is a panorama of optical, thermal, ultrasonic, electromagnetics, or
radiography methods that can be used for that purpose. But that is way beyond
the scope of this thesis as we are only interested in dimensional measurements.

Optical methods Let us go back to the two questions above. The first prob-
lem, measuring dimensions without any contact, can be solved by various optical
methods. These include optical interferometry, time-of-flight technique, stereo
vision, shape from focus, or structured light [Zuo et al., 2018]. They have various
accuracies from 0.02 nm (nanometers) in micrometer ranges up to 1 cm accuracies
in the range of tens of meters [Blais, 2004].

Among the non-contact optical techniques for dimensional measurements, a
very popular one is the structured light, typically done with fringe patterns and
called fringe projection profilometry [Budianto and Lun, 2016, Zuo et al., 2018,
Feng et al., 2018]. In its basic setup, it has a simple hardware configuration,
high accuracy, high speed, and low cost. It is based on projecting fringe patterns
on object surfaces and then recording the reflected patterns with a camera at
a different position. The basic idea is that the surface geometry changes the
phase of the reflected pattern based on the surface height. One of the major
fringe projections problem is reflections from shiny (specular) surfaces, which
can be solved by spraying the object with diffuse powders (but that changes
the thickness that we are measuring), or by using high dynamic range (HDR)
projection techniques [Feng et al., 2018]. For example, Feng et al. [2018] report
accuracies roughly in the range of 0.049 mm to 0.34 mm for various test objects.

X-rays for dimensional measurements The optical methods mainly solve
our first problem, i.e., they are non-contact. But they cannot penetrate the
objects to simultaneously measure features on both sides, measure internal ge-
ometry, etc. For measuring both external and internal features, we can use one
of the few capable technologies: X-rays (Chapter 1).

X-rays, discovered in 1895 by Röntgen, awarded by the first Nobel prize in
Physics in 1901 [Mery, 2015], are electromagnetic radiation just like the visible
light. However, they are capable of passing through even thick objects including
metals that are otherwise opaque for the visible light. Hence, when we illuminate
objects by an X-ray source and detect the intensities that passed through the
object to an X-ray detector, we can acquire images called radiographs. Unlike
regular photographs, the radiographs do not explicitly show the external shape
but rather the object thickness at varying positions. That is because the X-rays
intensity decreases with the object thickness (Section 1.2).

The radiographs are successfully used for dimensional measurements as we
discuss in Chapter 2. In specific cases, it is possible to use only a single radiograph
[Wawrzinek et al., 1997, Zscherpel et al., 2007] (Section 2.1). But a more advanced
technique exists that relies on hundreds or even thousands of these radiographs
taken from different calibrated angles. It is called computed tomography (CT)
from the Greek “tomos”, meaning “to slice”, and it was invented by Hounsfield
[1973] for usage in medicine. With CT, it is possible to reconstruct how the
scanned object looks like in sections, or slices. And with modern accurately
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calibrated devices, we can use CT not only for visual inspections, but also for
dimensional measurements of both external and internal features with accuracies
as good as 0.005 mm and for positional information [Bossi et al., 1991, Kruth et al.,
2011, Du Plessis et al., 2018, Villarraga-Gómez et al., 2018, Jones and Huthwaite,
2018, Xu et al., 2019, Butzhammer and Hausotte, 2019] (Sections 2.1, 2.2, 2.3).

Villarraga-Gómez et al. [2018] state that X-ray CT is becoming accepted as
a metrology tool and is “uniquely suited for dimensional measurements of com-
ponents having internal geometry, difficult-to-reach part features, and easy-to-
deform or flexible structures,” which is exactly our motivation.

Limited-view projections One of the main problems of CT is the necessity
to take so many projections. Not only it requires perfect calibrations of the
projection angles, not only it produces tens of gigabytes of data that need to be
processed, but taking the projections is also a huge time-consuming bottleneck.

Recently, several researchers have aimed at tackling the problem by limit-
ing the number of projections [Fischer et al., 2016, Jones and Huthwaite, 2018,
Butzhammer and Hausotte, 2019]. This is called limited-view or sparse-view CT
and accuracies ranging from roughly 0.007 mm to 0.230 mm were reported by var-
ious authors using from about 24 to 72 projections (see Section 2.2 for details).

These results are possible by using at least some prior knowledge about the
inspected objects. This makes sense in the manufacturing context because when
we are measuring an object that we have manufactured ourselves, we have a lot of
prior knowledge available about how the object should look like. Essentially, the
real shape should not be very far from the intended design, otherwise we would
have a far bigger problem than dimensions being off a few millimeters.

Thesis goals and structure
In this thesis, we partially follow the previously mentioned state-of-the-art re-
search in X-ray dimensional measurements. That means to use as few projections
as possible to still estimate reasonably accurate dimensions in non-destructive
non-contact quality control. We propose a novel approach (Figure 2) that uses
prior knowledge of the objects but does not use CT reconstructions, so we only
require a couple of radiographs acquired using standard industrial X-ray setups.

The overall objectives and structure of this thesis are the following.

1. Fundamentals We briefly examine the fundamentals of X-rays and radio-
graphs. We first focus on the physics and mathematics behind the process.
Then, we explain the technical details of generating and detecting X-rays.
Finally, we discuss the radiograph qualities and what errors and difficulties
we can expect. After reading Chapter 1, the reader should understand how
radiography works.

2. Related works We devote Chapter 2 to briefly explaining the research, in-
cluding state-of-the-art, in using X-rays for dimensional measurements. We
mention techniques that only use a single projection, then methods that rely
on CT reconstructions, and then the state-of-the-art in limiting the number
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of projections. Finally, we mention related research in X-ray simulations
(3D rendering) that are important for our own approach.

3. Our approach In Chapter 3, we propose the novel approach. We formulate
the problem, explain the high-level concept and its components, and then
we show the details of each part of the method. Mainly, we parametrize
the inspected object and calibrate its material properties, which is our prior
knowledge. Then, using a small set of X-ray projections, we find the posi-
tional and dimensional parameters of the measured object using optimiza-
tion methods and 3D rendering.

4. Implementation We implemented our approach in a prototype demo appli-
cation for dimensional measurements from real radiographs of real physical
objects. In Chapter 4, we briefly show our implementation using dataflow
graphs and GPU-accelerated components such as ray-tracing.

5. Results and evaluation Finally, in Chapter 5, we verify that our method
is indeed capable of measuring object dimensions on real data coming from
a real X-ray machine. Our results are compared to dimensional measure-
ments that we performed using other approaches such as contact methods
(calipers) and X-ray tomography. We discuss our accuracy, performance,
and theoretical method limits.

150.000 mm

60.000 mm

100.000 mm

40.000 mm
design manufacturing

physical product

radiography
X-ray projections from

carefully chosen positions

limited set of
X-ray projections

dimensional measurements
40.188 mm

149.255 mm98.940 mm

60.241 mm

prior knowledge

our method

Figure 2: Very high-level overview of our proposed method.
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1. Fundamentals
As introduced in the previous chapter, our main topic is dimensional measure-
ments using X-ray projections. While the concept of measuring object dimensions
is fairly simple and was already explained in our Introduction, the concept of X-
rays is much more complicated and deserves its own chapter. That is because it
requires more detailed understanding of the physics and the technology behind
radiography. In this chapter, we introduce the fundamentals of X-rays used for
non-destructive evaluation.

A typical X-ray setup for non-destructive evaluation is designed in the follow-
ing way (Figure 1.1) [Mery, 2015, Villarraga-Gómez et al., 2018, Du Plessis et al.,
2018]. An evaluated object is placed in a manipulator, which is a device designed
for holding the object in a fixed position while also being able to move and/or
rotate it. When the object is positioned, we irradiate it with a beam of X-rays,
whose elementary properties are discussed in Section 1.1. As the X-rays partially
pass through the object, their intensity attenuates due to interactions between
the X-ray photons and the object atoms described in Section 1.2. Generating
the X-ray beam with an X-ray source is explained later in Section 1.3. Detecting
the rays that passed through the object is described in Section 1.4 followed by a
discussion about the quality of the acquired radiographs in Section 1.5.

We refer all readers interested in even more theory that is beyond the scope
of this thesis to the following literature. More details about X-ray physics can be
found in Elements of Modern X-ray Physics by Als-Nielsen and McMorrow [2011].
More details specifically about non-destructive evaluation and visual computing
with X-rays can be found in Computer Vision for X-Ray Testing by Mery [2015].
Recently, the second edition of Digital Radiology by Seeram [2019] was released
and includes detailed illustrations of X-ray detectors and image quality.

detector

radiograph

manipulator

rotation

translation

object
source

Figure 1.1: Typical setup for X-ray non-destructive evaluation. An evaluated
object is placed in a manipulator between an X-ray source and a detector. The
object is irradiated and a digital radiograph is formed from the detected beam.
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1.1 X-rays as electromagnetic radiation
X-rays are electromagnetic waves just like the visible light, radio waves, or mi-
crowaves that we use for Wi-Fi and heating our food in microwave ovens. The
electromagnetic waves are oscillations of an electric and a magnetic field propagat-
ing through a medium. These waves can be characterized by several properties,
some of which we now explain. For comparing the properties of X-rays to the
other types of electromagnetic radiation, see Figure 1.2 [Mery, 2015].
Wavelength Typically, we characterize waves with wavelength λ with units of
meters [m]. The wavelengths of X-rays are very short with a very wide range of
about 10−12 m to 10−8 m. Compare that to the visible light ranging from about
4 · 10−7 m = 400 nm for a blue color to 7 · 10−7 m = 700 nm for a red color.
Frequency Wavelength λ is inversely proportional to frequency f = c/λ [s−1],
where c is the speed of light. Because of this relation, we can see that the X-rays
have much higher frequencies than the visible light.
Photon energy The last important property that we mention is photon en-
ergy, which is directly proportional to frequency f . For this purpose, we look at
electromagnetic radiation as if it consisted of photons, uncharged particles rep-
resenting a quantum of an electromagnetic field. A single photon has photon
energy ε = hf [J], where h

.= 6.626 · 10−34 J · s is the Planck constant1.
For convenience, as we will see in Section 1.3, it is common with X-rays to

represent this energy with the electronvolts [eV] instead of the joules [J]. They
are just a different unit where 1 eV .= 1.602 · 10−19 J. We can now compute that
the energies of X-rays range from about 120 eV to 1.2 MeV. Again, compare this
to the visible light of about 1.6 eV for red color and 3.2 eV for blue color.

In industry, for non-destructive evaluation, we typically work in the range of
30 keV to 400 keV, whereas in medicine it is usually below 70 keV as we want to
penetrate different materials [Kingon et al., 2018].

radio waves microwaves infrared ultraviolet X-rays γ-rays

λ [m]
f [s−1]
ε [eV]

100 10−3 10−8 10−12

108 1011 1016 1020

10−6 10−3 102 106

λ [m]
f [s−1]
ε [eV]

7.7 · 10−7 3.9 · 10−7

3.9 · 1014 7.7 · 1014

3.21.6

10−7

1014

100

Figure 1.2: Illustration of a part of the electromagnetic spectrum. Symbols used:
wavelength λ, frequency f , photon energy ε. Not to scale, values by Mery [2015].

1For Planck constant and electronvolt, see BIPM [2019].
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1.2 Interactions of X-rays with the matter
We have seen that X-rays are electromagnetic waves similarly to the visible light.
And just like light interacts with the objects around us, being reflected from
surfaces or scattered in a dense morning fog which the author described in his
previous thesis [Iser, 2017], the X-rays also interact with the matter. However,
we will see that these interactions significantly depend on the photon energies,
which is why X-rays or γ-rays interact differently than the visible light.

Suppose we have our setup from Figure 1.1 with an object being irradiated
with an X-ray beam. For convenience, we will model the object as a collection of
atoms with electrons in the shells of the atoms, and we will model the beam as a
stream of photons. It is clear that the photons have to interact with the object in
some way, because otherwise the detector would detect the same intensities in the
whole image and all X-ray projections would be plain white. Then, radiography
would not make any sense. So let us now have a look at how individual photons
interact with individual atoms [Mery, 2015, Choppin et al., 2013].

Just like with the visible light in participating media, there are two main types
of interaction: absorption and scattering. Absorption means that a photon
passing through an object is absorbed, the photon is annihilated and its energy
is transformed into another form. This happens via the photoelectric effect, pair
production, and partially Compton scattering. Scattering means that a photon
originally flying in some direction is diverted into another direction. During this
process, the energy of the diverted photon may remain the same as of the original
photon (as in Rayleigh scattering) or it may decrease (as in Compton scattering).

Photoelectric effect The photoelectric effect (Figure 1.3a) may occur when
the photon energy ε is greater than the binding energy of an electron in an atom.
This binding energy depends on which chemical element it is and which shell of
the atom the electron is in. When the photoelectric effect happens, the energy of
the photon is completely transferred to one of the electrons e− in the shell and
the electron is emitted out. The original photon is annihilated.

Pair production Pair production (Figure 1.3b) may occur when a photon with
a very large energy ε passes in the proximity of the nucleus of an atom. When
pair production happens, the photon energy is converted into mass in the form of
two particles: an electron e− and a positron e+. Because each of these particles
has a non-zero mass of 511 keV/c2, the original photon needs to have an energy of
at least double that amount ε ≥ 1.022 MeV. The original photon is annihilated.

Rayleigh scattering Rayleigh scattering (Figure 1.3c) is an elastic scattering
in the sense that no energy of the photon is lost during the process. The original
photon is simply diverted into a new direction. In the X-ray range, photons with
lower ε get diverted more than photons with higher ε. As an interesting fact, we
note that Rayleigh scattering also occurs in the range of the visible light, where
it is responsible for scattering phenomena such as the sky color [Elek, 2016].

Compton scattering Compton scattering (Figure 1.3d) is an inelastic scat-
tering where the energy of the original photon is not conserved. It occurs when
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Figure 1.3: X-ray photons interacting with atoms and electrons.

the photon energy ε is much larger than the binding energy of an electron in an
atom. A portion of the energy is used to strike the electron out from the atom,
the remaining energy is reemitted in the form of a new photon in a possibly dif-
ferent direction. Because of that, Compton scattering can be understood as both
scattering and absorption as the photon energy is partially lost.

Note: Thomson scattering Please note that in some literature about X-rays,
for example in Als-Nielsen and McMorrow [2011], we can also find mentions about
so-called Thomson scattering. Same as Compton scattering, it describes an event
of a photon being scattered of an electron (Figure 1.3d). Historically, these two
events have been divided. Thomson scattering is essentially a low-energy limit of
Compton scattering for ε ≪ mc2, where m is electron mass [Moore, 1995]. The
major difference is that with these low energies, the radiation energy does not
change [Chen et al., 1998], so Thomson scattering is elastic.

We have now seen how individual X-ray photons interact with atoms and
electrons. But when working with X-ray projections, we do not track every single
photon separately and detect its individual behavior. Rather, our measurements
are more global than that, because radiographs essentially correspond to intensi-
ties (without giving them any specific units for now) of the X-ray beams detected
at different parts of our detector. Hence, we need to understand how the indi-
vidual interactions influence the intensity of a beam.

Attenuations When photons of a beam travel a certain distance x in the
matter (Figure 1.5), there is a certain probability that one of the interactions
between the photons and the matter will occur. The average distance that a
photon can travel until an interaction occurs is called the mean free path mea-
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sured in meters [m]. The inverse of this value is called the linear attenuation
coefficient µ [m−1]. The exact number depends on the composition of the matter
and the photon energy ε which might be too low or too high for some of the
interactions to occur.

When µ is normalized against the volumetric mass density ϱ [kg · m−3] of a
material, we get the so-called mass attenuation coefficient µm = µ/ϱ [m2 · kg−1]
(sometimes reported as [cm2 · g−1] as we usually refer to small quantities).

Note that for a fixed ε, we can simply add up the coefficients of different
interaction types [Mery, 2015, Choppin et al., 2013]:

µ = µphot + µpair + µRayl + µComp, (1.1)

where the partial coefficients correspond to the photoelectric effect, pair pro-
duction, Rayleigh scattering, and Compton scattering, respectively. An example
of how these partial coefficients contribute to the total attenuation coefficient
depending on ε can be seen in Figure 1.4 for aluminum.

Attenuation law Let I0 be the initial intensity of a monochromatic2 narrow
beam travelling a distance x through a homogeneous material (Figure 1.5). The

2Monochromatic means that all photons in the beam should have the same initial energy ε.

10−3 10−2 10−1 100 101

ε [MeV]

10−4

10−2

100

102

104

µ
m

[c
m

2
·g
−

1
]

Total

Photoelectric effect

Pair production

Rayleigh scattering

Compton scattering

Figure 1.4: Partial and total mass attenuation coefficients for aluminum and
photon energies ε from 1 keV to 10 MeV. Both axes are logarithmic. Notice the
discontinuity (edge) in photoelectric effect when ε exceeds energy required to
remove electrons from a higher atom shell. (Values from Seltzer [1987].)
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object consisting of atoms

X-ray source

detector

x

µ

I0 I(x)

Figure 1.5: Photons in a narrow beam travelling through and interacting with
a homogeneous material. Note that this model does not consider that scattered
photons may reach the detector at different positions, nor does it model the
fact that photon energies decrease during some interactions, which changes the
received spectrum. Compare to full Monte Carlo simulations in Section 2.4.

intensity I after passing through the material decreases exponentially with x and
the attenuation coefficient µ:

I (x) = I0 · exp (−µx) . (1.2)

For X-rays, this equation is sometimes called the attenuation law or the absorption
law [Vidal et al., 2009, Mery, 2015]. However, especially in the context of the
visible light, where the exact same formula is used, it is sometimes referred to as
the Beer-Lambert law [Marinovszki et al., 2018, Vidal et al., 2009, Vidal and
Villard, 2016, Elek, 2016].

More generally, we can rewrite the formula as:

I (x) = I0 · T (x) , (1.3)

where T is the transmittance, transmission, or throughput of the path through
the material, in our case T (x) = exp (−µx). The transmittance then corresponds
to what we can see on radiographs, where thick and dense materials have very
low transmittance (the image is dark) and the air or soft tissues have very high
transmittance (the image is light).

1.3 X-ray sources and their spectrum
Now that we know what X-rays are and how they interact with the matter, it is
time we explain how to generate them [McCollough, 1997, Als-Nielsen and Mc-
Morrow, 2011, Mery, 2015]. This knowledge is important for our work as the
X-ray sources that we typically use have very wide spectrum of photon ener-
gies ε that they generate (Figure 1.8). And we already know that photons with
different ε interact differently, so it is important to understand how the typical
generated spectra look like.

The first experiment When Röntgen first discovered the X-rays in 1895, he
was originally performing experiments with radiation coming from electrodes in
evacuated glass tubes. He noticed that even when the tube was fully covered in
a darkened laboratory, something caused a fluorescent screen placed far from the
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tube to shine [Swindells, 1928]. During closer inspection, he noticed that he could
see the bones inside of his own hand casting a shadow on the screen. It was clear
that he must have discovered a new kind of radiation that could be incredibly
useful in medicine and other fields. As the first tubes for generating X-rays were
not very reliable, it was necessary to develop a new design.

Coolidge tube The standard X-ray tube was developed by Coolidge in 1912.
This tube (Figure 1.6) consists of a heated cathode and a water-cooled anode.
Between them, we apply a high voltage U . The cathode itself is made of a
filament that we strongly heat by voltage Uh. Because of the heating, electrons
are emitted from the filament and these electrons are immediately accelerated
towards the anode thanks to the voltage U . As the accelerated electrons collide
with the anode, photons are emitted out.

photons

e−

anodecathode

U

Figure 1.6: Diagram of a Coolidge tube.

There are two distinct ways how, or perhaps why, the photons are emit-
ted from the anode. Some of the photons are emitted because of the so-called
Bremsstrahlung, but these photons are not the only ones. When we look at the
emitted electromagnetic spectrum (Figure 1.8), we can not only notice a contin-
uous “hump”, but also a few discrete spikes of a characteristic radiation.

Continuous X-rays (Bremsstrahlung) When a highly accelerated electron
comes very close to a nucleus of one of the anode atoms, it becomes attracted
to the nucleus and gets deflected with a Coulomb force. During the process, the
electron is slowed down (hence the German name Bremsstrahlung, where bremsen
means brake in German), so it loses some or all of its kinetic energy, which is
emitted as a photon. Because the amount of energy depends on how close the
electron happened to be to the nucleus, the energy spectrum is continuous.

Notice that the emitted photon energy ε can never be higher than the kinetic
energy E of a single accelerated electron. As the electrons are accelerated with
the cathode-anode voltage U , we have E = e · U , where e

.= 1.602 · 10−19 C is the
elementary charge. So ε can never be larger than e · U , which from the definition
of electronvolts3 is equal to exactly U electronvolts. For example, in a tube with
voltage U = 220 kV, the maximum emitted photon energy is ε = 220 keV.

