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Abstrakt:

Analýza tvaru ve fyzické antropologii, biomedićıně a přidružených oborech
je často prováděna s použit́ım landmark̊u nebo pomoćı měřeńı vzdálenost́ı.
Nové technické možnosti dovoluj́ı digitalizovat věrný vzhled objektu ve formě
trojúhelńıkových śıt́ı nebo objemových dat. Tyto digitálńı obrazy jsou obzvláště
užitečné v př́ıpadech, kdy nemohou být vhodným zp̊usobem použity landmarky
k popisu tvaru.

Aby bylo možné statisticky analyzovat tvar na vzorku pozorováńı, které jsou
reprezentovány zmı́něnými zobrazovaćımi technikami, muśı být identifikovány
vzájemně si odpov́ıdaj́ıćı body.

Registrace je kĺıčovým nástrojem k mapováńı reprezentaćı tvaru do společné
souřadné soustavy, kde se hledaj́ı vzájemně si odpov́ıdaj́ıćı body, v př́ıpadě
trojúhelńıkových śıt́ı na principu nejblǐzš́ıho souseda a v př́ıpadě objemových
dat podle překrývaj́ıćıch se bod̊u. Elastická registrace založená na B-spline
interpolaci byla vybrána kv̊uli své mnohostrannosti, relativńı rychlosti a schop-
nosti registrovat trojúhelńıkové śıtě i objemová data. Zároveň byly prováděny
experimenty i s alternativńımi registračńımi metodami — založenými na Thin-
plate spline funkćıch a Coherent point drift algoritmu. B-spline registrace byla
modifikována, aby zvládala datové množiny r̊uzných morfometrických studíı a
zrychlena s využit́ım chytrého vzorkováńı během optimalizace registračńı kri-
teriálńı funkce, což umožnilo jej́ı urychleńı až o 2–3 řády.

Navržené algoritmy byly demonstrovány dvěma zp̊usoby: (1) jako nástroj
pro obecné morfometrické úlohy, jako je zkoumáńı variability tvaru, asyme-
trie nebo dopoč́ıtáńı chyběj́ıćıch dat; (2) v mnoha úlohách reálných morfomet-
rických výzkumných projekt̊u, kde byly studovány r̊uzné fenomény od struk-
tury středověkého obyvatelstva po hodnoceńı lékařských procedur v dentálńı
chirurgii.

Bylo prokázáno, že př́ımá analýza digitálńıch dat, bez redukce informace
zp̊usobené výběrem landmark̊u, odhaĺı mnohem v́ıc o studovaném fenoménu,
než když je použita pouze landmarková metodika. Např́ıklad, úspěšnost při
určeńı pohlav́ı podle obličeje se zlepšila o 22,7% za použit́ı trojúhelńıkových
śıt́ı v porovnáńı s landmarky. Vždy ale zálež́ı na konkrétńım projektu, zda
nelandmarková metoda podá lepš́ı výsledky, než řešeńı za použit́ı landmark̊u.

Kĺıčová slova: registrace, korespondence, analýza tvaru, geometrická mor-
fometrie, lékařské zobrazovaćı metody, trojúhelńıkové śıtě, objemová data
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Abstract:

Shape analysis in physical anthropology, biomedicine, and related disci-
plines is mostly done using landmarks or by measuring distances. New techno-
logical advancements allow the digitization of object’s appearance in the form
of triangular meshes or volume images. These digital images are especially
beneficial in the cases when landmarks cannot be used to effectively describe
the shape.

In order to statistically analyze shape in a sample of observations, which
are represented by these modalities, correspondence has to be found.

Registration is a crucial tool in mapping the shape representations into a
common space where correspondence is found by nearest neighbor principle in
the case of triangular meshes or by overlaps in the case of volume images. B-
spline based non-rigid registration is chosen because of its versatility, relative
speed and ability to handle both meshes and volume images. Experiments were
also performed with other alternatives — Thin-plate splines and Coherent point
drift. The algorithm was modified to handle the data in various morphometric
studies. It was also improved in speed by employing smart sampling for the
optimization of the registration objective function, allowing a speed up of 2–3
orders of magnitude.

The proposed algorithms were demonstrated in two ways: (1) as a tool
for generic morphometric tasks such as shape variability, asymmetry analysis,
missing data imputation; (2) in many tasks of actual morphometric research
investigating different phenomena ranging from the structure of the medieval
population to an evaluation of treatment procedures in dental surgery.

It was confirmed that a direct analysis of digital images, without informa-
tion reduction by landmark placement, is able to uncover more of the studied
phenomena a method based solely on landmarks. For example, discrimination
success rate of face with respect to sex has improved by 22.7% using meshes
in comparison to landmarks. Of course, it always depends on the particular
project whether a non-landmark method outperforms a landmark-based solu-
tion.