3One electronvolt is equal to the kinetic energy that an electron acquires by passing through
a potential difference of one volt in vacuum. [BIPM, 2019]
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Discrete (characteristic) X-rays In addition to Bremsstrahlung, there is a
second way how photons are emitted from the tube anode. When an accelerated
electron collides with an anode atom, it may knock an atomic electron out of one
of the inner atom shells. As both electrons leave, there is a vacant spot in the
atom shell, which is immediately filled with an electron of an outer shell. As this
electron jumps from the outer to the inner shell, the energy difference between
the energy levels is emitted as a photon. Because the energy levels are precisely
specified for every element atom, the energies of photons emitted this way may
only be discrete from a specific set of values.

We have seen a Coolidge tube and how exactly photons are emitted from it. It
remains to note a few practical concerns about the cathode and anode. First of all,
the hot cathode is usually made of tungsten (W, wolfram) as it has a high melting
point of about 3380 ◦C. The same material is typically used also for the anode as
tungsten additionally has a high atomic number and high thermal conductivity.
That is important because about 99% of the incoming kinetic energy is converted
into heat and only about 1% into X-ray photons [Mery, 2015].

This has a consequence for X-ray projections. In order to get sharp radio-
graphs without geometric blur, we would need an infinitely small focal spot (Sec-
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(b) Source of discrete X-rays

Figure 1.7: Accelerated electrons interacting with the Coolidge tube anode atoms.
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Figure 1.8: Illustration of an approximate spectrum of photon energies ε emitted
from a Coolidge tube. Low-energy photons are removed by inherent or added
filtration [McCollough, 1997].
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tion 1.5, Figure 1.11). But then the heat would not be dissipated quickly enough
and the anode would essentially melt, destroying the Coolidge tube. Hence, a
few tricks need to be used such as a rotating anode (which helps distributing the
heat) or inclining the electron beam in the focal spot. This is already beyond the
scope of this thesis, but it is important to keep in mind that the technology that
we use is never as simple as explained in theoretical backgrounds.

As a final note for this section, we mention that there is an ongoing research in
developing new X-ray sources discussed for example by Als-Nielsen and McMor-
row [2011]. Specifically, for certain physical experiments, it is necessary to use
X-ray sources that emit a large number of photons per second with tuneable and
narrow spectra, which is not possible with the standard tubes. To overcome the
limitations, it is possible to use synchrotron sources, which are particle accelera-
tors where radiation is emitted from charged particles flying at high relativistic
speeds. Another option is to use a free-electron laser : the first one for hard X-rays
was started in April 2009 [Als-Nielsen and McMorrow, 2011].

1.4 X-ray detectors
The last part of our setup from Figure 1.1 that remains to be explained is the X-
ray detector, which is an essential part responsible for creating the radiographs.
It is a complicated component with many possibilities of how exactly it can
be constructed. In this thesis, we are not much interested in deep engineering
details of various scintillation layers and photoconductors. Instead, we introduce
the fundamental concepts of selected X-ray detectors, which will be relevant for
the next Section 1.5, where we discuss image quality of digital radiographs.

Analog radiography When Röntgen discovered the X-rays in 1895, he used
fluorescent screens that emit visible light when hit by X-rays. Such a screen can be
placed on top of a photographic film. When hit by X-rays, the light from the screen
acts on the film together with the X-rays themselves and a radiograph is captured
[Swindells, 1928, Oborska-Kumaszyńska and Wísniewska-Kubka, 2010, Seeram,
2019]. For convenience, both the screen and the film were placed in a film-screen
cassette and the film was then chemically processed so that it could be displayed.
This is known as analog radiography or film-based radiography and for a long time,
it used to be the standard way of taking radiographs. Because of the film chemical
structure, the parts hit by X-rays became dark. That is why conventional medical
radiographs have a black background with white (transparent) bones.

Image intensifiers and CCD sensors Because fluorescent screens were very
dim, a technology was needed for improving the brightness. In 1948, an X-
ray image intensifier [Yaffe and Rowlands, 1997, Mery, 2015, Seeram, 2019] was
developed for this purpose. It is a vacuum tube with a fluorescent screen and a
photocathode on its input (Figure 1.9). As X-ray photons hit the screen, photons
of visible light are emitted and they immediately hit the photocathode, which
converts them into electrons. The electrons are then accelerated and focused
towards an output phosphor screen which converts them to visible light again.
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Figure 1.9: Image intensifier with a CCD camera.

The reason why we mention this old technology is the following. With the later
development and expansion of CCD sensors in 1970s and 1980s, the intensified
image from the vacuum tube could be digitally captured in real time as described
by Mery [2015] or Yaffe and Rowlands [1997]. A CCD (charge-coupled device)
sensor is based on a CCD array corresponding to individual pixels, where incident
light is converted into an electrical charge. This charge can be rapidly read using
a system of registers and a whole image can be formed.

Nowadays, modern CCD sensors are available. But capturing the image from
an intensifier results in geometric distortion as the surface is curved, limited
resolution of intensities, too small image surface, and the whole setup is large
and heavy. Several other possibilities exist to couple a CCD sensor directly to a
screen, such as optical lens coupling or fiber optic coupling, but these have their
own problems discussed for example by Yaffe and Rowlands [1997].

Computed radiography In 1980s, another technology relevant to digital ra-
diography was born. The so-called computed radiography (not to be confused with
computed tomography) [Seeram, 2019, Oborska-Kumaszyńska and Wísniewska-
Kubka, 2010] enables digitally reading an acquired radiograph. It is based on
imaging plates with photostimulable phosphors. When an X-ray source shines a
beam through an object to the imaging plate, a latent image is created in the
plate. Later, the plate is placed in an image reader that reads the latent image
by scanning the plate by a laser beam via photostimulable luminescence, which is
measured, read-out, and digitized. After the digitization, the plate can be erased
and the whole process repeated with another radiograph.

Obviously, this process has its own disadvantages [Seeram, 2019] like low
efficiency, low spatial resolution, and the necessity to physically move the imaging
plate to a separate device for reading and digitizing the image.

Flat-panel digital radiography Approximately in 1995, a better technology
became available to overcome the shortcomings of image intensifiers and com-
puted radiography and is becoming the standard way of capturing digital radio-
graphs. The technology is called the flat panel detector [Seeram, 2019, Mery,
2015, Körner et al., 2007, Yaffe and Rowlands, 1997].

It is a very light and thin panel which directly contains everything required for
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Figure 1.10: Illustration of the flat panel technology.

detecting and digitizing X-ray projections without any geometric distortions. Like
CCD sensors, a flat panel is based on pixel arrays from which the corresponding
pixel values can be read. In our flat panel used in Chapter 5, the pixel matrix is
approximately 40 × 40 cm large with a resolution of 4096 × 4096 pixels. In a flat
panel, each pixel has a thin-film transistor (TFT) and a storage capacitor which
collects and stores an electric charge proportional to the incident radiation that
it received. What remains to be answered is how the incident X-ray photons get
converted into the electric charge inside the pixel.

a) Indirect flat panels One possibility is to use an idea similar to what we
have already seen: use an X-ray scintillator which converts X-ray photons into
visible light photons, and then detect these photons using a photodiode, which
converts them into the electric charge (Figure 1.10a). This is called an indirect flat
panel as the X-rays are detected indirectly via a scintillator. The main difference
to the CCD sensors is that the scintillator is directly embedded in the pixel array
so there is no need for any image intensifier, optical, or fiber-optic coupling.

There is two main possibilities how the flat-panel scintillator may be con-
structed: with a powdered phosphor or with a structured phosphor. The structured
phosphor is organized in thin columns (needles), which reduces spatial spreading
of the light inside the scintillator.

b) Direct flat panels Another technology of flat panels is called direct flat
panels (Figure 1.10b). These do not have any scintillators at all, rather, they use
X-ray photoconductors which can directly convert X-ray photons into the electric
charge. The physics behind these photoconductors are complicated and various
photoconductors may be used (for a detailed study, refer to Kabir and Kasap
[2017] or Kasap et al. [2011]). The basic idea is the following: the photoconductor
has electrodes, a top one (incident to X-rays) with a high voltage and then a
bottom one, which is connected for each pixel separately. When an X-ray photon
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hits the photoconductor, it is absorbed, and an electron-hole pair is generated.
The pair travels along the electric field created by the high voltage and the holes
accumulate on the storage capacitors.

1.5 Radiograph image quality
In the previous sections, we saw how a typical non-destructive evaluation setup
from Figure 1.1 looks like and how its individual components work. The output
of the whole setup is a two-dimensional digital radiograph consisting of individual
pixels, whose intensity values would, ideally, be proportional to the transmit-
tances along the optical paths through the projected objects (Section 1.2).

Unfortunately, when the setup is constructed in a real world, it is never perfect
and all its imperfections, mainly caused by the detectors, manifest in the form
of quality loss in the acquired image. Some of the issues may not be noticeable
at first, but when we are developing an algorithm that takes these imperfect
images on its input, any slight error may propagate to the quality of the algorithm
outputs. When we evaluate our own algorithm in Chapter 5, some of the image
imperfections will be noticeable in our results and we will often refer back to this
section. So let us have a look at a few selected radiograph characteristics.

Focal size In a sense, taking radiographs (Figure 1.11) is the same as taking
photos with a camera. The first difference is that instead of visible light pho-
tons, it is X-ray photons that we capture, although we already know that many
detectors first convert them to a different spectrum anyway.

The second is that we do not use any lenses or mirrors for focusing the “light”
because constructing them for X-rays is incredibly difficult: refractive index n of
vacuum is by definition 1.0, for many materials transparent to the visible light it
is typically between 1.2 and 2.0, but for X-rays it is only around 0.99999, which is
even below 1.0 because of resonance [Als-Nielsen and McMorrow, 2011]. So taking
radiographs is more like taking photos with an “old-school” pinhole camera.

The third difference is that with X-rays, the objects that we are “photograph-
ing” are between the “pinhole” and the detector, not outside. The “pinhole” itself
acts as a source of the photons, in other words, the X-ray source is the “pinhole”.
Unfortunately, the X-ray source is not infinitely small, so the “pinhole” has a
diameter which causes geometric blur of the image (Figure 1.11).

This focal size or focal spot diameter for medical X-rays can typically range
from 0.3 mm to 2.0 mm [Vidal and Villard, 2016]. In our industrial setup that
we use for evaluation in Chapter 5, we have a focal size as small as 0.002 mm to
0.006 mm, which of course significantly lowers the possible geometric blur.

Refraction and reflection So far, we have talked about the X-rays as in-
dividual photons interacting with atoms and electrons. However, there are two
phenomena that strongly depend on the wave characteristics of X-rays: refraction
and reflection. In the previous paragraphs, we already mentioned that the X-rays
refractive index of many materials is around 0.99999, which is below one. When
we plug these values to the Snell’s law of refraction [Als-Nielsen and McMorrow,
2011], we can see that the refraction effect is negligible.
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Figure 1.11: Focal size and geometric blur.

However, as the values are less than one, X-rays are prone to total external
reflections, which allows constructing sophisticated focusing optics [Als-Nielsen
and McMorrow, 2011]. Practically, these external reflections mean that when X-
rays hit a surface in an extremely small angle in the range of milli-radians, their
energy is reflected, which may be occasionally visible in the radiographs when
objects are positioned and rotated in specific ways.

Gray-level resolution As we have seen, the pixels of digital detectors (Sec-
tion 1.4) usually accumulate an electric charge which corresponds to the intensity
of the incident X-rays. But the amount of the charge, which is a continuous ana-
log value, has to be somehow measured and converted into a discrete value that
can be represented in a computer (Figure 1.12). In signal processing, this is
called quantization and we are interested in how many gray levels, or intensity
values, a pixel can have [Mery, 2015, Seeram, 2019]. For 8-bit sensors, there are
only 28 = 256 possible intensities, so we can only recognize 256 different object
thicknesses, which is obviously limiting any dimensional measurements.

Our sensor from Chapter 5 is 16-bit, so 216 = 65536 intensity values can be
represented. In practice, this is not relevant by itself, because if the radiograph
darkest pixel had intensity 3000 and the brightest one 5000, then we would still
only have 2000 different values. So extra attention must be paid when taking the
radiograph so that the covered portion of the interval is as large as possible.

Noise and detective quantum efficiency There is always random noise
present in the image signal due to the random nature of image quanta (quan-
tum noise) and various statistical fluctuations along the whole imaging chain
[Seeram, 2019, Kabir and Kasap, 2017]. In direct flat panels, the photoconduc-
tors are responsible for additional noise by random charge-carrier trapping, when
a charge is not completely collected Kabir and Kasap [2017].

The detective quantum efficiency (DQE) measures how efficient a detector
is in converting the incident X-rays into a useful image signal taking noise into
account. The ideal detector would have DQE equal to 100 %, but that is not the
case with real detectors. Exact measurements and calculations are complicated,
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Figure 1.12: The originally continuous analog signal is sampled at discrete posi-
tional and intensity intervals.

and a discussion is provided for example by Kabir and Kasap [2017] and data by
Körner et al. [2007] show that indirect flat panels can achieve higher DQE than
direct flat panels.

Spatial resolution Spatial resolution describes how well we can distinguish
fine details in objects [Seeram, 2019, Kabir and Kasap, 2017, Körner et al., 2007].
Please note that this is not just about the number of pixels. Of course, if we had
too few pixels, we would not be able to tell apart different parts of an object.
But the problem is that the intensity values of neighboring pixels on a detector
are more or less correlated. This has a lot to do with the way the detectors are
constructed (Section 1.4 and mainly Figure 1.10).

In indirect flat panels and other indirect solutions like CCD detectors, an X-
ray scintillator is used to convert X-ray photons into light. The scintillator has a
non-zero thickness, so the converted light photons can scatter inside the structure
and may hit neighboring pixels photodiodes [Seeram, 2019, Yaffe and Rowlands,
1997]. This is called lateral spread and is especially problematic in powdered
(unstructured) scintillators. The spreading can be reduced by structuring the
phosphor into thin microscopic needles, which improves the spatial resolution.

In direct flat panels, one could think that no spreading is possible and the spa-
tial resolution is perfect. Even though it is much better, spreading to neighboring
pixels still occurs due to complicated reasons discussed for example by Kabir and
Kasap [2017] or Kasap et al. [2011]. Inside the photoconductor between the two
electrodes, a charge-carrier may be trapped and induce charges not only to the
central pixel but also to its neighbors. If a hole is trapped, charge is added to
the neighbors, but if an electron is trapped, a charge with an opposite sign is
induced, so the charge in neighboring pixels is essentially decreased.

The results of spatial spreading are best seen on line spread functions and
edge spread functions (Figure 1.13) [Konstantinidis et al., 2012, Kingon et al.,
2018, Seeram, 2019]. Line spread function represents detected signal of a narrow
slit (line). Edge spread function represents detected signal of an edged object.
On both of them, we can see that sharp discontinuities are smoothed via the
spreading to neighboring pixels.
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Figure 1.13: Illustrations of line spread and edge spread functions of an indirect
X-ray detector (not to scale, see text for explanation).
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Figure 1.14: Illustration of line pairs and their blurring which is expressed in a
modulation transfer function (not to scale, see text for explanation).
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Modulation transfer function The spatial resolution can be expressed in
a single modulation transfer function (MTF) [Seeram, 2019, Kabir and Kasap,
2017, Kasap et al., 2011, Yaffe and Rowlands, 1997]. It expresses the ability of a
detector to resolve very thin objects placed very close to each other. Imagine a
black line placed next to a white line (Figure 1.14), this is called a line pair (lp).
When these pairs are repeated many times within one millimeter, we measure
this spatial frequency ξ in [lp · mm−1]. The value of MTF for a certain ξ says
how well contrast is preserved, i.e., the ratio between the output contrast and the
input contrast for a given ξ.

Ghosting Ghosting, image lag, or memory effect all refer to the fact that when
an X-ray beam is turned off or when an object moves, the previous image can still
be seen (superimposed on the new one) [Seeram, 2019, Kabir and Kasap, 2017]
(see Figure 5.14 in Section 5.4 for an example). In case of indirect detectors, the
fluorescence layer may keep shining for a longer time than the X-ray photons keep
coming, but according to Seeram [2019], they are better than direct flat panels.
In the direct panels, some of the drifting carriers are trapped in the photocon-
ductor and are only released later, which for some photocunductors may take
several hundreds or even thousands of seconds [Kabir and Kasap, 2017]. Hence,
it influences not only real-time radiography, but also taking regular radiographs
with a delay of a few seconds or even minutes.

Defects and flat fielding Finally, it is important to realize that the raw data
coming from a detector, before being preprocessed, may contain various artifacts
because of manufacturing defects [Seeram, 2019]. These include individual dead
pixels as well as small defective pixel clusters or even whole columns. Furthermore,
areas may have different sensitivities to the radiation. Because these defects are
fixed (it is always the same pixels having the same artifact), the raw images can
be corrected via calibration and preprocessing, usually referred to as flat fielding.
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2. Related works
In Chapter 1, we presented the fundamental digital radiography concepts. Now,
we discuss the existing research that we found relevant for the topic of non-
destructive dimensional measurements from a single or multiple X-ray projections.

Before we introduce the related works, let us note that the area of measure-
ments and non-destructive testing and evaluation is very broad and active. There
are specialized journals like NDT&E International that has been publishing new
peer-reviewed original research results since 1967, nowadays tens of articles eight
times a year. Along radiography, these works include optical, thermal, ultrasonic,
and electromagnetics methods. In the following sections, we focus on the most
related works in radiography and we discuss their main contributions.

2.1 Dimensional measurements with X-rays
Measuring object dimensions from projected images is problematic. Notice that
for a two-dimensional image, there is infinitely many objects that could have
created that image (Figure 2.1) [Goldstein and Brockmole, 2017]. Even if we
knew the shape of our object, for example, a rectangle, it could still have infinitely
many sizes depending on the distance from the detector. Nevertheless, there are
of course various approaches that simply go around this problem. In this section,
we show how one can do that.

detector

source
(a)

(b)
(c)

Figure 2.1: When projected, all of the objects (a), (b), and (c) would correspond
to the same two-dimensional image even though they have different dimensions.

Single projection Measuring dimensions from a single radiograph may be pos-
sible in specific situations. We show two standard methods, one reportedly in use
since 1950s, for measuring wall thickness of tubes (Figure 2.2), described for ex-
ample by Wawrzinek et al. [1997] or Zscherpel et al. [2007]. Note that similar
techniques could be derived for other shapes as well, but we only found references
for measuring corrosion in tubes and pipes, so we show these.

Assume we have a single projection of a tube with unknown inner wall thick-
ness w as in Figure 2.2. When projected on a detector, the inner wall has width w′
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bounded by the tangential rays. With the use of software, the width w′ (in pix-
els) can be automatically determined by detecting edges in the intensities, for
example by analyzing the first derivative. The real width w (in metric units) is
then calculated from w′ and a priori known dimensions such as the tube radius r
and source-detector distance f . This is called the tangential technique and can
be derived even for more complicated tubes with multiple layers.

Yet another approach is called double-wall technique. Instead of measuring
widths on a radiograph, we measure local changes in intensities accumulated
through walls on both sides (hence double wall). We already know that intensities
exponentially decrease with thickness along an X-ray beam (Equation 1.2). We
calibrate the attenuation coefficient µ from reference points and then we can
calculate relative changes in thickness (corrosion) from local changes in intensities.

source

detector

f

r

w

tube

intensity

position

w′

Figure 2.2: Radiograph projection of a tube and the corresponding intensities.

Computed tomography Another common possibility is to use computed to-
mography (CT) invented by Hounsfield [1973]. It allows reconstructing cross-
sectional slices from X-ray projections taken from many different angles. Later,
Feldkamp et al. [1984] and Feldkamp and Jesion [1986] published the first ap-
proximate algorithm for reconstructing the objects into volumetric 3D arrays
consisting of voxels (3D pixels). In 1991, the company Boeing was already evalu-
ating the usage of CT for dimensional measurements, reporting accuracies better
than 0.1 mm for testing gaps in castings [Bossi et al., 1991].

The first CT machine dedicated to dimensional measurements was exhibited
in Germany in 2005 and since then, CT systems are becoming accepted as a
metrology tool [Villarraga-Gómez et al., 2018]. A very detailed survey of dimen-
sional measurements with CT with 2011 state-of-the-art was written by Kruth
et al. [2011]. We depicted a possible workflow in Figure 2.3.
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Figure 2.3: Typical computed tomography workflow for dimensional measure-
ments. Projections from different angles are taken and slices through the object
are reconstructed. Scale calibration is necessary to ensure correct dimensions of
the reconstructed data. Then, we can do measurements directly from 2D slices or
we can use surface determination to reconstruct a 3D mesh to measure afterwards.
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State-of-the-art tomography measurements We now have a look at more
recent state-of-the-art from 2018 and 2019. Detailed evaluations of CT dimen-
sional measurements have recently been written several times by Villarraga-
Gómez et al. [2018] (and previously [Villarraga-Gómez, 2016, Villarraga-Gómez
et al., 2014]). They report deviations lower than 0.005 mm in comparison to pre-
cise coordinate measurement machines (CMM) but with the advantages of being
contactless and accurately measuring soft surfaces.

Deviations under 0.005 mm for smooth surfaces were also reported recently
by Xu et al. [2019] who evaluated CT dimensional measurements for additive
manufacturing. Specifically, for that use case, they also measured rough surfaces,
where the deviations were approximately ten times higher. This can be explained
the following way: the CMM measures mostly the peaks of the rough surface,
while the X-ray CT acquires an approximate curve between the peaks and valleys.
We refer all readers interested in more details about X-ray CT and its usage in
additive manufacturing to a recent very detailed review by Du Plessis et al. [2018].

2.2 State-of-the-art in limited projections
In the previous section, we saw that in very specific cases, dimensions can be
calculated from a single projection. But the invention of computed tomography
brought a much more robust tool for accurate measurements. Unfortunately, CT
has its own disadvantages, some of which we already mentioned in Introduction.
Its significant bottleneck is that hundreds or thousands of projections need to be
acquired of the measured object, which is very time consuming and slows down
quality inspections. In medicine, additionally, taking many projections means
that a patient is exposed to X-rays for a longer time, which we obviously want to
avoid. Hence, a lot of research is dedicated to limiting the amount of views.

In the context of computed tomography, this is called limited-view or sparse-
view CT. Recently, evaluations of state-of-the-art reconstruction algorithms were
published. Details about these algorithms and the mathematics behind them are
beyond the scope of this thesis, but their evaluations are very relevant.

Jones and Huthwaite [2018] evaluate five reconstruction algorithms1 suitable
for limited-view dimensional measurements. Two objects were being measured: a
turbine blade and a 70×70 mm additive-manufactured sample with 48 hexagonal
holes. Instead of doing full 3D reconstruction, thicknesses were measured between
edges detected on 2D reconstructed slices. For the turbine blade, in their best
result, they managed to find the edges within ±0.23 mm using only 24 projec-
tions compared to the refence measurement with 5000 projections (0.072◦ through
360◦). For the additive-manufactured sample, one algorithm achieved thickness
measurements within ±0.05 mm from 72 projections, otherwise the measurements
were within ±0.20 mm compared to digital micrometers.

Recently, a different evaluation was published by Butzhammer and Hausotte
[2019], who show that deviations in measured dimensions can be reduced by care-

1Algebraic Reconstruction Technique (ART), ART with positivity constraints, ART with
total variation (TV), Simultaneous Iterative Reconstruction Technique (SIRT), and gradient
descent with TV regularization, see Jones and Huthwaite [2018] for explanations and further
references.
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fully selecting the projection angles. Instead of taking projections from regularly-
sampled angles through 360◦, they use projections tangential to the object sur-
faces with linearly or quadratically increasing angle increments. Measurements
are performed on full 3D reconstructions that are fitted to an a priori known
3D model shape. We mention their results achieved on an aluminum test part
with 25 task-specific projection angles. They managed to lower their mean ab-
solute deviation from roughly 0.058 mm to 0.007 mm and the maximum absolute
deviation to 0.023 mm.

Investigating how to choose the best set of projections is a topic of other
researchers as well. Fischer et al. [2016] propose an optimization algorithm for
determining the best scan trajectory of an a priori known 3D CAD-model. This
is reasonable in the context of manufacturing quality control, where the scanned
objects only differ slightly (defects, dimensions) from the input model. Together
with the 3D model, users are able to select multiple areas of interest where the
reconstruction should have high quality. Their work reduces the number of nec-
essary projections, which reduces the necessary scan times.

Recently, Brierley et al. [2018] published a work complementary to the one
above. Instead of CT, they target two-dimensional radiography for detecting
manufacturing defects. Their algorithm exploits prior knowledge about the in-
spected model and expected defects and performs a simulate-evaluate-optimize
loop to find the best projections for detecting the expected defects. Their work
presents a route to reducing the reliance on X-ray CT for quality inspections,
which is also what we want to achieve with our method in this thesis.

2.3 Object fitting and pose estimation
The desire to accelerate X-ray CT or perhaps avoid it at all by using ideal pro-
jection angles could be seen in the previous section. We now show works that
try to tackle the problem in a different way: by fitting parametrized 3D models
into real acquired data, which is what we propose in our method (Chapter 3) for
dimensional measurements.

Such an idea was recently presented by Dael et al. [2017] but instead of dimen-
sional measurements, they use it to detect defects in horticultural products such
as pears. As a first step, they acquire a dataset of pear models reconstructed via
X-ray CT from real pears. The dataset is used to create a universal parametrized
3D model of a pear. When they evaluate a new pear, they first use an optical
3D vision system that scans the exterior shape. The parametrized 3D model is
then fitted into the real shape and it is used to simulate a radiograph of the pear
as if it did not have any internal defect. This simulated radiograph can then be
subtracted from a real radiograph and the difference image will show all possible
defects. A classifier is used to decide if the image is a good pear or not.

We show yet another approach, this time based on photogrammetry from 2D
radiographs. Noble et al. [1998] measure positioning of holes drilled in a man-
ufactured object. A few radiographs taken from different angles are registered
against each other using calibrated spheres placed at precise locations. The pro-
jected holes are registered on the 2D projections via geometry-guided matching
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against a 3D CAD model, the 3D parameters of the holes are reconstructed from
the correspondences between the projections.

Pose estimation Fitting models into real data often consists of pose estima-
tion, i.e., finding the position and rotation of the object on the radiograph. As
the model is three-dimensional and the radiograph is two-dimensional, this is
often referred to as 2D-3D registration [Miao et al., 2016, Bui et al., 2017]. In
a three-dimensional space, the pose has six degrees of freedom (DoF) in total
(3 for translation, 3 for rotation). In the aforementioned methods, Dael et al.
[2017] estimate the pose from the 3D vision system and Noble et al. [1998] put
the scanned object inside a fixture with reference spheres at known locations.

However, there are a few recent specialized methods for very fast (even real-
time) pose estimation from a priori known models. Miao et al. [2016] propose to
pre-compute a library of canonical radiographs covering two geometry-relevant
parameters. Then, the pose estimation is done via intensity-based registration,
i.e., selecting the pose that maximizes the similarity between a real radiograph
and a canonical model. For that, derivative-free optimization algorithms are used,
and the pose estimation can be executed in real time, which is useful in medicine
for interventional radiology.

Recently, Bui et al. [2017] proposed to estimate pose via machine learning.
In their X-ray PoseNet, deep learning is used to learn the mapping between
radiographs and object poses. Their dataset is acquired by simulating radiographs
from a priori known 3D CAD models. For downsampled images, the trained
network can predict a pose in a few milliseconds. The predictions were used for
X-ray CT reconstruction to avoid calibrating the projections.

2.4 Simulating X-ray projections
Many of the mentioned works relied on X-ray simulations [Fischer et al., 2016,
Brierley et al., 2018, Dael et al., 2017, Bui et al., 2017] and so does our proposed
method (Chapter 3). Hence, in the last section of related works, we discuss how
two-dimensional radiographs can be simulated.

Full Monte Carlo simulations If one wanted to precisely simulate the full
radiography pipeline from Figure 1.1, they would need to simulate the X-ray
source, mainly the spectrum of outgoing photons and the focal spot, then all
possible interactions between the photons and the matter including scattering
directions and energy losses, and then for all the photons that happened to arrive
at the detector, simulate how the photons get converted into the electric charge
in the detectors, including the scintillators for indirect detectors.

Such simulation frameworks do exist, for example McXtrace2 [Knudsen et al.,
2013, Busi et al., 2018] or SINDBAD [Tabary et al., 2007]. They rely on stochastic
Monte Carlo simulations, where a very large number of numerical photons is
generated and their paths are traced, everything handled stochastically with given
probabilities. There are many implementation details that make these simulations
possible, e.g., in McXtrace, one so-called numerical photon actually represents a

2http://www.mcxtrace.org/
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bunch of real physical photons, whose amount is traced in a weight factor, and
much more details explained by Knudsen et al. [2013]. As another example, in
SINDBAD, to speed up the simulation, they propose a hybrid approach where the
Monte Carlo simulation is combined with an analytical simulation that only takes
attenuation into account without the photons being scattered in new directions.

These complex simulations are important for physical experiments such as
crystallography or pulsed X-ray scattering experiments [Knudsen et al., 2013]
and advanced imaging methods such as spectral CT that provide measurements
at isolated high-energy ranges [Busi et al., 2018]. A simulation is also available
for the imaging chain of computed radiography (Section 1.4) by Yao et al. [2016].

Attenuation-only ray tracing The aforementioned complex simulations can
be avoided for the price of lower accuracy. For simplicity, we can only take
the attenuation law (Equation 1.2) into account, i.e., assume that if a photon
flying from an X-ray source interacts with the atoms in the evaluated object,
that photon disappears and never reaches the detector. In reality, this may not
be true, because that photon may be scattered in a new direction and may fly
towards a different pixel of the detector, perhaps with a different photon energy
if Compton scattering occurred. However, in attenuation-only simulations, we
assume that this is negligible (we offer further discussion in Section 5.5).

Notice that in order to evaluate Equation 1.2, we need to know x, i.e., the
distance that the X-ray beam passes through the object material. The distance
can be acquired by ray tracing (Figure 2.4): a ray is generated from the X-ray
source towards each pixel individually and on this ray, intersection points with
the geometry are found, and the distances inside the geometry are accumulated.

One example of such simulation software is aRTist3 [Bellon et al., 2012], which
was used by Fischer et al. [2016] and Brierley et al. [2018] from the previous
sections. By default, it only simulates attenuations, but there is an optional
integration of a Monte Carlo program.

Recently, Marinovszki et al. [2018] presented a GPU-accelerated simulation
using the Nvidia OptiX general-purpose ray-tracing framework [Parker et al.,
2010]. They used the simulation to estimate energy spectrum of an X-ray source
by comparing simulated radiographs to real ones. First, they registered a 3D CAD
model on real 2D radiographs using the already mentioned 2D-3D registration
like Miao et al. [2016]. Then, the energy spectrum was estimated via optimization
methods by minimizing the difference between a simulated and a real radiograph.

Attenuation-only rasterization Instead of ray tracing, Vidal et al. [2009]
propose to generate radiographs via GPU rasterization of triangulated 3D meshes.
The method is based on the observation that the distances x through the objects
can be accumulated in any unspecified order. That is, the accumulated length x
for a certain pixel is (follow Figure 2.4):

x =
∑

i

−sgn (ω · ni) di, (2.1)

where the sum is over all intersections hit by that pixel, ni is the normal vector
at an intersection, ω is the direction from the X-ray source to that intersection,

3http://www.artist.bam.de/
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Figure 2.4: Ray tracing can be used to find intersections between the X-ray source
and individual detector pixels. Our goal is to find the total distance that the ray
travels through the hollow object, in this example, between intersections 1 and
2, and between 3 and 4.

and di is the distance between the source and that intersection.
A GPU framebuffer is allocated to hold the accumulated lengths and is called

the length buffer. Its values are accumulated in a GPU fragment shader in an
unspecified order via Equation 2.1. Unfortunately, due to the nature of GPU
rasterization, some intersections may be duplicated when a pixel is at a triangle
edge or vertex, which causes black or white artefacts as the numbers of enters and
exits from an object do not match. Another problem occurs when the dot product
ω · ni equals zero as such an intersection cannot be reliably counted. Because
these situations can be detected, e.g., by comparing the number of enters and
exits, Vidal et al. [2009] propose to replace these pixels by the average value of
valid neighboring pixels.

Later, Vidal et al. [2010] improved the method by simulating focal size geo-
metric blur and polychromatic sources via additional rendering passes in a loop.
Essentially, they model a focal spot by multiple point sources and polychromatic
radiation is modeled by splitting the spectrum into discrete energy channels.

Even later, Vidal and Villard [2016] used their method for real-time simulation
of medical imaging with an animated object representing respiratory motion. In
this publication, they compared their real-time GPU rasterizations to Monte
Carlo simulations that took more than 12 days of computation. They show that
the normalized cross-correlation between the results were higher than 0.996, which
demonstrates the validity of their approach.
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3. Our approach
In the previous chapter, we saw many related radiography methods, some of
which were directly used for dimensional measurements and some for different
purposes such as defect detection in horticultural products.

In this chapter, we present our novel approach for dimensional measurements
from only a few radiographs. We build on and further extend some of the great
ideas that we saw in the previous chapter. In some ways, our concept is similar
to these works that tried fitting parametrized models to real acquired data (Sec-
tion 2.3). We saw that these methods successfully used only a few projections,
which is exactly what we want. But none of the works we saw so far pursued
and extended the general idea so far that it could be used for robust dimensional
measurements. So here, in our novel approach, we propose and do exactly that.

3.1 Problem formulation
Let us begin with formulating what exactly we aim to solve in our approach.

Problem statement Assume we have a real object made of a single solid homo-
geneous material with otherwise unknown exact material properties. The object
has a certain more or less complicated shape. We know how the general shape
looks like, which is expected in the context of manufacturing, but we do not know
its exact dimensional properties, i.e., sizes of the shape and its features, some of
which may be difficult-to-reach or internal.

We are able to take a limited set of two-dimensional radiographs of this object
from certain positions and angles. For that, we use a typical industrial X-ray setup
as in Figure 1.1, which enables contactless non-destructive evaluation. Some
general properties of the setup are expected to be known, e.g., resolution of
the detector in pixels and millimeters, but we are not required to know some
complicated properties such as the exact spectrum of the source.

Our ultimate goal is to use this limited set of radiographs and all the men-
tioned prior knowledge to estimate the dimensional properties of the real object.
We propose to achieve this via optimization, i.e., finding the values of the di-
mensional properties that best fit the real radiographs based on our simulations.
We carefully designed the whole process in such a way that the optimization can
automatically converge to accurate dimensions that the object really has in a
reasonable timeframe within a few minutes.

Rationale Our approach is designed in the context of manufacturing a large
number of objects with the same general shape but uncertain dimensional prop-
erties. We need to measure these dimensions for individual quality evaluation.
Some of our input parameters, such as the parametrization of the shape, are only
prepared once for a given shape and X-ray setup. Then, for every single object
of the same material and general shape, we only repeat the process of taking new
radiographs and manually setting a small number of initial parameters. The final
dimensional estimation of each one specific object runs fully automated.
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Formal look Let us have a more formal look at the problem and our approach.
Let the word hyperparameters denote all the prior knowledge that we have about
the object shape, the X-ray setup, the material, and other parameters that are
fixed during our algorithm. Then, let θ ∈ Rn denote a vector encoding all
the actual parameters with unknown values that need to be estimated, such as
the object dimensions. And let R : N2 → R denote the real two-dimensional
radiograph of the measured object. Formally, the radiograph R is a function that
for two-dimensional pixel coordinates gives us the intensity of that pixel.

Our goal is to estimate the parameters θestimate that best correspond to the ref-
erence radiograph R. We propose to do so by minimizing the difference between R
and a simulated radiograph. Let f : Rn → (N2 → R) denote a simulation func-
tion that for given parameters θ returns the simulated radiograph f(θ) : N2 → R.
Estimating the parameters can now be formally written as (Figure 3.1):

θestimate = arg min
θ

∥f(θ) − R∥ , (3.1)

where technically, ∥f(θ) − R∥ can be any function that computes the difference
between the two radiographs. For simplicity, we can now think of it as the sum
of absolute values of per-pixel differences:

∥f(θ) − R∥ =
∑

(i,j)∈N2

|f(θ)(i, j) − R(i, j)| . (3.2)

Solving Equation 3.1 Generally, for equations in the form x = arg minx f(x),
where f is a nonlinear scalar objective function and x is a vector, there is a
panorama of methods called (nonlinear) optimization algorithms [Nash, 2014].
They iteratively evaluate f(x) with different x chosen in a clever way (specific to
the algorithm), trying to find where f(x) is either a local minimum (which is easier
to find), or even the global minimum (which is often approached stochastically).

But the idea from Equation 3.1 and Figure 3.1 is very high-level. We still need
to design the whole method (Section 3.2 and onward), especially how θ should
be practically constructed, how f(θ) can be calibrated and evaluated as fast and
as accurately as possible, and how the references R are acquired so that we can
use the method in real-world situations to get meaningful and accurate results.

optimization algorithm

∥f(θ) − R∥

reference
R

simulation
f(θ)

new estimate
θestimate

parameters (e.g., dimensions)
θ

loop

Figure 3.1: Illustration of Equation 3.1. One way of finding its solution is to use
an iterative optimization algorithm, which tries to iteratively evaluate the target
function value and estimate new parameters that lower the value.
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3.2 Method outline
In Section 3.1, we formulated the problem and how we can look at it in a more
formal way. This section presents an outline of our method that we carefully
designed to solve the problem at hand. The outline gives an overview of the indi-
vidual components that our method consists of. One by one, they are explained
in more details in Sections 3.3 to 3.8.

Iterative workflow We are solving an optimization problem, so we designed
our method in an iterative way as depicted in our dataflow diagram in Figure 3.2.
There are multiple individual components, each has its own inputs connected to
outputs of some other components. Notice that there is no loop, except the one
that begins a new iteration, so the components can be topologically ordered,
which simplifies the implementation (Chapter 4).

Each iteration i begins with a specific 3D model and its dimensional param-
eters, its material, and its poses on N ≥ 1 reference radiographs. Some of these
values are hyperparameters, some are parameters θi, as we will see later. Using
them all as input, radiographs f1(θi), . . . , fN(θi) with different poses are simu-
lated. Then, these are compared to the real reference radiographs R1, . . . , RN

and we get a single scalar value representing the total difference among all ref-
erences. This value is the objective that the optimization algorithm is trying to
minimize. At the end of the iteration, if we are not yet satisfied with the re-
sult, the optimization algorithm estimates a new set of parameters θi+1 that are
feedback-looped back to the beginning. A new iteration can start.

reference
radiographs

object
poses

material
calibration

model
dimensions

simulation
(3D renderer)

loss
function

optimization
algorithm

estimate for the
next iteration

Figure 3.2: Diagram of our method and its iterative workflow (see text).
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Components The individual components are the following:

• Model and its parametrization (Section 3.3)
The object that we want to measure is first modeled in 3D with inaccu-
rate dimensions. By triangulating the shape, we get a set of vertices and
triangles connecting them. We need to carefully choose dimensions to be
measured and define the relations between them and vertex coordinates.

• Material and its calibration (Section 3.4)
The measured object is made of a single material with certain attenuation
properties (Section 1.2). The properties depend on photon energies gener-
ated by the X-ray source. To avoid complicated measurements of the source,
we propose a way of calibrating the material together with the source spec-
trum and detector response. We propose two ways of calibration: from a
wedge reference object or from a precisely measured arbitrary object.

• Reference radiographs and object poses (Section 3.5)
We have already seen in Figure 2.1 that infinitely many objects with dif-
ferent poses can create the same projection. It is perfectly possible that
different θ1 ̸= θ2 give the same radiograph f(θ1) = f(θ2). Hence, we
give special care to the selection of our reference images so that the opti-
mization does not converge to a wrong minimum. We propose to take two
radiographs with precisely known movement magnitude in an arbitrary axis
together with another radiograph with a different rotation. Calibration is
not necessary, only a precise movement magnitude needs to be measured.

• X-ray simulation (Section 3.6)
The goal of the simulation function f is to generate radiographs as close
to the references as possible. To avoid slow Monte Carlo simulations that
require precisely measured X-ray sources and detector responses, we instead
rely on a GPU-accelerated ray tracer that we designed to use our calibrated
material data (see above). This allows fast evaluations of f and relatively
accurate radiographs.

• Loss function (Section 3.7)
The function computing the differences between images should be fast to
evaluate and needs to be sensitive enough to report even the slightest differ-
ences between pixels. We settled with the simple sum of absolute values of
per-pixel differences as in Equation 3.2. Note that because of the random
noise present in the reference radiographs (Section 1.5), the difference will
never be zero even if we had a 100 % accurate simulation.

• Optimization algorithm (Section 3.8)
The last component is the optimization algorithm itself. We propose a
hierarchical optimization process that first roughly estimates object poses
within downscaled radiographs, then refines the pose estimations via a local
optimization, and finally performs a full optimization of all parameters. For
simplicity, we use gradient-free optimization methods as we do not know
the gradients of our X-ray simulation f with regards to the parameters θ.
Gradient-based optimization is proposed as future work.
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3.3 Object representation and parametrization
Our method is intended for measuring objects with an a priori known shape with
unknown dimensional properties. Let us show how we represent these shapes and
how we propose to parametrize their dimensions.

Simple example Suppose we are manufacturing cubes (Figure 3.3) and we
want to measure if their sizes are within tolerances.

Our prior knowledge would be the general shape of a cube. A cube has six
square faces, the neighboring always perpendicular to each other. The only di-
mensional parameter of a cube is the size of any of its sides, because the remaining
sides have the same size by definition (Figure 3.3a).

But in a more realistic scenario, perhaps our manufacturing process cannot be
trusted to make the sides perfect squares. Hence, we would add other dimensional
parameters such as sizes of different sides (Figure 3.3b). Then, in our quality
control process, we could be measuring if our cubes are still within our tolerances
of “being a cube” or they are just arbitrary cuboids that cannot be used.