Keywords: registration, correspondence, shape analysis, geometric morpho-
metrics, medical imaging, triangular meshes, volume images
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Chapter 1

Introduction

Our visions begin with our desires.

Audre Lorde

Current research into life sciences uses highly elaborate modern methods,
such as genetic analysis in molecular biology, but there has been an evolution
in the traditional methods used for centuries, operating on a scale perceiv-
able to the naked eye. Documenting the physical appearance of real world
objects is one of the most important methodological approaches and lies at
the foundation of many fields in life sciences. This approach has been ex-
tended by elements of quantitative research, i.e. integrating documentation of
many appearances into one model to explain studied phenomena. With the
advent of mathematical statistics, these approaches have become more and
more sophisticated.

The presented thesis is concerned with an extension of the methodological
framework for the analysis of shapes, called geometric morphometry (GMM)
and its application in the fields of physical anthropology and biomedicine. The
pivotal subject of this thesis is the problem of geometric correspondence, since
the tasks laid out below involve various forms that compare different geometric
representations of real world objects and knowing the correspondence is the
first step for comparison. This problem becomes more challenging when it
comes to new modern techniques of capturing shapes that produce new data
modalities.

1.1 Structure of the thesis

The thesis is divided into five chapters. Throughout the chapters, several case
studies are presented which either demonstrate the application of methods
explained in currently published research that the author has participated on,
or describe complex examples of still-to-be published original algorithms.

After the introductory chapter, which presents a layout of the work, the
second chapter introduces the topic of the thesis along with a background to

8



CHAPTER 1. INTRODUCTION 9

the research. Several examples will show the method of statistical analysis
for geometrical shapes used in scenarios where correspondences are explicitly
known. This is important in determining the type of tasks which can be solved
and motivates research into correspondence in the following chapters. At the
end of the chapter, a study is presented which constructs correspondences in
two-dimensional images, partially by explicitly defined points and partially by
an algorithm.

The third chapter approaches the topic of correspondences on surfaces rep-
resented by triangular meshes. Mesh and point-cloud registration algorithms
are described. Information is provided to show that B-spline-based registra-
tion, among other methods, is particularly suitable for precise and fast mesh-
fitting, along with a description of how other options are used. Various tasks
are discussed, including basic variability analysis, dimorphism analysis, asym-
metry analysis, and even partial geometry fitting and missing data.

In the fourth chapter, voxel-based morphometrics is introduced, which uses
volume data for shape representation. This is a natural extension to surface
representation of meshes and allows for the most complicated shapes to be
captured, which might otherwise be impossible to analyze while using surfaces.

The fifth chapter concludes the work and offers potential directions for
future research.

1.2 Publications

In this section, a list of the author’s original published work is presented, which
is related to the topic of the thesis. The publications are divided into three
groups, reflecting the order of their appearance in the following chapters.

Landmark data

The author has contributed to a number of research studies based on land-
mark methodology, which is considered the current mainstream methodology
for shape description and analysis. However, there are still unresolved prob-
lems, e.g. missing data computation. These works are also important since
they inspire new approaches to shape analysis.

• Brzobohatá, H., Kraj́ıček, V., Veleḿınský, P., Poláček, L.,
Veleḿınská, J., The Shape Variability of Human Tibial Epiphyses in an
Early Medieval Great Moravian Population (9th -10th Century AD): A
Geometric Morphometric Assessment. Anthropologischer Anzeiger, 2014,
71(3), pp. 219–236

• Brzobohatá, H., Kraj́ıček, V., Horák, Z., Veleḿınská, J., Sex
Classification Using the Three-Dimensional Tibia Form or Shape Includ-
ing Population Specificity Approach. Journal of Forensic Science, 2015b,
60(1), pp. 29–40
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• Brzobohatá, H., Kraj́ıček, V., Horák, Z., Sedlak, P.,
Veleḿınská, J., Diachronic changes in size and shape of human
proximal tibia in the area of Central Europe during the latest 1200
years. HOMO - Journal of Comparative Human Biology, 2015a.
(submitted)

• Chvojková, M., Kraj́ıček, V., Veleḿınská, J., Kraniometrická
Variabilita Historických Populaćı z Oblasti Údoĺı Nilu. Slov. Antropol.,
2010, 13(2), pp. 19–23–5

• Bigoni, L., Kraj́ıček, V., Sládek, V., Veleḿınský, P.,
Veleḿınská, J., Skull shape asymmetry and the socioeconomic
structure of an early medieval Central European society. American
Journal of Physical Anthropology, 2013b, 150(3), pp. 349–364