θ1

(a) In ideal conditions, if we trust that
the measured object is really a cube, we
can only parametrize one side and let the
remaining have the same size.

θ1

θ3

θ2

(b) In a real scenario, we would proba-
bly parametrize at least three sides as we
could not trust the manufacturing process
to create a perfect cube with square sides.

Figure 3.3: Example parametrization of a simple cube.

Preparing a new model Now we show the individual steps that we take
to model and parametrize an object. The steps are general, but we illustrate
them with a specific real-world example in Figure 3.4. Note that some of the
steps (marked with an asterisk *) may be redundant if we already have technical
drawings and a 3D CAD model available for the manufacturing process.

1. Shape and dimensions* The first step is to know which shape we are
going to be measuring and how the individual objects of the same shape
can differ from each other (Figure 3.4a). We choose if we want to measure
the whole shape or just a cropped part that is interesting for us. Then, we
decide which dimensions define the shape, for which it is useful to prepare a
technical drawing (Figure 3.4b). Note that the drawing must be as complex
as our intended measurements, so perhaps more complex than a typical
drawing, because the dimensions are a part of our θ.
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(a) Photos of prism jaws of different sizes. We are interested in dimensional measure-
ments inside the red highlighted area without the circular holes.

θ1

θ2

θ3

θ4

θ5 θ6

θ7

θ8

θ1
θ2

(b) Dimensional parametrization θ1, . . . , θ8 of a generic prism jaw from (a).

(c) Virtual 3D model of the prism jaw. (d) Triangulated surfaces from (c).

θ5
θ6

small θ5, θ6 medium θ5, θ6 large θ5, θ6

(e) Example of how the dimensional parameters influence the 3D model.

Figure 3.4: Parametrizing and modeling a real object: prism jaws.
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2. 3D modeling and triangulation* Based on the technical drawings, we
create a 3D model in a 3D editor (Figure 3.4c). We used OpenSCAD1, an
open-source project for creating solid 3D CAD models. For simplicity, to
avoid parsing complicated file formats, we decided to triangulate the models
(Figure 3.4d), e.g., to .stl files. Triangulation converts the shape surface
into individual triangles represented by vertices, their 3D coordinates, and
their connections. In theory, any parametric surface representation could
be used if supported by the X-ray simulation (Section 3.6).

3. Dimensional parameters to vertex coordinates
Since we have triangulated surfaces, we need to decide how to reflect the
dimensional parameters from θ in the triangulation (Figures 3.4e and 3.5).
Note that the triangulated topology does not change by changing θ, only
the vertex coordinates change. The näıve approach would be to put all
these coordinates directly to θ, but that would significantly increase the
amount of optimized parameters, three times per each vertex. Hence, we
propose to keep only the few θ from the technical drawings and instead
write all 3D vertex coordinates as a function of θ as in Figure 3.5.

Algorithm steps in each iteration Whenever the optimization algorithm
proposes a new estimate θ, we only recalculate the vertex coordinates of our
triangulated model (see above and Figure 3.5). The new coordinates are then
used by the 3D renderer as shown in the diagram (Figure 3.2). As our initial
estimates in the first iteration, we can use the expected dimensions of a correctly
manufactured object.

1https://www.openscad.org/

(0, θ8 − θ7, 0)

(θ6, θ8 − θ7, θ1)(−θ5, θ8 − θ7, θ1)

xz

y

(0, 0, 0)

(θ6, −θ3, θ1)

x
y

Figure 3.5: Triangulated sides of the prism jaw. We express the triangle vertices
3D coordinates using the dimensional parameters. In the figure, examples are
shown of how the coordinates may be expressed in the given coordinate system.
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3.4 Material
Even though this section is called “Material”, as we will soon see, the situation is
more complex as we actually calibrate the whole source-material-detector chain.

Polychromatic intensities In Section 1.2, we saw that the interactions with
the matter depend on photon energies. As a typical X-ray source is polychro-
matic (Section 1.3), we want to rewrite the Beer-Lambert law (Equation 1.2)
for polychromatic spectrum in the energy interval (εmin, εmax). Let s(ε) ≥ 0 de-
note a normalized source spectrum, i.e., the distribution of photon energies where∫ εmax

εmin
s(ε) dε = 1. And let 0 ≤ d(ε) ≤ 1 denote a detector sensitivity, i.e., how

efficient the detector is at detecting such photon energies, including a filter in
front of the detector to filter out low energies. We can then write [Marinovszki
et al., 2018]:

I(x) = I0

∫ εmax

εmin
d(ε) s(ε) exp (−µ(ε)x) dε, (3.3)

where µ(ε) is the material linear attenuation coefficient at a certain photon energy
(Section 1.2), x is the distance travelled through the matter, and I0 is the source
intensity as in Equation 1.2.

For convenience, in Section 3.5, we propose to normalize all reference radio-
graphs to ensure that it holds I(0) = 1 for all pixels (with the exception of random
noise), and further that it holds 0 ≤ I(x) ≤ 1 for all x ≥ 0. This allows us to
rewrite Equation 3.3 this way:

I(x) =
∫ εmax

εmin
a(ε) exp (−µ(ε)x) dε, (3.4)

where a(ε) is a normalized source-detector spectrum:∫ εmax

εmin
a(ε) = 1, ∀ε ∈ (εmin, εmax) : a(ε) ≥ 0. (3.5)

Discretization What we propose next is to discretize Equation 3.4 to a sum
of M ≥ 1 monochromatic fractions approximating the original polychromatic
integral. This is a very old idea used for exponential-sum fitting of radiative
transmission functions discussed for example by Wiscombe and Evans [1977]:

I(x) ≈
M∑

k=1
ak exp (−µkx) , (3.6)

where ak > 0 and µk ≥ 0 represent the behavior of the source, detector, and mate-
rial in the discretized spectrum. In our case, additionally, we require ∑M

k=1 ak = 1
because of the normalization ensuring I(0) = 1.

Note Our approximation is only based on the Beer-Lambert law (Equation 1.2).
That is, it does not take into account any scattering inside the detector itself (Sec-
tion 1.5, Spatial resolution), nor any X-ray photons that are mid-flight scattered
towards a different pixel. This would require a full Monte Carlo simulation (Sec-
tion 2.4), which we are not doing for performance reasons (Section 3.6).
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Calibration What remains to be explained is how we can calibrate the param-
eters. We propose to calibrate the ak and µk together in a single process. We use
reference radiographs of an object made of the material that we are calibrating.
We propose two different ways, each having its own advantages.
a) Calibration from a wedge The first option is calibrating against a special
reference object. Ideally, we would use an object with a continuously increasing
thickness, which would cause increasing attenuations of X-ray photons. Because
of the Beer-Lambert law (Equation 1.2), the X-ray attenuations through such an
object would increase exponentially with the thickness. The simplest object with
such a property is a wedge as in Figure 3.6a and it was used for example by Scott
and Krastev [2016] for learning material identifications.

xmax

xmin ≈ 0

X-ray photons

passed-through photons
(a) Wedge. Notice that the intensities of the passed-through X-ray photons decrease
with the increasing wedge thickness, which is why this is a perfect shape for calibrations.

xmax

xmin

(b) Photo of our manufactured wedge-shaped object. Instead of manufacturing a clean
wedge like in (a), we instead cut out a wedge hole in an aluminum block, which was
easier to manufacture. The thickness of the whole block is xmax = 20 mm precisely, the
minimum thickness on the left side is roughly xmin ≈ 0.2 mm measured with calipers.

Figure 3.6: Wedge objects can be used for calibrations.
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We propose to perform the calibration via the following steps.

1. Manufacturing a wedge First, we manufacture a wedge from the cali-
brated material (Figure 3.6b). A wedge is an ideal shape as it represents
thicknesses smoothly ranging from xmin ≈ 0 to a given xmax (Figure 3.6).
Obviously, the smoothness, continuity, and how close xmin is to zero depend
on the manufacturing quality. But the huge advantage is that we only need
an a priori knowledge of xmax. All other dimensions can be arbitrary.

2. Radiograph We take a single reference radiograph of the wedge as in
Figure 3.7a. We normalize the radiograph (Section 3.5) to ensure I(0) = 1.
We manually select a region that contains the wedge with a vertical overlap.

3. Intensity table Now we sample the intensities in the radiograph in the
vertical direction. To reduce the amount of random noise, we average the
pixel intensities in each individual row. This gives us a table (array) con-
taining average intensities for varying Y -coordinates in the 2D radiograph.
If we plot these intensities (Figure 3.7b), we can see that they form an
exponential shape, which corresponds to the attenuation law.

4. Finding the beginning and end The next step is to find which Y -
coordinates correspond to the minimum and maximum thicknesses xmin
and xmax (Figure 3.7cd). We perform this step manually by examining the
intensity values and their first derivative.

5. Exponential fitting Between the first and last Y -coordinate found in
the previous step, the intensities correspond to I(x) for x ∈ ⟨xmin, xmax⟩.
We need to fit the ak and µk from Equation 3.6 into this discrete dataset
(Figure 3.7e). Various fitting approaches are discussed by Wiscombe and
Evans [1977], we tried fitting using NonlinearModelFit in Wolfram Math-
ematica2 with satisfying results. Refer to Section 5.5 for evaluation.

6. Shift and scale As a last step, we propose a way to fix two problems
that our fitted I(x) might have. First, we want to ensure that I(0) = 1.
Second, as it is impossible to manufacture a wedge with an infinitely sharp
beginning, it is highly likely that xmin ̸= 0 even though we pretend it is.
This causes discontinuities at the beginning of the wedge for x close to 0.
We propose to find for which x0 it holds I(x0) = 1 in the fitted model, e.g.,
by using FindInstance in Wolfram Mathematica. It is highly likely that
x0 < 0. We assume that this fitted x0 is closer to how the material really
behaves for small x, but we want to retain how I(x) looks like for higher x.
Hence, we shift and scale the original fitted I(x) and get I∗(x):

I∗(x) = I
(

x · xmax − x0

xmax
+ x0

)
, (3.7)

which ensures I∗(0) = 1 and I∗(xmax) = I(xmax).

2http://www.wolfram.com/mathematica/
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(a) Normalized radiograph of our
wedge from Figure 3.6b.
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(b) Intensities averaged along the red area in (a).
Blue lines show approximate wedge boundaries.
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(c) Zoomed-in part of (b) showing the ap-
proximate beginning of the wedge.
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(d) Zoomed-in part of (b) showing the ap-
proximate end of the wedge.
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(e) Fitting the intensities w.r.t. wedge thickness with exponentials.

Figure 3.7: Analyzing wedge radiograph for material exponential fitting.
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b) Calibration via optimization The second possibility of calibrating the
parameters does not require manufacturing any reference wedge, instead, we can
use any arbitrary physical object. We use the same principle as our whole method
itself: parameter optimization, i.e., optimizing the parameters ak, µk that best
match the radiographs of the physical object. This is a kind of bootstrapping as
we can use the same algorithm to learn the parameters for itself.

We propose the following steps.

1. 3D modeling First, we need to measure the reference physical object
with a very high accuracy, e.g., using X-ray computed tomography as we
already discussed Section 2.1. Then, we need to prepare a 3D model of
this object with the exact dimensions, for which we may use our model and
parametrization from Section 3.3.

2. Radiographs We take reference radiographs of this object, preferably
from different angles so that a wide range of thicknesses can be seen. Ideally,
we would cover all thicknesses uniformly, but that is difficult to achieve with
an arbitrary object that is not a wedge. Once we have the radiographs, we
normalize them (Section 3.5) to ensure I(0) = 1.

3. Initial estimate We construct an initial estimate of I(x). We already
know that I(0) = 1 but we need at least one other reference point I(x1) = I1.
We propose to select a region on one of the radiographs that has a uniform
intensity with a known thickness x1. The average intensity in that region
is the value I1. Then, we set the initial parameters to:

a1 = 1, µ1 = − ln(I1)
x1

, (3.8)

and all remaining a2 = · · · = aM = µ2 = · · · = µM = 0, which ensures that
I(0) = 1 and I(x1) = I1, which is exactly what we wanted.

4. Hierarchical optimization We use these initial parameters to estimate
the pose of the object on the reference radiographs. We use the same hierar-
chical optimization that we describe later in Section 3.8 for the dimensional
measurements. But notice that the dimensions of the 3D object are already
known, so in the last hierarchical step, we only optimize the pose and the
coefficients ak, µk as parameters θ.

Comparison We proposed two ways of calibrating the material and source-
detector parameters. During the evaluation of our method (Chapter 5), we suc-
cessfully used both of these approaches. Let us now briefly discuss the advantages
and disadvantages of the two different solutions.

The major advantage of the first method is that it does not require a precisely
measured and parametrized object. Also, as the wedge is uniformly covering the
whole thickness range, the parameters are fitted for all thicknesses with the same
“priority”. In the second method, we benefit from not having to manufacture a
reference wedge, but we need a precisely measured reference object and we have
no control over the optimization process for thicknesses that are not dominant in
our reference radiographs as these do not contribute to the loss function.
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3.5 Reference radiographs and poses
The reference radiographs are a very important part of our method. As we have
already seen in Section 2.2, selecting the best projections can significantly influ-
ence how well we can measure an object. And it not true just for the computed
tomography, but also for our approach, where the reference radiographs are es-
sentially the only source of truth for our optimization process.

The radiographs represent the measured object, its dimensions, and its pose
in the 3D space. Unfortunately, as we have seen in Figure 2.1, the dimensions
and pose cannot be both determined from a single projection as there is infinitely
many possibilities. Hence, we generally need some additional prior knowledge
about the projection or the object dimensions. For example, if we have a ref-
erence measurement in an image, we can analyze the vanishing points and use
cross-ratios to perform dimensional measurements even from a single projection
[Criminisi et al., 2000]. But what if all object dimensions are unknown in the
first place? What do we use as a reference?

Radiographs with known distance We propose to solve the problem by
using at least two radiographs R1 and R2 taken in the following way (Figure 3.8).

In R1, the object has an arbitrary pose θpose1 ∈ R6, which has six degrees
of freedom. In R2, we physically move the object from θpose1 towards a new
position using a precise manipulator (Chapter 1). Our manipulator shows the
distance m ∈ R that the object was moved with a micrometer accuracy. The only
parameter is the axis along which the object has moved which we parametrize
as θpose2 ∈ R2, which has two degrees of freedom (normalized 3D axis).

With this approach, we have added a prior knowledge about the distance m
between two radiographs with a very high accuracy, in our case 0.001 mm. The
movement is much more precise and much easier to achieve than any typical di-
mensional measurements we could perform with contact methods such as calipers.
This prior knowledge enables the optimization algorithm to correctly estimate the
overall size of the object in the projections.

θpose1 ∈ R6

known distance

m = 84.000 mm
θpose2 ∈ R2

Figure 3.8: Two radiographs of an object moved a known distance. The original
pose (left) has six degrees of freedom. The new pose (right) has only two, because
we assume the rotation did not change and we know the movement distance.
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Different rotations In addition to the radiographs mentioned above, we may
also add at least one other radiograph with a different rotation (Figure 3.9). This
may be helpful for objects where all dimensional features cannot be clearly seen
from a single angle. In our case, the manipulator was not calibrated for rotations,
so we always assumed new six degrees of freedom θpose3 ∈ R6 for each rotation as
we could not be sure about precise rotation angles or axis. Later in Chapter 5,
we evaluate how these additional radiographs influence the accuracy.

Figure 3.9: Four different rotations of prism jaws. Notice that some dimensional
features, such as θ5 and θ6 from Figure 3.4, are much better visible from rotated
radiographs. In practice, we never used more than one or two additional rotations.

Normalization We want to make sure that the individual radiographs are
comparable to each other and that the intensities correspond to the material
thicknesses as calibrated in Section 3.4. Hence, we want the maximum inten-
sity I = 1 in areas with no material where x = 0. We propose to normalize
the radiographs, each individually, by selecting an empty rectangular region and
computing the average intensity I0 in this region. The region should be large to
average out any random noise, but it should not cover the edges of the radiograph
as the intensities there might be higher due to the detector filters and artefacts.

Once we know the white average I0, we normalize every single pixel separately.
Let I denote a pixel intensity, we define the new intensity I∗ as (Figure 3.10):

I∗ = min
(

I

I0
, 1

)
. (3.9)

I0

Figure 3.10: Radiograph before (left) and after (right) normalization. The red
area in the original radiograph had intensity approximately I0 ≈ 0.692, after
normalization it is 0.999. Note that typically we do not reach 1.000 exactly
because we clamp the individual pixel intensities to 1 if they are above 1.
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3.6 Renderer
In Section 2.4, we described several possibilities how radiographs can be simu-
lated. Generally, the solutions are based either on full Monte Carlo simulations,
attenuation-only ray tracing, attenuation-only rasterization, or some hybrid ap-
proaches that combine stochastic and deterministic simulations.

Discussion Full Monte Carlo simulations could provide very precise simula-
tions, but it is highly likely that we would have to calibrate the individual atten-
uation coefficients, source spectrum, detector responses, and other parameters in
order to get results comparable to references. Other major disadvantage is the
performance of such stochastic simulations. In our approach, we need to simulate
thousands of radiographs in very high resolutions as fast as possible.

On the other hand, attenuation-only rasterization is extremely fast as it bene-
fits from GPU acceleration. Unfortunately, it is prone to artefacts that need to be
filtered, which lowers the image quality. Furthermore, it is not straightforward
to simulate off-center projections or effects such as geometry blurring and the
geometry must always be triangulated, which we originally wanted to avoid.

Hence, we decided to use attenuation-only ray tracing, which we think pro-
vides the best ratio between cost and quality and allows us to easily implement
the aforementioned features. Our implementation makes use of the trick shown
by Vidal et al. [2009] and discussed in Section 2.4 that enables accumulating dis-
tances without intersection sorting. Furthermore, our implementation is GPU-
accelerated via the OptiX ray-tracing framework (see Chapter 4 for more details).

Projection parameters The simulated radiographs should match the refer-
ence radiographs as much as possible. Hence, our ray tracing should be based
on the parameters of the real X-ray setup that was used to acquire the reference
radiographs. It is necessary to know the values depicted in Figure 3.11, that is
the detector resolution (in pixels), the detector physical dimensions so that we
can compute the pixel size in millimeters, the coordinates of the projection center
(which in our setup is not the middle pixel), and the source-detector distance D.

source

source-detector distance D [mm]

projection center pixel

detector width [mm]

detector
height

[m
m

]

resolution [pixels]

Figure 3.11: Projection parameters of the X-ray setup (see text).
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Algorithm steps in each iteration To generate a virtual radiograph (render),
the following steps are performed for each individual pixel. Assume that the
current pixel is located at 3D coordinates d ∈ R3 (in millimeters) calculated
from the projection parameters and offset by the center. Note that the steps are
independent for each pixel, so they can be spatially parallelized, which in our
implementation is handled by the GPU-accelerated OptiX raytracing framework.

1. Ray casting
First, we cast a ray r in the direction ω ∈ R3 from the X-ray source located
at s = (0, 0, D) ∈ R3 towards the detector pixel d ∈ R3 (Figure 3.12):

r(t) = s + t · ω, t ≥ 0. (3.10)

We find if and where the ray r intersects surfaces of the 3D model. For n
intersections, we get n ray parameters t1, . . . , tn that represent the distances
along the ray in which the intersections occurred. These distances can be in
any arbitrary order. For each intersection, we also find the normal vectors
n1, . . . , nn of the surface geometry.

2. Accumulating lengths
For each parameter t1, . . . , tn, we accumulate the length x that the ray trav-
eled through the object material as we already saw before in Equation 2.1
[Vidal et al., 2009]:

x =
n∑

i=1

(
− sgn (ω · ni) · ti

)
. (3.11)

3. Calculating pixel intensities
With accumulated x, the pixel intensity I is computed as follows:

I =
M∑

k=1
ak exp (−µkx) , (3.12)

where ak and µk are the calibrated material parameters from Section 3.4.

current pixel
ω ∈ R3 n1

n2
n3

n4

d1

source-detector distance D [mm]

d ∈ R3

s = (0, 0, D)
(0,0,0)

Figure 3.12: Our ray tracing coordinate system (see text and Figure 2.4).
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3.7 Loss function
The reference radiographs (Section 3.5) and simulated radiographs (Section 3.6)
are compared against each other using a loss function or error function. This is
the function that we minimize in the optimization process.

Normalized measure In our approach, using the simplest error metric is suf-
ficient. First, we compute per-pixel differences between the radiographs (Fig-
ures 3.13 and 3.14). To get a single number that we can optimize (Figure 3.15),
we sum up the absolute per-pixel differences as already shown in Equation 3.2.

Sometimes, we are only interested in the difference in a specific region of
interest, e.g., because the reference radiographs contain parts that we do not
simulate. To ensure that regions of different sizes contribute the same, we also
normalize the error metric. The loss function can be written as:

N∑
n=0

∑
(i,j)

|fn(θ)(i, j) − Rn(i, j)|
(inmax − inmin + 1)(jnmax − jnmin + 1) , (3.13)

where N is the number of references and the (i, j) are coordinates inside the
region of interest of the n-th radiograph with bounds inmin, inmax, jnmin, jnmax.
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Figure 3.13: Simulations of two slightly misaligned prism jaws radiographs are
shown at the top. Their per-pixel difference is shown at the bottom using a
colormap. The blue parts are present in the top-left radiograph but missing in
the top-right, the red parts are present in the top-right but missing in the top-left.
Image axes are pixel coordinates.
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Figure 3.14: Visualizing the per-pixel loss can help spot slight differences that
are otherwise not apparent when examining the radiographs side by side. Image
axes are pixel coordinates. The optimization algorithm in our approach, however,
does not see the individual per-pixel loss, rather, it minimizes the whole absolute
sum as in Figure 3.15.

Loss function and parameters Generally, the optimization is performed for
tens of parameters, both positional and dimensional, so the loss function is a
∥θ∥-dimensional function. We would like to visualize how the loss function looks
like with regards to various parameters. Unfortunately, visualizing more than
two-dimensional functions is very complicated if not impossible. In Figure 3.15,
we visualize the loss function on carefully selected examples with two parameters.

3.8 Optimization algorithm
The loss function (Equation 3.13) from the previous Section 3.7 now has to be
minimized by an optimization algorithm. In other words, looking at Figure 3.15,
we have to examine the loss values with regards to the parameters θ and try
to find the global minimum in the ∥θ∥-dimensional space where the difference
between the references and our f(θ) simulations is the smallest.

Motivation One of the major problems is that the loss function has many
dimensions. Even if we wanted to only estimate poses in three reference radio-
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(a) The impact of translation along the y-axis and rotation around the y-axis. There
are various things to notice in the plot. First, there is a “barrier” for rotations around
0◦ which essentially divides the function into two parts. Second, there is a slight “pit”
for translations around 20 mm where a global minimum can be expected. Third, the
loss function value is almost constant for rotations around −35◦ except for the “pit”.
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(b) Here we can study the impact of a prism jaw dimensional parameter θ3 (see Fig-
ure 3.4b) and the y-axis rotation. Notice that the plot is zoomed-in so we can see how
noisy the function is. The spikes are most likely caused by rendering artefacts as the
ray-triangle intersections are not watertight (see Section 5.5).

Figure 3.15: Example 3D plots of how our loss function behaves for the prism
jaw radiographs with regards to two selected parameters.
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graphs, two with a known distance (Section 3.5) and one from a different angle,
that is 6 + 2 + 6 = 14 parameters without even considering any dimensional mea-
surements. Even if any of these parameters had only 1000 possible values, which
is a very large understatement, we would still have 100014 = 1042 possible values
of θ. The frequencies of modern processors are in the range of 109 Hz and we
want our approach to finish in a few minutes at most. So, it is no surprise that
a brute-force approach would be very inefficient, if not even impossible.

There is a better alternative to brute-forcing the best solution: to use non-
linear optimization algorithms. There is a plethora of these algorithms [Nash,
2014, Johnson, 2019] that differ by their strategy and they usually try to follow
the function gradient to get to a local function minimum.

In our case, unfortunately, we do not know the gradient of our function,
because we would have to be able to analytically differentiate our X-ray simula-
tion f(θ), which is beyond the scope of this thesis and we propose it as a possible
future work. A possibility would be to numerically approximate the gradients
ourselves, but this solution is feasible mainly for a small number of parameters
[Nash, 2014]. Hence, in our case, we instead propose to use gradient-free opti-
mization algorithms that do not require a gradient to be provided.

Gradient-free local optimization Local optimization algorithms specialize
in finding local minima that may not necessarily be a global minimum in the whole
parameter space. In this thesis, we show a few well-studied algorithms, some of
which were also used in pose estimation by Miao et al. [2016] (Section 2.3):

• Hill climbing Hill climbing was described for example by Russell et al.
[2010] for use in artificial intelligence, originally for maximization (climb-
ing), but that is the same as minimization with a negated objective [Nash,
2014]. We describe the algorithm as Miao et al. [2016]. We start with ini-
tial parameters θ and step sizes ∆θ. We evaluate the objective function at
2 · ∥θ∥ neighbors of θ by changing a single parameter of θ by ±∆θ. We
select the neighbor with a higher (lower) value of the objective function. If
no such neighbor exists, we reduce ∆θ by half. The process is iterated until
certain stopping criteria are met.

• Nelder-Mead simplex The algorithm by Nelder and Mead [1965] [Miao
et al., 2016, Johnson, 2019] uses a simplex with ∥θ∥ + 1 vertices in the ∥θ∥-
dimensional parameter space. For example, the simplex is a line segment
in one dimension, a triangle in two dimensions, a tetrahedron in three,
etc. We start with an initial simplex whose vertices correspond to objective
function values at that points. In each iteration, we replace the vertex with
the highest objective function value by another point according to a set of
rules. The simplex adapts itself and should contract to the final minimum.

• BOBYQA The BOBYQA algorithm (Bound Optimization By Quadratic
Approximation) by Powell [2009] [Miao et al., 2016, Johnson, 2019] opti-
mizes the parameters by iteratively constructing a quadratic approximation
of the objective function, which it iteratively improves and minimizes. Be-
cause of the quadratic approximation, the method may perform poorly for
objectives that are not twice differentiable [Johnson, 2019].
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• COBYLA A previous algorithm by Powell [1994] [Johnson, 2019], called
COBYLA (Constrained Optimization By Linear Approximations), used lin-
ear approximations instead of quadratic. It was not used by Miao et al.
[2016], but we mention it as an alternative to BOBYQA that also provided
very good results in our evaluation.

Initial estimate sensitivity One major problem with local optimizations is
that they are very sensitive to initial estimates, i.e., the initial values that the
algorithms start with. As an example, consider Figure 3.16. Why does it happen
that a slightly off initial guess fails to converge to correct results?

Let us have a look again at Figure 3.15a. If we start a local optimization with
rotations between 0◦ to 20◦, the algorithms näıvely follow the steep descent in the
left directions. But that is not where the global minimum is located. Similarly,
finding the correct y-axis translations is also a huge problem: notice that the loss
function is almost constant in the area around −35◦, so the algorithms fail to find
the correct y-axis region around 20 mm.

Reference

Initial estimate Converged Difference to reference
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Figure 3.16: Convergence of Nelder-Mead simplex (similar to other algorithms)
from different initial estimates towards the reference radiograph (top-right). The
three rows depict different initial estimates (left column) and where the local
optimization converges from these estimates (middle column). Notice the per-
pixel differences from the reference (right column). See text for discussion.
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Gradient-free global optimization A näıve solution to the initial estimate
sensitivity would be to use global algorithms. These are designed to explore
the whole parameter space in a clever way to heuristically find global minima.
The problem is that our loss function has so many parameters that it becomes
unfeasible to explore the space in only a few minutes, which is our target. Also,
many of these algorithms are stochastic and inherently depend on random seeds
that may give good results in some conditions and bad results in others.

In our approach, we explored two approaches that are deterministic, i.e., given
the same inputs, they give the same results, which is important for repeatability
and reproducibility. They are:

• DIRECT DIRECT, abbreviation for Dividing Rectangles, is an algo-
rithm described by Jones et al. [1993]. It is based on systematically dividing
the parameter space and finding area with a possible minimum, which is
done in a heuristic and deterministic way. Unfortunately, we found that the
algorithm does not explore the space as broadly as we would need, i.e., it
usually gets stuck in a certain minimum in a low number of iterations and
increasing the iterations does not seem to improve the minimum.

• Uniform sampling We found out that the best results can be achieved
by uniformly sampling the parameter space. We wrote a simple algo-
rithm which for a given maximum number of iterations m divides the N -
dimensional space uniformly in N

√
m steps in each dimension. We then

evaluate the loss function in each of the points and select the parameters
with the minimum corresponding loss. The obvious downside is that we
need to know m beforehand, but that is no problem in our method as we
can find and fix the best value for specific setups.

During our experiments, we found that the global approaches are more robust
than local algorithms in the sense that they do not depend on the initial estimate,
only on the lower and upper bounds of the parameters, and they can at least find
an area where the local minimum is probably going to be. For example, the initial
estimate in the last row in Figure 3.16, which gave the best results out of the
three, was found using uniform sampling.

Unfortunately, global optimization becomes unsuitable for more than roughly
3 parameters. That is no surprise as the size of the problem increases exponen-
tially. With M possible values in N dimensions, we have MN options.

Hierarchical optimization To address the issues, we propose to combine the
advantages of global and local optimizations and perform a hierarchical opti-
mization that we now explain. We cannot start with a local optimization as that
heavily depends on an initial estimate. Of course, we could use a human oper-
ator to define an initial estimate for every single radiograph, but that would be
impractical and would limit the reproducibility of our method.

To solve this problem, we propose to start with a global optimization algo-
rithm that can find a suitable initial estimate for a local algorithm as in the last
row of Figure 3.16. However, we cannot use the global optimization on all pa-
rameters and all reference radiographs at the same time as we already know the
complexity raises exponentially. Hence, we only use the global optimization for
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pose estimation for each reference radiograph individually. But that would still
be a six-dimensional problem, which we did not manage to solve successfully in
our very limited time frames.

Hence, we propose to solve the pose estimation in a hierarchical way as well,
inspired by Miao et al. [2016] (Section 2.3). We first only estimate the pose in
three degrees of freedom instead of six. Miao et al. [2016] propose to only estimate
the x and y positional coordinates (left-right and up-down) and a rotation around
the z-axis (towards the radiograph) as these have the most influence on the image.
In our case, we propose to instead optimize the rotation around the y-axis as that
is the axis around which our manipulator can rotate the measured object. And
unlike them, we propose to begin with a global optimization instead of local.

Schematically, our approach is the following:

1. Global pose estimation (3DOF individually) We begin with a global
optimization of each radiograph separately, i.e., with the loss function only
taking a single radiograph into account at a time. We only optimize three
positional parameters (x, y, and rotation around y) in case of regular ra-
diographs or two positional parameters (movement axis) in case of a radio-
graph with a known distance (Section 3.5). Best results were achieved with
uniform sampling with m = 5000 per image.

2. Local pose estimation (6DOF individually) The rough results of
the global pose estimation are then used as initial estimates improved using
local optimization, now with all positional parameters, that is six degrees of
freedom or two degrees of freedom for radiographs with a known distance.
Again, the optimization is done individually for each radiograph and no
more than 5000 iterations were necessary to obtain accurate results.

3. Local optimization (all together) The pose estimation results are then
used as initial estimates for a final local optimization. Here, we optimize
all parameters (including dimensions and/or material) together with all
reference radiographs. This is important because the dimensions are shared
across the radiographs and also depend on the poses, so we cannot optimize
these values separately.

Level of detail In our case, the full resolution of the detector was 4096 ×
4096 pixels, which is more than 107 pixels. Simulating such high resolutions and
then computing the image differences may be slow even when GPU-accelerated.
Furthermore, even a slight change in the parameters may cause a significant
change of the objective function in comparison to lower resolutions. Downscaling
the images may reduce the noisiness by averaging neighboring values and also
make function evaluations faster.

Hence, we propose to begin the optimization with downscaled images, e.g., by
constructing MIP maps [Iser, 2017], and dynamically increasing the resolution for
higher accuracies. Attention must be paid not to optimize at too low resolutions
where the changes in the parameters are not even visible, because then we might
converge to non-sense values.

In our final evaluation (Chapter 5), we did the first two optimization steps
(global and local pose estimation) with 23-times lower resolutions (that is the
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third level of the pyramid) and only the final optimization was performed in the
original resolution.

Stopping conditions Let us now briefly discuss the stopping conditions of our
hierarchical optimization. We must somehow detect when the optimization fin-
ished and we converged to accurate results. The various optimization algorithms
themselves have their own termination rules dependent on their specific imple-
mentation [Johnson, 2019]. But beware that such a termination may only mean
that the algorithm simply lowered its step size (or simplex size) so low that it
essentially cannot find any lower value anymore in the local neighborhood.

Unfortunately, because of the nature of our objective functions, stopping at a
certain local minimum does not necessarily mean there is not a lower minimum
a little bit further away. With many of the algorithms that we tried, it happens
that running them again from their last estimate but with the original step size
can converge to an even lower minimum.

Another problem is that we do not know the lowest possible error that we
can achieve. The random noise and the differences between the real radiographs
and our attenuation-only simulations mean that we typically cannot converge to
a zero error. There will almost always be some difference between the reference
and our estimate, even if we have 100 % accurate parameters.

During our experiments, we found out that the iteration count can be used
as a valid stopping condition. For the first two hierarchical steps, using 5000
maximum iterations per radiograph gives accurate results and because of the
lower level of detail, it is relatively fast. For the final optimization, we also used
a 5000 iterations limit but this time for all the radiographs together as we do not
perform the optimization individually anymore.

Please note that if the local optimization algorithm terminates before the
maximum number of iterations with a certain estimate θ∗, we simply run the
algorithm again starting from θ∗ but with the default step size again. When the
total limit is reached, we terminate the currently running algorithm and as our
final estimate, we use θmin corresponding to the lowest minimum found so far
(which possibly is not the last estimate).
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4. Implementation
In the previous chapter, we described our approach and its individual high-level
components. In this chapter, we briefly explain how we implemented the method
in our prototype GPU-accelerated application. In Chapter 5, we use it to evaluate
how the method behaves in real situations with real radiographs.

We begin with an overview of our application design (Section 4.1) followed by
a more technical Section 4.2, where we describe selected technical details about
our individual components such as the renderer.

4.1 Overview
Our prototype application is intended for experimentally evaluating our method
on real input data. It can be run in two modes: fully automatically in a command
line, or with a user interface for live debugging (Figure 4.2).

It is no surprise that the application internal structure depicted in Figure 4.1
loosely follows the method diagram from Figure 3.2. The main differences are
that the real application has to somehow load (and save) user inputs, which we
represent as projects, and that our components are not abstract black boxes, but
classes with real implementations (Section 4.2). Finally, the user interface is just
a thin layer which reads and modifies the components directly.

Iterative dataflow model From the nature of optimization algorithms, our
method is iterative. That means that the objective (loss) function is repeatedly
evaluated with different parameters. However, a single evaluation depends on re-
sults of other components. Hence, application data flow from some components
to other, until they reach the end, and then the whole process is repeated until
a stopping condition is met. This is very similar to machine learning architec-
tures like TensorFlow1 that we got inspired by. The computation itself and the
dependencies between components (nodes) are represented by a dataflow graph.

In such a graph, each node represents a computation that depends on the
input nodes. Hence, for a node to be computed, we need to first compute its
predecessors in the graph. Notice in Figures 3.2 and 4.1 that the nodes can
be topologically ordered, i.e., there is no component whose input depends on
its own outputs (within a single iteration). When the optimization algorithm
wants to evaluate the loss function, we run all the predecessors one-by-one in
their topological ordering, which guarantees that all inputs are known before the
execution of each individual node.

User input Which specific nodes there are in the graph and how they are
connected is defined in user input. For example, to create a graph containing a
single reference image node, we run the application with a path to a TIFF image.
Most of the nodes are configured with the JSON (JavaScript Object Notation)
format, which contains human-readable attribute-value pairs. The configurations
are inter-connected, so a single configuration file can link to a different file. For

1https://www.tensorflow.org/guide/graphs
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TriangulatedGeometry Transformation Machine EsftMaterial

OptiXRenderer

LossFunction

NloptOptimizer

ReferenceImage

OptimizationVariables

project

graphical user interface / command line interface

Project files
(JSON, TIFF, STL)

ProjectLoader ProjectSaver

Figure 4.1: Implementation diagram. Compare to Figure 3.2 which represents the
method diagram. The method corresponds to the red “project” part of the im-
plementation diagram, the project loading and saving (above) and user interface
(below) can be seen as utilities that enable interacting with the method.
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example, a loss function configuration can contain a path to a reference image
configuration, etc. So just by loading a single input file, the application recursively
parses the whole project and constructs its dataflow graph. This was very useful
during the development and evaluation of our method, as it enabled reusing only
parts of the configurations and creating various test scenarios. For practical usage,
of course, this would have to be replaced by a simpler user-friendly interface.

Output and interaction Certain nodes can be saved back to the file system.
For example, the renderer can save the simulated radiographs to TIFF files just
like regular radiographs, and the estimated dimensional measurements can be
saved to a JSON file. Furthermore, the nodes can be interacted with in real time
in the user interface (Figure 4.2), which is very valuable for debugging purposes.

Technologies The individual nodes are classes programmed in the C++ lan-
guage, which is a typical language for high-performance and visual computing.
To make the code simpler and clearer, we even use some of the modern features
from C++11 to C++17 like std::variant. The GPU-accelerated parts, i.e., the
loss function and the renderer, are written in CUDA and specifically the renderer
is using Nvidia OptiX2 ray-tracing framework [Parker et al., 2010].

The user interface uses OpenGL3 and the OpenGL Shading Language (GLSL)
for the rendering, glad4 for loading the OpenGL, glfw5 for window, context, and
input management, and Dear ImGui6 for the interactive user interface widgets.

The optimization algorithms Nelder-Mead, BOBYQA, and COBYLA (Sec-
tion 3.8) are provided from NLopt7 [Johnson, 2019].

For loading and saving projects and reference radiographs, we use libtiff8 for
handling TIFF images and nlohmann’s JSON9 for handling JSON configuration
files. The triangulated STL files are loaded with our own code.

Additionally, we use three helper libraries. For vector and matrix mathemat-
ics, we use glm10. For string formatting and printing, we use fmt11. For unit
testing of certain components, we use Catch212.

For source codes and executables, please see the electronic attachment (At-
tachment 2 – Electronic attachment contents). User reference is also available in
Attachment 1 – User reference.

4.2 Component details
Let us now have a brief look at the dataflow graph implementation and the
individual components from Figure 4.1. As we can see, the implementation is es-

2https://developer.nvidia.com/optix
3https://opengl.org/
4https://github.com/Dav1dde/glad
5https://github.com/glfw/glfw
6https://github.com/ocornut/imgui
7https://github.com/stevengj/nlopt
8http://www.libtiff.org/
9https://github.com/nlohmann/json

10https://github.com/g-truc/glm
11https://github.com/fmtlib/fmt
12https://github.com/catchorg/Catch2
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Figure 4.2: Our graphical user interface for debugging and experimenting with
various configurations. See Attachment 1 – User reference.

sentially divided into three parts: the project loading and saving, i.e., constructing
the graph and serializing it back to files, then the dataflow graph itself and its
nodes, and finally a thin user interface layer.

Dataflow Each node is inherited from the Node class which declares a set of
common methods such as step(), which executes a single step (calculation) of
the given node in a single iteration. The nodes keep track of their own inputs
which can be recursively traversed by find topological ordering(). Alongside
the nodes, we have the OptimizationVariables class which keeps track of all the
variables to be optimized, i.e., it corresponds to θ. We also keep track of the lower
and upper bounds θlb ≤ θ ≤ θub to make sure the parameters are not estimated
with unreasonably low or high values. Additionally, OptimizationVariables
also keeps track of the level of detail and multiplex, which is used when multiple
reference images and their poses are present in the graph and we need to iterate
over all of them in a single optimization iteration.

Optimizer The optimizer node is represented by the Optimizer abstract class,
mainly implemented in the NloptOptimizer class, which uses the aforementioned
NLopt library [Johnson, 2019] with the Nelder-Mead, BOBYQA, COBYLA, and
other optimization algorithms (Section 3.8). When an optimization is started, we
first acquire all optimization parameters from the predecessors of this node into
OptimizationVariables. Then, in each iteration of the inner algorithm, step()
is called on all the predecessors in the topological order, which ends with the
LossFunction node. Then, the value of the LossFunction is read and passed to
the optimization algorithm itself that decides on the new θ. We propagate the
new θ to the OptimizationVariables and notify all predecessors of the changes.
Then, the graph is ready for a new iteration.
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Loss function The LossFunction abstract class is implemented mainly in the
CompareTwoBuffers class. It takes two image buffers (a reference image and a
rendered simulation) and compares them pixel-by-pixel summing up the absolute
values of the differences (Equation 3.13 and Section 3.7 in general). The core is
implemented in CUDA, the per-pixel calculations are heavily parallelized on a
GPU by striding over the 2D buffers. The final value is summed-up on a CPU
after synchronization. The total difference value is calculated in double precision.
We experimentally found out that float is losing precision for 4096×4096 pixels
with up to 0.8 % difference from double.

To generate colorful difference images where each pixel difference is encoded
in a color, there is another node PerPixelLoss that can be used for debugging
purposes. We also implemented a LossToCsv class that can be connected to a
loss function and used for tabulating loss function values to a .csv files. We used
this component for generating data for the visualizations that we embedded in
this thesis such as in Figure 3.15.

Renderer The abstract Renderer is implemented mainly in the OptiXRenderer
class. It uses the low-level GPU-accelerated ray-tracing engine Nvidia OptiX
[Parker et al., 2010], which can be used for generating rays and handling their
intersections with geometry, which is exactly what we described in Section 3.6.
OptiX supports various acceleration structures for detecting intersections and
provides great performance with fully customizable programs.

For generating rays and computing the final pixel intensities, we wrote a ray
generation program, where at least one new ray is created for every pixel. In case
of supersampling or simulating the focal spot, we stochastically generate multiple
rays between varying positions at the X-ray source and varying positions within
the individual pixels. The 3D coordinates of the pixels are calculated from the
projection parameters described in Section 3.6.

The intersections with geometry are calculated in intersection programs and
handled in any hit programs. The intersection program calculates whether a ray
hit a triangle from the triangulated geometry defined via a vertex buffer (vertex
coordinates) and an index buffer (pointers to the vertices of the triangles). When
any intersection is detected, the any hit program is called in an arbitrary order,
which we use to accumulate the distances via Equation 3.11.

To handle the OptiX image buffers in our CompareTwoBuffers loss func-
tion, which uses CUDA directly, and to show the buffers in our user interface in
OpenGL, we implemented the InteropTextureBuffer class that provides inter-
operability between OptiX, CUDA, and OpenGL.

Reference images A reference image is represented by the ReferenceImage
class, loading and saving radiographs in TIFF files is handled in the Image class.
To support level of detail (Section 3.8), MIP maps are stored in the ImagePyramid
class which is also responsible for storing the image on the GPU for CUDA
access from the CompareTwoBuffers (see above). The ReferenceImage class
also supports normalizing the images (Section 3.5) and computing averages along
regions, which we used for visualizations in this thesis.
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Triangulated geometry The TriangulatedGeometry abstract class repre-
sents the triangulated geometry and its vertex and index buffers (see Renderer
above and Section 3.3). Specifically, we have the StlTriangulatedGeometry
class for creating the buffers from an .stl geometry file. Dimensional parame-
ters and recalculating vertex positions (Section 3.3 and Chapter 5) is defined in
the Wedge class for our wedge object and the Prism class for our prism jaw object.

Transformation Poses of objects, i.e., their positions and rotations in the 3D
space (Section 3.5) are implemented in the Transformation class. It holds the
parameters such as position, rotation, or relative translation and it can convert
them into a transformation matrix used by the renderer. When multiple refer-
ence images are used, we have pose parameters for each of them, which we handle
by the aforementioned multiplexing, i.e., we have an array of the poses and we
keep track of an index to the currently active pose. Note that in our imple-
mentation, object translation is always in global world coordinates independent
on local object rotation and scale, which we achieve by applying inverse object
transformations to the translation axes.

Machine The projection parameters for the renderer (Section 3.6) are stored
in the Machine class, which is a wrapper around the MachineParameters struct.
We call it machine as the parameters are inherent to the whole X-ray “machine”,
i.e., how the source and detector are positioned with regards to each other.

Material Material calibration parameters are implemented in two independent
classes. The exponential fitting explained in Section 3.4 are implemented in the
EsftMaterial class, where ESFT stands for Exponential-Sum Fitting of Trans-
missions from the method by Wiscombe and Evans [1977]. The class stores
k1, k2, k3 and a1, a2 where a3 = 1 − a1 − a2. During the evaluation, we found that
M = 3 is enough to get an accurate fit.

We also had a previous implementation, in the Material class, which used
tabulated function values instead of the analytical exponential-sums. The table
(array) was constructed directly from a radiograph of a wedge object. But as the
exponential fitting is very accurate, we stopped using this approach.

Project loading and saving The dataflow graphs are constructed from user
input (Section 4.1) in the ProjectLoader class. Its constructor takes an array
(vector) of inputs that can be either file paths or JSON strings directly. The in-
puts are parsed one-by-one and nodes are created and stored in an unordered map,
which keeps track of the canonical filesystem paths of the nodes to prevent load-
ing a single node multiple times. The ReferenceImage nodes are loaded from
.tiff files, the StlTriangulatedGeometry from .stl files, and the rest of the
nodes are deserialized from .json configuration files. The parsing is recursive
because each node must define its inputs, which have to be loaded as well. For
example, if there a single last node, usually the optimizer, we can only load the
optimizer as input and the rest of the graph nodes will be loaded recursively.

Some of the nodes of the graph can be saved (serialized), which is handled
in the ProjectSaver class. This process is not recursive anymore as we already
have the graph structure available in an array (vector), so each node is saved
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individually. Usually, a node is serialized into a .json file in the same format
that can be deserialized by the ProjectLoader again. The only nodes not saved
to JSON are the OptiXRenderer and PerPixelLoss, which are directly converted
to .tiff images that can be displayed in common image viewers.

Application and user interface The entry point is implemented in main.cpp.
From there, we either construct a CliApplication instance for command line
interface or a UiApplication instance for graphical user interface.

The command line interface simply loads all inputs from command line argu-
ments via the ProjectLoader. Then, a topological ordering is constructed and
step() is called on all of the nodes in order. If an Optimizer is present in the
constructed graph, then an optimization is started and runs until the stopping
conditions are met. After that, the graph final state is saved and serialized to the
file system via the ProjectSaver. The application terminates.

The graphical user interface is more complicated. Its initialization is the same
as in the previous paragraph, but then, we do not implicitly start the nodes.
Instead, we wait for user input from the graphical interface. Each node has a
little window showing possible configurations and previews. The nodes can be
edited and viewed in real time, e.g., a live preview of the OptiXRenderer render
is shown. Hence, the dataflow graph is modified and executed via the interactions
with the buttons and other graphical widgets. Technically, the interface for all
the nodes is implemented in the NodeUserInterface class. It uses a double
dispatch technique to be called on each of the nodes with the appropriate method
specialization for the corresponding dynamic types.
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5. Results and evaluation
Finally, in this chapter, we evaluate the accuracy and overall performance of our
method and we show that it is indeed capable of accurate dimensional measure-
ments from a very limited number of radiographs. We begin with describing our
evaluation setup (Section 5.1), then we show our results achieved using three
test objects (two prism jaws, Section 5.2, and a wedge, Section 5.3), and then
we discuss and evaluate the limitations caused by the radiography setup itself
(Section 5.4) and caused by our method (Section 5.5).

5.1 Our setup
Our evaluation was performed using the setup as shown previously in Figure 1.1
and now in Figure 5.1. This is a standard industrial X-ray setup similar to these
shown in other works such as by Kruth et al. [2011], Mery [2015], Villarraga-
Gómez et al. [2018], and Du Plessis et al. [2018]. In order to evaluate our method
reliably, we used high-quality components that we now describe technically.

Source Our X-ray source was developed by YXLON, type FXE-225.48. Its
maximum tube voltage is U = 225 kV. For our dimensional measurements of alu-
minum objects, we always used voltage U = 220 kV. Hence, the maximum photon
energy present in the source spectrum should be εmax = 220 keV (Section 1.3).
When measuring the wedge, we used the power of P = 60 W, so the tube current
was approximately I ≈ 0.27 mA. The spectrum itself should be expected to be
roughly as in Figure 1.8, but its exact properties remain unknown — we did not
measure the spectrum in any way as it is not required for our method.

The focal size varies with the power and according to the source manufacturer,
it should be between 2 µm and 6 µm. Exact source optical properties are not
provided and we did not attempt to measure them in any way. According to the
manufacturer, the focus is expected to be elliptical with a Gaussian distribution.

flat-panel detector

radiograph

manipulator

rotation

translation

object

source

4096×4096 pixels

U = 220 kV

409.6×409.6 mm

focal size < 6 µm

CsI:Tl scintillator

16-bit

accuracy 0.001 mm

aluminum window

approximate rotation axis

not calibrated

approximate axis

Figure 5.1: Our evaluation setup based on Figure 1.1 with specific details.
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Manipulator The measured object was always placed in our manipulator. We
used it for two types of motion:

• First, the manipulator enables translational motion in the horizontal axis
approximately parallel to the detector (consider again Figure 5.1). The axis
itself is not calibrated, i.e., we cannot rely on it being exactly parallel to the
detector, but the translation magnitude can be measured with a 0.001 mm
accuracy, which is important for our pose estimation (Section 3.5).

• Then, the manipulator enables rotation around the vertical axis (Figure 5.1).
The axis itself nor the magnitude are calibrated, so we cannot rely on the
rotations being exact and they must be estimated via the optimization.

Detector Our detector was developed by Varex Imaging, type XRD 1611 AP.
It is an indirect flat-panel detector (Section 1.4). It has an aluminum entrance
window, which means that the received spectrum is partially filtered and weak-
ened by a thin block of aluminum roughly up to around 40 keV.

It uses a single substrate amorphous silicon active TFT-diode array with a
direct deposition CsI:Tl scintillator. The pixels are 100 µm squares, there are
4096×4096 pixels, so the active area is 409.6×409.6 mm large. The detector has
16-bit electronics and the final radiographs are 16-bit 4096 × 4096 digital images.
Later in Section 5.4, we show the image quality and limitations caused by the
detector and its sctintillation layer that we already mentioned in Section 1.5.

Computation hardware For the optimization process itself, that is, for run-
ning the application that we implemented (Chapter 4), we used a modern com-
puter with a high-performance GPU. The configuration was the following:

• CPU: AMD Ryzen 7 2700X, 8 cores, 3.70 GHz,

• GPU: NVIDIA GeForce RTX 2080, 8.0 GB memory,

• RAM: 64.0 GB,

• Operating system: Windows 10, 64-bit.

5.2 Dimensional measurements of prism jaws
Let us now evaluate our method in the context of dimensional measurements,
which is the main topic of this thesis. In this section, we perform measurements
of prism jaws that we have already seen in previous chapters. Jaws are used in
vice, which is a mechanical tool for clamping objects in a steady position. The
jaws typically have a prism shape with holes for attaching them to the vice and
one or more cut-outs to better lock the objects in position.

We have two of these prism jaws available that we call Prism A and Prism B
(Figure 5.2). The overall shape of these prisms is the same, so we can parametrize
them only once as a single object. This perfectly simulates the conditions in a
real manufacturing process: we have multiple objects of the same general shape
but different dimensions.
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Prism A

Prism B

Prism A

Prism B
measurementsarea

(a) Photos of Prism A and Prism B. We are interested in dimensional measurements of
features inside the red area without the holes. Notice that Prism A has bigger cut-outs
and is about 3 mm thicker than Prism B.
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(b) The dimensional parametrization θ1, . . . , θ8 originally introduced in Figure 3.4b can
be used for both Prism A and Prism B. This is exactly what we want to simulate a real
manufacturing process where the objects of the same shape have varying dimensions
due to the manufacturing process.

Figure 5.2: Prism A and Prism B.

Process overview We propose to perform the dimensional measurements in
the following way. We use the same parametrization as we already explained in
Section 3.3 and Figures 3.4 and 5.2b. Then, we have to calibrate the source-
material-detector pipeline according to Section 3.4. For this purpose, we assume
that both prisms are made of identical aluminum.

As we do not have a reference wedge made of the same aluminum with the
same thickness ranges, we propose to use Prism B as a reference object for mate-
rial calibration via optimization (Section 3.4b), which we describe below in more
details. Once we have the calibration ready, we use it for dimensional measure-
ments of Prism A. Then, we evaluate the accuracy and repeatability of these
measurements in comparison to computed tomography (CT, Section 2.1).

Reference radiographs dataset We acquired and manually normalized a
dataset of 14 reference radiographs for each Prism A and Prism B (Figure 5.3).
Some of these radiographs represent 10.000 mm translations along the same fixed
axis, the rest of them are rotations around the vertical y-axis. Out of this dataset
we can always choose a subset of radiographs for evaluating our approach.
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Figure 5.3: Prism A (top) and Prism B (bottom) reference radiographs. The first
7 radiographs in each dataset represent translations by 10.000 mm precisely. The
remaining 7 radiographs represent rotations around the vertical y-axis.
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1) Material calibration from Prism B We use Prism B to calibrate the
source-material-detector pipeline according to Section 3.4b. For this purpose, we
need to first accurately measure Prism B via a different method. We used precise
computed tomography measurements with an approximately 0.02 mm accuracy
(Figure 5.4). They allowed us to find the dimensional parameters θ1, . . . , θ4 and
θ7, θ8. The only parameters that remain unknown are θ5 and θ6 as they cannot
be easily measured from the slices. However, from contact measurements, we
know that they are roughly 4 mm each.

Figure 5.4: Prism reference measurements were acquired via computed tomogra-
phy. In the figure, we can see a reconstructed slice through the object.

The calibration itself was performed together with pose estimation and es-
timating the dimensions θ5 and θ6. As varying material thicknesses are best
seen on rotated prisms, we decided to perform the optimization on two reference
radiographs, the 9th and 12th, that represent rotations roughly 15◦ and 75◦.

An important question is how to select the best radiographs for material
calibrations. In our case, we decided on the 9th and 12th, but we also tried
calibrating from other rotations with similar results. For example, calibration
using the 7th, 9th, and 11th radiographs (roughly 0◦, 30◦, and 60◦) also converged
to a very similar intensity function. It is obvious that the references should cover
wide thickness ranges over which the material parameters are optimized. On
the other hand, the radiographs should not be redundant as that would overly
prioritize the thicknesses that are dominant. Hence, selecting the 9th and 12th
radiographs that represent very far rotations is certainly a correct choice.

The whole optimization process was the following:

1. Initial estimates We manually found rough initial pose estimates for
both reference radiographs. We fixed all dimensions θ1, . . . , θ4 and θ7, θ8
to the reference measurements. We set θ5 = θ6 = 4 mm. We set the
material coefficients to a1 = 1, µ1 = 0.116, and the rest a2 = µ2 = µ3 = 0
exactly as described in Section 3.4b. The coefficient µ1 was calculated from
an average intensity where the thickness was roughly 10 mm.

2. First optimization Then, we performed a first optimization on the pose
parameters, θ5, θ6, and material (a1, a2, µ1, . . . , µ3) but only on radiograph
number 9 (15◦). We used Nelder-Mead simplex with 10000 iterations with
the original image resolution.
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3. Second optimization Using the estimates from the previous optimiza-
tion, we ran the same optimization process once again, this time on radio-
graph number 12 (75◦).

4. Final optimization Finally, we ran the optimization again for both ra-
diographs together so that the material is optimized on all the varying
thicknesses at the same time.

Via this process, we got the following intensity function:

I(x) .= 0.563 exp (−0.068x) + 0.024 exp (−x) + 0.440 exp (−0.279x) . (5.1)

In Figure 5.5, we can see the per-pixel difference between the optimized sim-
ulation and the reference radiograph depicting roughly the 15◦ rotation. As we
can see, the highest errors are located at the object edges. This is highly likely
caused by scattering of the visible light on the detector, which we discuss later in
Section 5.4. Inside the object itself, the errors are very low. Notice also the or-
ange line roughly at y-coordinates 1800. We suspect that this line may be caused
by ghosting from the previous image, which we also discuss in Section 5.4.
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Figure 5.5: Per-pixel differences between the final calibrated simulated radiograph
and the first reference radiograph. Image axes are pixel coordinates. The blue
shadows around the object are most likely caused by scattering on the detector,
which is discussed later in Section 5.4.

2) Prism A dimensional measurements Now, using the calibrated material
from Equation 5.1, we estimate the Prism A dimensions. We are mostly interested
in accuracy and repeatability of the measurements. By accuracy, we mean how
far our estimates are from the reference measurements acquired from computed
tomography. By repeatability, we mean if we can converge to the same results
from different radiographs.

For this purpose, we will report two different properties that were also used
for example by Butzhammer and Hausotte [2019]. The mean absolute error is
the average over all absolute values of the differences between our estimates and

67



reference dimensions. The maximum absolute error is the worst result that we
have achieved, i.e., the maximum over all the absolute errors. The reason we use
absolute values is that the errors may be both positive and negative, but we do
not want them to average out to zero, because in real industrial situations, we
would only perform a single measurement.

Measurements from two radiographs First, we performed a series of mea-
surements using only two reference radiographs. In total, we used

(
7
2

)
= 21 pairs

of translations ranging from 10 mm to 60 mm. In these experiments, we did not
use the rotation radiographs at all. But keep in mind that the Prism B rota-
tions were used for calibrating the material. The optimization was performed
hierarchically exactly as described in Section 3.8.

In Table 5.1, we can see the mean and maximum absolute errors for various
parameters. It can be clearly seen that θ7 and θ8 were estimated with the lowest
errors. The mean absolute errors are within the reference measurements accuracy
of 0.020 mm, which means they completely match the CT accuracy. That is most
likely because these two dimensions represent the object widths (total width and
width from the middle) and they are clearly visible1 in the reference radiographs.

The highest errors were achieved in θ3 and θ4. These parameters correspond
to the inner cut-out, whose boundaries are much subtler than the prism width.
Finally, the parameters θ1 and θ2 represent the prism thickness (depth). Since
we did not use any rotation radiographs, the thickness could not be estimated
from any other information than the intensity values. It shows that the material
calibration correctly fitted the intensity-thickness relationship.

These experiments show that our method can be successfully used for di-
mensional measurements with a very high accuracy, for some parameters even
comparable to industrial CT, even though we only used two radiographs.

Parameter: θ1 θ2 θ3 θ4 θ7 θ8 Total

Reference: 6.923 13.020 6.848 6.963 10.438 20.977

Mean |error| 0.041 0.025 0.055 0.125 0.019 0.013 0.046

Max |error| 0.097 0.080 0.165 0.207 0.049 0.024 0.207

Table 5.1: Mean and maximum absolute errors collected from
(

7
2

)
= 21 eval-

uations of Prism A from two radiographs. References obtained via computed
tomography. Columns represent the individual dimensions (Figure 5.2). The
right-most column represents all dimensions together. All values in millimeters.

Measurements from three radiographs We saw that measurements from
only two radiographs achieve very high accuracies. In our next experiments, we
tried to add an additional reference radiograph depicting the prism in a rotated
pose. We wanted to evaluate whether adding new information could improve the
accuracy. We performed 6 ·

(
7
2

)
= 126 measurements in total,

(
7
2

)
= 21 pairs of

translations per each rotation.
1In this context, when we say that a dimensional parameter is “visible”, we intuitively mean

that it influences the loss function. For example, dimensions that are “not visible” do not
contribute to the loss function, so the optimization algorithm cannot estimate them correctly.
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In Table 5.2, we can see that the mean and maximum absolute errors usually
did not decrease. In fact, some of them are even slightly worse. The best results
were achieved with rotations 50◦ and more, which is probably as they brought
the most additional information to the optimization, because they represent the
side view of the prism. That could also explain why the highest improvement can
be seen for θ1: this parameter corresponds to the cut-out depth, which is much
better visible from the side views.

It is worth noting that optimizing with three radiographs is slower as three
radiographs have to be simulated per each iteration. In our case, optimizing a sin-
gle pair took approximately 136 seconds, while optimizing from three radiographs
took approximately 206 seconds, which is roughly 3/2 of the former.

We also evaluated the influence of spatial resolution (level of detail). Sur-
prisingly, when using two radiographs, the accuracies are almost the same even
from downsampled images, which significantly reduces the optimization time. We
discuss the spatial resolution further in Section 5.4.

Parameter: θ1 θ2 θ3 θ4 θ7 θ8 Total

Reference: 6.923 13.020 6.848 6.963 10.438 20.977

5◦ Mean |error| 0.048 0.023 0.072 0.176 0.025 0.017 0.060

Max |error| 0.080 0.059 0.143 0.258 0.045 0.041 0.258

20◦ Mean |error| 0.060 0.053 0.146 0.191 0.039 0.018 0.085

Max |error| 0.084 0.088 0.206 0.252 0.064 0.033 0.252

35◦ Mean |error| 0.027 0.040 0.133 0.198 0.048 0.014 0.077

Max |error| 0.062 0.084 0.200 0.267 0.098 0.031 0.267

50◦ Mean |error| 0.020 0.036 0.035 0.159 0.034 0.011 0.049

Max |error| 0.078 0.131 0.122 0.250 0.079 0.031 0.250

65◦ Mean |error| 0.027 0.044 0.058 0.151 0.032 0.009 0.053

Max |error| 0.072 0.111 0.128 0.242 0.087 0.022 0.242

80◦ Mean |error| 0.023 0.039 0.053 0.160 0.034 0.010 0.053

Max |error| 0.085 0.128 0.172 0.214 0.061 0.022 0.214

Total mean |error| 0.034 0.039 0.083 0.172 0.035 0.013 0.063

Total max |error| 0.085 0.131 0.206 0.267 0.098 0.041 0.267

Table 5.2: Mean and maximum absolute errors collected from 6 ·
(

7
2

)
= 126 eval-

uations of Prism A from three radiographs (two translations and one rotation).
The values are grouped by the rotation that was used (left column), the total is
in the last two rows. References were obtained via computed tomography. The
columns represent the individual dimensions from Figure 5.2. The right-most
column represents all the dimensions together. All values in millimeters.
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5.3 Dimensional measurements of a wedge
In the previous Section 5.2, we evaluated dimensional measurements of prism
jaws. Now, we verify that our method is suitable for other shapes as well. As
another example, we now evaluate our method on a wedge object manufactured
from an aluminum block (Figure 5.6).

Unlike the prism jaws, this object is manufactured with a much lower quality
with uneven edges and certain defects where a piece of aluminum broke off. On
this object, we show how we can calibrate the material from a wedge radiograph
directly (as in Section 3.4a), how our method behaves for worse quality products,
and how we can use it also for defectoscopy.

Process overview Unlike in Section 5.2, we calibrate the source-material-
detector pipeline from a wedge (Section 3.4a). Then, we use this calibration
for dimensional measurements of the parametrized object (Figure 5.6b). The
reference measurements in this case were obtained using digital calipers with
a 0.01 mm resolution, but the measurements were complicated as the wedge is
uneven and the accuracy is certainly worse than the caliper resolution.

Wedge radiograph dataset We acquired and manually normalized 17 refer-
ence radiographs (Figure 5.7a) depicting the wedge being translated 7.000 mm
along the same uncalibrated axis in each radiograph subsequently. Unlike for
prism jaws, we did not acquire any rotations as they were not important for
our dimensions. Together with these, we also acquired another radiograph (Fig-
ure 5.7b) where the wedge is closer to the X-ray source to cover a larger part of
the wedge itself. We used this radiograph for our material calibration.

1) Material calibration The calibration was performed on a single reference
radiograph (Figure 5.7b) exactly as explained in Section 3.4a and in Figure 3.7.
During the normalization, we assumed xmin = 0 mm and xmax = 20 mm, where
the latter is the thickness of the whole aluminum block that the wedge was cut-
out from. We sampled the intensity table between image horizontal x-coordinates
1575 and 2585. By manually examining the intensity values, we determined the
edge beginning to be at y-coordinate 477 (from top) and the end at 3197. Please
refer again to Figure 3.7 from Section 3.4a.

The fitting itself was calculated in Wolfram Mathematica using the built-in
function NonlinearModelFit for a sum of three exponentials. The result was the
following equation (Figure 5.8):

I(x) .= 0.206 exp (−0.238x) + 0.715 exp (−0.074x) + 0.067 exp (−0.012x) . (5.2)

Then we found the x0 for which I(x0) = 1, which was x0
.= − 0.107. We

then shifted and scaled Equation 5.2 according to Equation 3.7 and we got the
following final result (Figure 5.8):

I∗(x) .= 0.212 exp (−0.239x) + 0.721 exp (−0.075x) + 0.067 exp (−0.012x) . (5.3)

Notice that it holds I∗(0) = 1 and I∗(20) = I(20), which is exactly what we
wanted to achieve by shifting and scaling the intensity function.
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measurements area

(a) Photo of our wedge object. We are interested in dimensional measurements of
features inside the red area, i.e., the wedge itself, not the rest of the aluminum block.

θ1

θ2

θ3 θ4

θ5 θ6

θ7 θ8

θ9 θ10

θ2

θ1

(b) The dimensional parametrization θ1, . . . , θ10. Note that the width parameters at
the top (θ3, . . . , θ6) are duplicated in the middle (θ7, . . . , θ10), which is because the
edges are not perfectly parallel, so the object is not a perfect rectangular block, which
has to be taken into account in the parametrization (compare to Figure 3.3).

Figure 5.6: Wedge.
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(a) Reference radiograph depicting subsequent 7.000 mm translations.

(b) Reference radiograph for material calibration. The wedge is moved closer to the
X-ray source so that a larger part is covered. The circle at the bottom is a part of the
manipulator irrelevant to the measurements.

Figure 5.7: Wedge reference radiographs dataset.
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Figure 5.8: Calibrated material intensity functions I(x) and I∗(x).

2) Dimensional measurements Similarly to the prism jaws (Section 5.2), we
now use the calibrated material from Equation 5.3 for dimensional measurements
using the hierarchical optimization from Section 3.8. However, there are a few
differences from the prism jaws. The first difference is that we now measure the
same object which we used for the material calibration. And the second is that
the wedge was manufactured with much worse quality, which affects our accuracy.

In Table 5.3, we can see our mean and maximum absolute errors obtained
from

(
11
2

)
= 55 radiograph pairs in total. The reference measurements were not

obtained by computed tomography, rather using a simple digital caliper, and they
are only approximate because of the low manufacturing quality.

As we can see, the best accuracy was obtained in the middle width parameters
represented by the sum θ9 + θ10. That is, again, most likely because the width
is clearly visible in the radiographs. However, the top width θ3 + θ4 has much
lower accuracy, which is likely caused by the manufacturing defects present in
the top area (Figure 5.9). For example, a piece of aluminum is chipped off in
the top-left corner, which gives the optimization algorithm incorrect intensity
data. Furthermore, the right edge is not smooth, which leads the optimization
to incorrect pose estimations (it estimates the wedge slightly rotated around the
vertical axis, because that gives a lower image difference), which in turn results
in poor dimensional estimates of the edge widths as well (parameters θ5, . . . , θ8).

3) Defectoscopy Since we have fitted simulations together with reference ra-
diographs, it is possible to use the difference images to detect defects unrelated to
dimensional measurements. This is what Dael et al. [2017] (Section 2.3) used for
classifying horticultural products into bad (with internal defects such as cavities
or mold) and good (without defects). In our case, we can, for example, spot the
chipped-off part of the wedge in the top-left corner (Figure 5.9).
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Parameter: θ3 + θ4 θ5 θ6 θ7 θ8 θ9 + θ10 Total

Reference: 59.24 8.80 8.40 9.20 8.10 59.35

Mean |error|: 0.34 0.16 0.28 0.23 0.29 0.14 0.24

Max |error|: 1.36 0.71 1.10 1.16 0.90 0.99 1.36

Table 5.3: Mean and maximum absolute errors collected from
(

11
2

)
= 55 eval-

uations of the wedge from two radiographs (4th to 14th). References are only
approximate and were obtained via a digital caliper. The columns represent the
individual dimensions from Figure 5.6, some of them are summed together as
we could not measure them individually by the caliper. The right-most column
represents all the dimensions together. All values in millimeters.
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Figure 5.9: The zoomed-in wedge reference radiograph (top) and the per-pixel
difference to our fitted simulation (bottom). Notice that a part of the wedge has
chipped off in the top left corner, which can be clearly seen in red color in the
bottom image. Other defects can be seen at right, where the edge is not smooth,
which caused our optimization to misalign the simulated radiograph. Notice that
the wedge inner parts are fitted correctly from the calibrated material. Image
axes are pixel coordinates.
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5.4 Limitations caused by the setup
In the previous sections, we saw how accurate our method is. But note that
all dimensional measurements that our method performs are based solely on the
inputs that we give to the method, mainly the reference radiographs that we
acquired. We already know that X-ray setups are never perfect and that the
radiograph quality is limited by physics and the available technologies (Chapter 1
and mainly Section 1.5). Let us now mention the most important limitations of
our method caused by the X-ray technologies themselves.

This section is motivated mainly by Figure 5.10. There, we can see one-
dimensional cross-sections through the prism jaws and we can compare the refer-
ence radiographs to our simulations. These visualizations are extremely valuable
as they provide a visual guide to our following discussion.

Noise One of the first things one can notice is the noise present in the reference
data. Note that the data in Figure 5.10 are averaged over 11 pixels in the vertical
direction, so the noise is already much reduced. To see the original amount of
noise, refer to Figure 5.11, which depicts noise in a flat white area. Notice that
our simulations are noiseless as we use deterministic ray tracing with a single
sample per pixel and we do not take any scattering processes into account that
would require stochastic simulations.
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0.990

0.995
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Figure 5.11: Noise present in a normalized reference radiograph in an area that
should be completely white. Image axes are pixel coordinates. The colors are
clamped between 0.975 and 1.000, the darkest pixel has intensity 0.977.

Practically, the amount of noise can be reduced by longer exposures and aver-
aging the data, but that of course prolongs the image acquisition time. Generally,
noise can also be reduced in post-processing, but we wanted to avoid any image
post-processing except normalization as that could introduce bias and inaccura-
cies in the measurements that we would have to evaluate as well.

Paradoxically, the presence of noise may contain additional useful information
about the signal. Let us show an example for a hypothetical 2-bit detector whose
only possible pixel intensity values are 0 and 1. Remember that the pixel intensity
(gray level) is just the charge from the incoming X-ray photons accumulated and
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(a) Prism B reference radiograph (left) and the per-pixel difference to our simulation
(right). Image axes are pixel coordinates. The red area in the left image corresponds
to the cross sections in (b) below.
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(b) One-dimensional cross sections of the red area from (a) showing the reference signal
and our simulation (both averaged over 11 pixels vertically). Top-left image shows
the overall view, the remaining images are zoomed-in to specific parts across the x-
coordinates. Notice that our simulation almost perfectly matches the reference signal
except for the noise and “smoothing”, see text for discussion.

Figure 5.10: Prism B reference signal in comparison to our simulation.
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quantized over the physical pixel area. Think of a 2×2 pixels square and incoming
X-ray photons with the total intensity 0.25. If there was no noise present, the
detector would simply detect 0. But as quantum noise occurs, it is possible
that one of the pixels would go above the threshold and be detected with the
intensity 1. Hence, the 2 × 2 pixels area would contain intensities 0, 0, 0, and 1
that average to 0.25. Of course, this is not a proof or statement that noise is useful,
we just wanted to mention that when noise is accumulated over larger regions, it
may not harm our method. Notice that our optimization algorithm optimizes the
total loss summed-up through the whole radiograph and the dimensional features
that we measure are typically present in areas bigger than one pixel.

Focal size Another physical property that we discuss is the X-ray source focal
spot diameter that may result in geometric blur. For a general discussion about
this issue, please refer back to Section 1.5. According to our X-ray source man-
ufacturer, the reported focal size of our source is lower than 6 µm, which should
be practically unnoticeable.

To verify that the geometric blur caused by the focal size is negligible, we im-
plemented stochastic supersampling into our ray-tracer. For each pixel sample,
we randomly sample the position on the X-ray source using Gaussian distribu-
tion and we also randomly sample the pixel position within the pixel area. In
Figure 5.12, we can see that for 2048 random samples per pixel, the geometric
blur is, indeed, insignificant for focal sizes in the range of a few micrometers.
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Figure 5.12: Effects of various focal spot diameters simulated by randomly sam-
pling the source by a Gaussian distribution with different deviations σ. Notice
that in the range of several micrometers, the geometric blur is insignificant, which
is the case of our X-ray source.
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Detector scattering Much more significant than the focal spot diameter is
probably the scattering happening inside the detector itself. We have an indirect
flat-panel that contains a scintillator layer where scattering of the transformed
visible light is occuring as we discussed in more details in Sections 1.4 and 1.5.

In Figure 5.10, it is highly noticeable that the reference signal is partially
“smoothed”, i.e., the signal intensity decreases or increases in large neighborhoods
around sharp edges. Edges smoothing can, of course, be a result of the focal
size, but we already saw that in our case, this effect is negligible, and also it
cannot influence such large areas. Furthermore, notice that the edges are still
present in the reference signal, the edges themselves are not smoothed, only their
neighborhoods. The effect is highly likely caused by the detector scattering.

To verify our statement, we implemented a post-processing simulation of this
effect. We assume the scattering to be Gaussian with an unknown deviation.
But just blurring the whole image is not correct as that would also blur the edges
themselves. Rather, we must assume that the Gaussian blurring is additive.
Hence, we propose to linearly weight it together with the original signal. In
our simulation, we calibrated (optimized) the parameters using Prism B and the
results of our simulation can be seen in Figure 5.13. We assume the Gaussian to
have a deviation σ = 500 px and weight w = 0.139, so the blurred image is:

I∗ = 0.139 · G(I, σ = 500) + (1 − 0.139) · I, (5.4)

where I is the original ray-tracing simulation and G represents Gaussian filtering.
By simulating the detector scattering, we can significantly lower the total

loss (difference) between the reference and simulated image. Unfortunately, com-
puting the blurring with such large standard deviations is very slow even with
a separable convolution filter. Rendering the image with the scattering is about
400 times slower than standard rendering, so it becomes unsuitable for our method
and we did not use it for dimensional measurements. Later, in our Conclusion and
Future work, we discuss the possibility of pre-processing the reference radiographs
to remove the detector scattering instead of simulating it in post-processing.

Image resolution Our detector image output size is 4096 × 4096 px. To dis-
cuss if the resolution is sufficient for the dimensional measurements, we offer the
following example. In our reference radiographs, Prism A is roughly 750 px wide.
In physical dimensions, the prism is roughly 21 cm wide. That means that one
pixel corresponds to roughly 0.028 mm of the prism front side.

However, in Section 5.2, we saw that we can estimate the width θ8 with the ac-
curacy of 0.013 mm, which is much better than the pixel resolution. Furthermore,
we verified how the accuracy decreases when we downsample the reference radio-
graphs to lower resolutions of 2048×2048 px, 1024×1024 px, 512×512 px, or even
256 × 256 px. The θ8 mean absolute error got only slightly higher to 0.016 mm,
0.017 mm, 0.024 mm, and 0.043 mm, respectively. How is that possible?

We have to take the redundancy into account. Notice that the prism covers
a very large area and our method is fitting the whole prism with regards to the
whole radiograph, not just a single line or pixel. Hence, changing the width
by even a very small value still influences the total loss in the whole image.
As a result, our method can estimate dimensions with high accuracies even on
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Figure 5.13: Detector scattering simulated by Equation 5.4. Notice that the
simulation almost perfectly matches the reference signal, which proves that the
“shadows” around objects are, indeed, most likely caused by the scattering. The
parameters were partially optimized from Prism B. In fact, the σ could probably
be even higher, but that would slow the fitting even more, so it was not tested.

seemingly insufficient image resolutions, which we also verified on the remaining
dimensional parameters, not only θ8.

Gray-level resolution Our detector is 16-bit, so the output signal has up to
216 = 65536 distinct intensity values. In reality, we cannot benefit from the whole
range, because the signal black level is not exactly zero, but roughly from around
3000 to 5000 for our detector. Furthermore, the signal is normalized by the white
average, which again slightly impacts the resolution.

For our measurements, the gray-level resolution seems to be perfectly suffi-
cient. For our aluminum materials, the normalized intensity was roughly 0.2 for
thicknesses around 20 mm. That means that if there were 60000 distinct val-
ues between 0.0 and 1.0, that would be 48000 values between 0.2 and 1.0, so
without taking the exponentiality into account, we could recognize thicknesses
with resolutions even better than 0.001 mm. Of course, since the intensities are
exponential, the resolution gets lower when passing very thick materials, which
must be taken into account when measuring thick objects. Notice that in our
measurements, the thicknesses were at maximum around 20 mm.

Ghosting and other artefacts Finally, we briefly discuss the ghosting (image
lag) and other artefacts previously mentioned in Section 1.5. Examples are shown
in Figure 5.14, where we can mainly see that ghosting really does occur in real
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detectors. In Figure 5.14b, we specifically tried to remove the ghosting artefacts
by turning the setup off between the projections, which of course significantly
prolongs the acquisition time. Practically, we think that the ghosting does not
influence the dimensional measurements in any significant way and we performed
all our measurements on regular radiographs with the ghosting. First of all, it can
be clearly seen that the ghosting intensity is rather low and much lower than, for
example, the detector scattering (compare to Figure 5.10). And then, notice that
in our prism radiographs depicting the translations, the ghosting only appears on
the left side of the prism, which could only affect fitting the prism width, where
we achieve accuracies comparable to computed tomography.

Furthermore, in Figure 5.14, we can also see slightly darker areas above the
prism. We believe they may be caused by correlations in the detector columns,
which may happen for example because of crosstalks in the read-out electronics.
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(a) Prism B radiograph taken in a sequence of translations. When we rescale the colors
(right), we can clearly see the ghosting (image lag) from the previous translations on
the left side of the prism. Furthermore, we can see also see a slightly darker area above
the prism, which may be caused by correlations or crosstalks in the read-out electronics.
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(b) Here, the radiograph was taken after turning off and “cooling down” the setup for
a couple of seconds. As we can see, the ghosting has disappeared, but the dark area
above the prism remained, which supports our theory.

Figure 5.14: Detector ghosting and other artefacts.
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5.5 Limitations caused by our method
In the previous section, we discussed the limitations caused by the reference
radiographs quality, which is influenced by the whole X-ray setup. Now, we
discuss the limitations that our method would have even if the input radiographs
had an absolutely perfect quality.

Calibration Our method requires calibrating the material in the source-detector
pipeline (Section 3.4). The calibration is tied to a specific material in a specific
polychromatic spectrum and also takes the detector characteristics into account.
That means that if we had multiple X-ray machines or even the same machine but
with different configurations, such as different source voltages, we would have to
calibrate each of these situations individually with regards to the same material.
The good thing is that the calibration is performed semi-automatically and only
requires one reference object. In our case, we always used the same machine and
voltage to take the radiographs, so we only required one calibration.

We showed two ways in which the material may be calibrated, but both have
their own limitations. The first method requires us to manufacture a reference
wedge from exactly the same material as the measured objects. The problem is
that manufacturing an ideally smooth wedge whose thickness linearly decreases
towards zero is not a trivial operation. It is possible to buy calibration wedges,
but these are usually step-wedges, i.e., they are not smooth, but instead they
have steps of constant thicknesses, so we would have to interpolate the intensities
between the steps. Also, these wedges are very expensive and they may not be
manufactured from exactly the same material that we want to measure.

The second method uses an arbitrary parametrized object. The limitation
is that we first need to measure the reference object dimensions with very high
accuracy. That essentially means that we must first use computed tomography
on this object before we can use our own method for measuring other objects of
the same material. Again, the reference object should be manufactured with as
high quality as possible. However, in this thesis, we proved than even reasonably
accurate prism jaws can be used for a successful calibration.

Inhomogeneous materials Our simulations assume that the areas inside ob-
ject boundaries are filled with a homogeneous material, i.e., we assume that the
attenuation properties are uniform within the whole volume. While this assump-
tion was reasonably valid for our aluminum test objects, it may not always be
true for all materials. Important examples are wood [Jordan et al., 1998] and
composite materials that are neither homogeneous nor isotropic [Amir et al.,
2019]. Composite materials such as carbon-reinforced fiber plastics or glass fiber-
reinforced aluminum are made by combining multiple materials with different
properties with boundaries still existing between them.

The problem with inhomogeneousity is that we have no way of knowing how
exactly the material properties are distributed in the volume, which causes a
problem for our simulations. Computed tomography, on the other hand, estimates
the attenuation properties in each voxel separately, so it can be successfully used
even for scanning composite materials [Garcea et al., 2018].
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Multi-material objects Dimensional measurements of objects consisting of
multiple materials is also something which our current method does not sup-
port. Same as with inhomogeneous materials, the problem is with the attenu-
ation properties not being consistent throughout the whole volume. But unlike
inhomogeneousity, this problem may be easier to solve.

We would have to decide on an object representation that would contain in-
formation about the material boundaries, e.g., we could model the individual
materials separately, then render them individually via the ray tracing, and fi-
nally merge the attenuations along the paths. Of course, evaluations would have
to be performed whether such simulations would be plausible for dimensional
measurements. That is beyond the scope of this thesis.

Parametrizing and triangulating complex shapes Another limitation of
our method is that it requires parametrizing and triangulating the object shapes.
That may be problematic for spherical or circular features where accuracy may
be lost during the process.

Practically, the triangulation step could be replaced for example by construc-
tive solid geometry (CSG), which is an alternative representation for modeling
complex shapes by combining simple primitives via various operations [Stewart,
2008]. In that case, we could easily represent spheres and circles or even multiple
materials without any triangulation.

On the other hand, for simple models such as the prism jaws or the wedge
that we evaluated in our thesis, triangulations are easy to achieve and provide
good performance. That is because we can avoid sorting the intersections, which
would be problematic with various CSG operations. Also, new versions of the
OptiX ray-tracing framework can find ray-triangle intersections very fast due to
hardware acceleration in modern GPUs.

Stochastic X-ray photons scattering In Sections 2.4 and 3.6, we have al-
ready discussed the various rendering approaches and why we decided to use
attenuation-only ray tracing. Of course, by using such a deterministic simula-
tion, we do not simulate the fact that X-ray photons flying towards a certain
pixel A may be scattered on their path towards a different pixel B. Practically,
as we could see, we can still achieve accurate dimensional measurements even
without taking this effect into account. Vidal and Villard [2016] compared their
attenuation-only renderer with a stochastic Monte-Carlo particle-physics simula-
tion and they found out that the normalized cross-correlation between the images
is higher than 0.997. In our opinion, it is caused by the fact that X-ray photons
scatter either via Rayleigh or Compton scattering (Section 1.2).

Rayleigh scattering changes the photon direction and the energy remains the
same. But notice that in aluminum, the Rayleigh scattering coefficient signif-
icantly decreases for photon energies above 10 keV (Figure 1.4, remember that
both axes are logarithmic) and our detector filters energies up to around 40 keV.

Compton scattering, on the other hand, changes the photon direction but it
also decreases the photon energy during the process. But since the photon now
has lower energy with each Compton scattering event, the probability that such
photon will get absorbed by the photoelectric effect increases (again, consider
Figure 1.4) or, again, it may get filtered by the detector. Hence, notice that
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when the photons really do scatter, they have very low probabilities of actually
reaching the detector at any pixel.

Rendering artefacts Our ray tracer is based on ray-triangle intersections and
Equation 3.11. Unfortunately, in specific situations, such ray tracing may cause
rendering artefacts that manifest themselves as black or white pixels inside an
object (Figure 5.15). The issue was previously described for example by Vidal
and Villard [2016], even though they used a rasterizer instead of ray tracing, so
the issue had a slightly different cause.

In our case, the problem is caused by non-watertight ray-triangle intersections
[Woop et al., 2013]. That means that occasionally, an intersection may be missed
and there is a microscopic “crack” inside the object surface. When that happens
in our X-ray tracing, we incorrectly miss the fact that an object was entered
or exited. That means that the accumulated distance x through the object is
miscalculated and is either too high (black pixel, we forgot to exit the object) or
too low (white pixel, we forgot to enter the object).

Practically, we can avoid these artefacts either by implementing watertight
intersections as described for example by Woop et al. [2013], but that is not
trivial. Or, we can detect these pixels and replace them by the averages from
neighboring pixels. In our case, we did not work around the issue in any way
because the bad pixels usually only appear in very specific object poses and they
disappear with even a slight pose change (Figure 5.15). Hence, these artefacts
manifest themselves as loss function noise that should not affect the robust local
optimization algorithms that we use.
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Figure 5.15: Zoomed-in simulated radiographs, image axes are pixel coordinates.
The left simulation was specifically chosen to contain bad pixels (see text for
explanation). When the object was slightly rotated by 0.01◦, the bad pixels
disappeared (right image), which shows that they are caused by numerical errors
in the intersection calculations (the line along which the bad pixels appear is a
boundary between two triangles).

Optimization parameters Finally, we mention that our method requires man-
ually setting a few parameters for the optimization process. First of all, it is
necessary to define the lower and upper bounds of all optimization parameters,
which is necessary for the gradient-free methods. For example, if we knew that
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our object is not visible in the radiograph anymore if its x-position is lower than
−60 mm, we can safely use this value as the lower bound for the x-position, and
so on. Using tighter bounds is helpful for the optimization process to make sure
that it does not diverge from the correct solution (Section 3.8). Fortunately, it
is usually plausible to only set the lower and upper bounds once for multiple
radiographs. We do not have to set these values individually all the time.

For some parameters, we also have to set their initial estimates, which we al-
ready discussed in Section 3.8. In case of pose estimation, we solved this problem
by designing our hierarchical optimization that finds the initial pose by sampling
the parameter space. Hence, pose estimation happens fully automatically within
the lower and upper bounds. For the material optimization, we explained how
the initial estimate can be computed in Section 3.4b, and that only has to be
done once. For dimensional parameters, we typically roughly know the expected
dimensions, so we can use these as initial estimates. During our experiments, we
verified that slightly changing the initial dimensions does not influence the final
accuracy in any substantial way.

And finally, we have to set the stopping conditions, in our case, the maximum
number of iterations or a time limit, which we also discussed in Section 3.8. For
our dimensional measurements of the prism jaws and the wedge, we always used
5000 iterations as a stopping condition and we found this value to be perfect for
these objects. The only exception was material calibration, where we stopped
the process after 10000 iterations. For different objects, it might be necessary
to increase the limit in case it improves the accuracy, or it may be beneficial to
decrease the limit for faster measurements.
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Conclusion
In this thesis, we tackled an important quality control problem. Our main goal
was to propose, fully implement, and thoroughly evaluate a new method that
would allow dimensional measurements from only a few X-ray projections. In-
venting such solution would solve one of the main computed tomography limita-
tions: the requirement to acquire hundreds or thousands of projections. Let us
now summarize our contributions and verify that we have fullfiled all our goals.

At first, in Introduction, we briefly discussed the manufacturing processes and
measurement approaches. We followed by explaining the necessary physical and
technical background in X-rays and radiography in general (Chapter 1). Then,
we examined the existing and related solutions and we saw that even in the
recent state-of-the-art research in computed tomography, tens and hundreds of
projections are still necessary (Chapter 2).

Our main contribution is proposing our novel approach that does not de-
pend on computed tomography at all. Rather, we formulate the dimensional
measurements as a minimization problem using prior knowledge. We estimate
such dimensional parameters that minimize the difference between our parametric
model simulations and reference radiographs (Chapter 3). We carefully designed
and explained the individual components required for the method to work.

Namely, we proposed how the measured objects can be efficiently parametrized,
how to calibrate their materials without any complicated measurements, how to
easily take and parametrize reference X-ray projections, how to simulate radio-
graphs in a scalable and GPU-accelerated way, and finally, how to perform the
minimization itself in a hierarchical way to ensure it converges to accurate results.

We have successfully implemented the whole method in a prototype demo
application (Chapter 4). We performed an exhaustive evaluation with real radio-
graphs and real physical objects, we verified the method accuracy and repeata-
bility, and thoroughly discussed all limitations (Chapter 5).

Our results successfully show that our proposed method could provide sig-
nificant benefits for industrial quality control. When measuring prism jaws, one
of our test objects, from only two and three radiographs, we achieved the mean
absolute error in the range from 0.013 mm to 0.172 mm on different features, and
the maximum absolute error from 0.024 mm to 0.267 mm in comparison to com-
puted tomography. These results were also consistent when verified on more than
one hundred combinations of input radiographs. We also evaluated our method
on a different object shape, but unfortunately with worse results as that object
was manufactured with much lower quality than the prism jaws.

The major advantage is that unlike hundreds or thousands of projections for
computed tomography, acquiring two or three radiographs with different trans-
lations is possible in a couple of seconds. That means that the X-ray machine
time is significantly reduced. Hence, the same machine can be used for quality
control in more production lines or for other purposes, which can lower the total
quality control costs. Furthermore, it reduces the time in which any defects or
manufacturing errors are detected, so errors can be corrected much faster leading
to fewer rejected products. That, again, lowers the total production costs.
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Future work
The dimensional measurements problem is not easy to solve. Especially relying
on only two or three radiographs is heavily underdetermined and requires using
prior knowledge such as carefully parametrizing the object and acquiring accurate
radiographs. While our method achieves high accuracies for our test objects, it
is of course not perfect and we have thoroughly discussed some of the limitations
in Sections 5.4 and 5.5. There are still problems that remain to be solved during
the possible future work as they were already beyond the scope of this thesis. Let
us now briefly mention a few of them.

Differentiable renderer While this is not really a limitation, it would be
very interesting to propose and implement a differentiable X-ray renderer. In
our method, we work with a ray tracer with unknown gradients with regards to
the optimized parameters. We got around this problem by using gradient-free
optimization methods (Section 3.8). However, if we had a differentiable renderer,
we could probably achieve much faster optimizations as the algorithms would use
pre-computed gradient information. So far, we do not know of any differentiable
X-ray renderer, but such renderers were already researched for standard rendering
[Loper and Black, 2014, Palazzi et al., 2018] and they have its usage in deep
learning [Palazzi et al., 2018].

Multi-material objects We already discussed the problem of measuring multi-
material objects in Section 5.5. Generally, our method only supports objects with
a single homogeneous material. However, proposing a multi-material represen-
tation and simulation could be important for quality control of whole products
where different materials are combined. It would be interesting to evaluate if
these objects could be rendered by simply ray tracing the materials individually
and accumulating the attenuations.

Complex geometries and constructive solid geometry A problem par-
tially linked to the one above is parametrizing complex geometries, which was
also discussed in Section 5.5. We believe that proposing and implementing a
constructive solid geometry (CSG) ray tracer for X-rays could bring the bene-
fit of supporting complex spherical or circular geometries, or internal features
such as circular holes that are complicated to triangulate (many vertices would
have to be recalculated every time the parameters change). More details about
CSG primitives and operations are available for example in Stewart [2008], Chap-
ter 2. Furthermore, CSG could also help parametrize multi-material objects as
the boundaries between materials would be calculated from the CSG operations.

Of course, implementing complex geometries is only a part of the problem.
Thorough evaluations would be necessary to verify the dimensional measure-
ments accuracies for such geometries. In our method, we only used relatively
simple shapes and it is not clear how well the method would scale with geometry
complexity and an increasing number of optimization parameters.

Removing detector scattering The detector scattering that we discussed in
Sections 1.5 and 5.4 is significant in our indirect flat-panel detector. It would
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be interesting to evaluate how such scattering influences the accuracy. Unfor-
tunately, post-processing the rendered radiographs by Gaussian blurring is very
slow, so in our method, we perform all optimizations on näıve simulations with-
out taking the scattering into account. Instead of post-processing the renders, it
would be an interesting future research to propose a way to remove the scattering
directly from the reference radiographs.

Evaluation in a real manufacturing process When evaluating the dimen-
sional measurements of prism jaws (Section 5.2), we used two prisms, one refer-
ence for the material calibration, and one with different and unknown dimensions.
In a real manufacturing process, however, there may be not two, but thousands or
even more objects of the same shape produced every day. Evaluating our method
on thousands of objects was, of course, impossible in our research conditions and
limited timeframe. However, it would be a very important future work to imple-
ment an automated demo application for a real industrial process and evaluate
the accuracies achieved in real factory conditions.

It would be especially interesting to measure the real time required for a
human operator to acquire the radiographs, i.e., place the measured object in a
manipulator, take a radiograph with a fixed configuration, move the object with
the manipulator, and take another radiograph. Of course, an automated machine
could be constructed for these measurements just like the industrial machines that
already exist for computed tomography measurements.

Defectoscopy Furthermore, it would be interesting to evaluate if our method
could also be used for defectoscopy by evaluating the difference images. We briefly
discussed this idea at the end of Section 5.3 and it is similar to what Dael et al.
[2017] presented for detecting defects in horticultural products. Unfortunately,
in case of the wedge, we saw that the optimization algorithm may converge to
wrong pose estimations because of the defects, which may negatively influence
the accuracy.

Performance optimizations Our implementation is only a prototype intended
mainly for experimenting and evaluating the approach with different parameters
and in various situations. In no way it is optimized for the best performance,
even though we implemented the ray tracing in a GPU-accelerated framework
and we also used CUDA for computing the loss function, which significantly re-
duces the time per iteration. It would be interesting to compare the accuracy
and performance of ray tracing in comparison to GPU rasterization as proposed
by Vidal et al. [2009] (Section 2.4).

Removing rendering artefacts Our ray tracer currently suffers from occa-
sional artefacts that we discussed in Section 5.5. These artefacts are tied to the
triangulation and they do not influence the loss function significantly as they
disappear even with a subtle change of the parameters, hence they behave more
like loss function noise. In our opinion, removing the artefacts would not bring
any benefits to our simple objects, but it could be more important for complex
triangulated shapes with thousands of triangles or even more. As the artefacts
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are caused by ray-triangle intersections, increasing the number of triangles also
increases the number of bad pixels.

Removing the artefacts could be done in three ways. Either by post-processing
the pixels as proposed by Vidal and Villard [2016], or by implementing watertight
ray-triangle intersections [Woop et al., 2013] as in the renderer by Marinovszki
et al. [2018], or by not using triangulation and instead relying on CSG or other
representations, but they could, of course, have their own artefacts.
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Attachment 1 – User reference
As described in Chapter 4, we implemented our method in a configurable pro-
totype demo application. In the electronic attachment, we can find the main
application and other utilities, their executables and source codes. Here we ex-
plain how the demo can be used from the user point of view.

System requirements
We tested the prototype on several computers. Based on our observations, we
recommend the following system configuration:

• Operating system: Windows 10, 64-bit version,
• CPU: x64, multi core, frequency 2.0 GHz or higher,
• Physical memory: 4 GB or more,
• GPU: NVIDIA required, Compute Capatibility 3.0 (Kepler architecture) or

higher, at least 2 GB of memory, newest drivers (396.65 or higher); it might
be necessary to have NVIDIA CUDA Toolkit 10.0 installed1,

• C++ components: Microsoft Visual C++ Redistributable for Visual Studio
2017 needs to be installed2.

Graphical user interface
The application is started by simply running the file build/CUNI MgrThesis.exe.
This batch file executes the graphical user interface (GUI) of an empty project
corresponding to an empty dataflow graph (Chapter 4). The GUI consists of an
almost empty window with a framerate counter on the top. Together with the
main window, a console is opened and various kinds of messages are logged there.

Working with a project
The simplest way to load a project (a set of interconnected graph nodes, Chap-
ter 4), is to drag and drop a node file or multiple files onto the main window.
These files are typically JSON files (.json) with an exception of radiographs
(.tiff) and 3D STL models (.stl).

When a project is loaded, its graph nodes (Figure 4.1) are constructed and
small windows appear inside the main window (Figure 4.2). These subwindows
correspond to the project nodes and show their settings and possible actions. To-
gether with these, there is a subwindow called Optimization Variables that enables
changing the current level of detail and multiplex (Section 4.2), i.e., switching be-
tween multiple reference images and their poses if present.

In the top menu, additional two buttons are displayed:
• Step executes a single step of each graph node in the topological order, i.e.,

it forces the graph to recalculate once. Beware that if an optimizer node
exists in the graph, performing a single step means executing the whole

1https://developer.nvidia.com/cuda-toolkit
2https://aka.ms/vs/15/release/VC_redist.x64.exe
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optimization process! The optimization process can be stopped by pressing
Ctrl+C inside the console window once (terminates only the current op-
timization in the hierarchy) or twice (terminates the whole optimization).
Results of the optimization can be seen in the console window and the graph
state can be saved and serialized using the following button:

• Output saves the supported graph nodes to the output folder (see Com-
mand line interface). Note that only the following nodes can be saved:
EsftMaterial, Wedge, Prism, Transformation (all of them saved as .json
that can be loaded again), OptiXRenderer (saves the render as .tiff), Per-
PixelLoss (calculates and saves the loss function values per pixel as .tiff).

Note that a completely new project cannot be created via the application. It
either has to be created manually as new .json files or you can save modifications
of existing projects via the GUI and the “Output” button.

Mouse and keyboard interactions
Our GUI is designed using the Dear ImGui framework3. The main window cor-
responds to a workspace that contains project subwindows as already explained.

The subwindows have a title bar, which contains an arrow-button for collapsing
and expanding each window, and a title which corresponds to the file name of
the node, or for inline-defined nodes that do not have a dedicated file it says
@@inline argument XYZ, where XYZ is the number of the inline node.

Each subwindow can be moved by clicking and dragging either the title bar
or the window area itself if there is not any interactive element under the cursor.
Note that the subwindows may be dragged outside the main window area, i.e.,
the subwindows can float wherever on the screen not limited by the main window.
Their positions are remembered when the application terminates and are restored
when the nodes of the same names are loaded.

Inside the subwindows, all clickable buttons are light blue and can be acti-
vated by clicking them with a mouse. Number inputs are represented by gray
rectangles, their values can be changed either by double-clicking them and us-
ing a keyboard input, or by clicking and dragging the mouse over them in the
left and right directions. Drop-down inputs are represented by gray rectangles
with an arrow on the right side, they can be clicked and a new value selected by
mouse clicking. Finally, there are checkboxes that can be (de)activated by click-
ing them. Keyboard navigation is also possible by pressing Tab, arrow keys, and
Spacebar, and by pressing Ctrl+Tab to switch between subwindows. For more
details, please consult the Dear ImGui repository.

Command line interface
For convenience and automated executions, the application can also be executed
without the graphical user interface and controlled by command line arguments.
The supported arguments are the following:

3https://github.com/ocornut/imgui
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• --cli runs the application without the graphical user interface. A project
will be loaded immediately, a topological ordering of the nodes will be found,
and all nodes will be executed and their outputs saved to an output folder.
That will happen exactly once and then the application will terminate.

• --output XYZ sets the output path (directory) to XYZ (relative or absolute).
This path is used to save and serialize graph nodes. If not specified, the
default output path is ./output relative to the current working directory.

• --assets XYZ sets the assets path to XYZ (relative or absolute). This path
contains assets such as fonts and compiled ray-tracing programs. If not
specified, the application tries to find the first directory called assets in
the current working directory or parent directories.

• All other arguments not beginning with -- are interpreted as paths to
project files that will be loaded when the application starts. If not specified,
an empty project is loaded.

For example:
build/CUNI MgrThesis.exe --cli --output test optimizer.json

loads and executes a project defined in a file optimizer.json and saves the
results in the test directory.

Example projects
The electronic attachment contains a few example projects that can be used to
verify and reproduce our results from Chapter 5 and possibly create new projects
based on them. We mention the following:

• projects/prism measurements/prismB material
This directory contains a project for fitting the prism material from Prism B
(Section 5.2). The project can be loaded from optimizer prismB.json.
The reference images and their transformations for the optimization can be
changed in references prismA.json and transformations prism.json.
When the optimization is executed and finishes, the fitted material can be
saved and used for the following project.

• projects/prism measurements/prismA dimensions
This directory contains a project for measuring Prism A dimensions from
the material fitted from Prism B in the project above. The project can
be loaded from optimizer prismA.json. References and their transforma-
tions can again be changed in the appropriate files as in the project above.

• projects/prism measurements/statistics generator
In this directory, there is a simple C++ source code and executable for
automatically generating project files and executing all optimizations for
Prism A dimensional measurements from all possible combinations of two
or three reference images (two translations and one rotation). The results
are automatically parsed and printed to the standard output. Note that
executing this example may take several hours based on the hardware. This
project was used for generating the statistics from Section 5.2.

• projects/wedge measurements/dimensions
Similarly to the prism measurements above, this directory contains a project
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for measuring the wedge dimensions. The project can be loaded from
optimizer wedge.json. The material in material wedge plotfit.json
is calibrated from the wedge directly by fitting exponentials to the intensity
table via Wolfram Mathematica (Section 3.4a). The Mathematica notebook
with the fitting is available in material wedge plotfit.nb together with
experimental fitting of a varying number of exponentials in the sum.

• projects/wedge measurements/statistics generator
Similarly to the statistics generator for Prism A, this directory contains a
source code and executable for automatically generating project files and
executing all optimizations for wedge dimensional measurements from all
possible combinations of two reference images (without rotations).

Building the demo
All executables for the 64-bit Windows platform are already available in the
build directory. In order to build the project from scratch, one can use the
CMakeLists.txt configuration for CMake4 to generate the solution for Visual
Studio 2017 that can be compiled afterwards. If unfamiliar with CMake, please
consult their official documentation.

Note that it is necessary to further define the following CMake options when
generating the project. We need to set the OptiX SDK path OptiX INSTALL DIR
and then we also need to set the CUDA Toolkit include directory
CMAKE CUDA TOOLKIT INCLUDE DIRECTORIES WORKAROUND. Both options can be
set from the command line using the CMake -D argument.

Beware that building the project was only tested with Visual Studio 2017 and
Windows 10, so remember to use the Visual Studio 15 2017 CMake generator.
It also requires NVIDIA OptiX SDK 5.1.1 or 6.0.05 and NVIDIA CUDA Toolkit
9.0 or 10.06 installed on the machine. We recommend consulting the official
NVIDIA documentations and forums especially for OptiX support7.

Furthermore, building the project requires the libtiff library for loading
and saving TIFF. The repository of this library has to be downloaded8 to the
lib/libtiff directory.

The remaining libraries are already present in the attachment.

Building the statistics generators Building the statistics generators from
the previous section is handled separately as they are just a single C++ file.
These can be compiled directly without any complicated settings, e.g., via the
Developer Command Prompt for VS 2017 such as:
cl /std:c++17 /EHsc /I"../../../lib/json/include" statistics generator.cpp

4https://cmake.org/
5https://developer.nvidia.com/optix
6https://developer.nvidia.com/cuda-toolkit
7https://devtalk.nvidia.com/default/board/254/
8https://libtiff.gitlab.io/libtiff/ or http://www.simplesystems.org/libtiff/

or https://gitlab.com/libtiff/libtiff are all mirrors of the same library.
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Attachment 2 – Electronic
attachment contents
The contents of the accompanying electronic attachment are organized as follows:

• assets/ — assets (fonts, geometry, and compiled OptiX programs) required
to run the demo application,

• build/CUNI MgrThesis.exe — the demo application,
• cmake/ — utility files for CMake,
• lib/ — C++ libraries required to compile the demo application,
• projects/ — the demo project files and selected reference radiographs in

full resolution,
• projects/prism measurements/ — the demo projects for prism measure-

ments, see Attachment 1 – User reference for more details,
• projects/wedge measurements/ — the demo projects for wedge measure-

ments, see Attachment 1 – User reference for more details,
• projects/prism/ — normalized prism jaws reference radiographs in full

resolution,
• projects/wedge/ — normalized wedge reference radiographs in full reso-

lution, only a subset of the original dataset is attached to save space,
• src/ — our demo application C++ and CUDA source codes,
• CMakeLists.txt — main configuration file for building the demo applica-

tion via CMake.
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