• Bigoni, L., Kraj́ıček, V., Sládek, V., Veleḿınský, P., Poláček,
L., Veleḿınská, J., Different Subsistence Patterns and the Socioe-
conomic Structure of Medieval Society of Great Moravia. 1838emes
Journées de la Société d’Anthropologie de Paris, Paris, 2013a

• Bejdová, S., Kraj́ıček, V., Veleḿınská, J., Horák, M.,
Veleḿınský, P., Microevolution of mandible in the area of central Eu-
rope during the latest 1200 years using methods of 3D geometric mor-
phometrics. Anthropologischer Anzeiger, 68, 4, 2011

• Bejdová, S., Kraj́ıček, V., Veleḿınská, J., Horák, M.,
Veleḿınský, P., Changes in the sexual dimorphism of the human
mandible during the last 1200 years in Central Europe. HOMO - Journal
of Comparative Human Biology, 2013, 64(6), pp. 437–53

• Bejdová, S., Kraj́ıček, V., Veleḿınská, J., Horák, M.,
Veleḿınský, P., A Microevolution of upper face in the area of Cen-
tral Europe during the latest 1200 years. 18th Congress of the European
Anthropological Association, Ankara, Turkey, 2012b

• Veleḿınská, J., Kraj́ıček, V., Dupej, J., Goméz-Valdés, J. A.,
Veleḿınský, P., Šefčáková, A., Pelikán, J., Sánchez-Mejorada,
G., Br̊užek, J., Geometric morphometrics and sexual dimorphism of the
greater sciatic notch in adults from two skeletal collections: The accu-
racy and reliability of sex classification. American Journal of Physical
Anthropology, 2013, 152(4), pp. 558–565

Mesh data

A new trend in digitizing the shapes of objects is to capture them using a
surface scanner. Triangular meshes might not only be used to preserve shape
information and to extract landmark data, but they can also be used directly in
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analysis since they contain complete geometrical information on given object.
However, currently there is a lack of methods and software tools for tack-
ling various tasks of shape analysis. This current state of play is the major
motivation for the author’s contribution to this thesis.

• Dupej, J., Kraj́ıček, V., Pelikán, J., Low-Rank Matrix Approxima-
tions for Coherent Point Drift. Pattern Recognition Letters, 2014a, 52,
pp. 53–58

• Dupej, J., Kraj́ıček, V., Veleḿınská, J., Pelikán, J., Statistical
Mesh Shape Analysis with Nonlandmark Nonrigid Registration. 12th
Symposium on Geometry Processing, Cardiff, UK, 2014b

• Veleḿınská, J., Bigoni, L.,Kraj́ıček, V., Borský, J., Šmahelová,
D., Cagáňová, V., Peterka, M., Surface facial modelling and allom-
etry in relation to sexual dimorphism. HOMO - Journal of Comparative
Human Biology, 2012, 63(2), pp. 81–93

• Bejdová, S.,Kraj́ıček, V.,Trefný, P., Peterka, M.,Veleḿınská,
J., Variability in palatal shape and size in patients with bilateral com-
plete cleft lip and palate assessed using dense surface model construc-
tion and 3D geometric morphometrics. Journal of Cranio-Maxillofacial
Surgery, 2012a, 40(3), pp. 201–208

• Rusková, H., Bejdová, S., Peterka, M., Kraj́ıček, V.,
Veleḿınská, J., 3-D shape analysis of palatal surface in patients with
unilateral complete cleft lip and palate. Journal of Cranio-Maxillofacial
Surgery, 2014, 42(5), pp. 140–147

• Kraj́ıček, V.,Dupej, J.,Veleḿınská, J., Pelikán, J., Morphometric
Analysis of Mesh Asymmetry. Journal of WSCG, 2012, 20(1), pp. 65–72

• Dupej, J., Kraj́ıček, V., Veleḿınská, J., Pelikán, J., Analysis of
Asymmetry in Triangular Meshes. In Proceedings of the 33 rd Conference
on Geometry and Graphics, VŠB-Technical University of Ostrava, 2013,
pp. 65–78

• Kraj́ıček, V.,Dupej, J.,Koudelová, J.,Veleḿınská, J., Statistical
Mesh Analysis of Longitudinal Shape Changes. In Proceedings of the 33
rd Conference on Geometry and Graphics, VŠB-Technical University of
Ostrava, 2013, pp. 155–168

• Špačková, J., Cagáňová, V., Kraj́ıček, V., Veleḿınská, J., Spec-
ification of child and juvenile identification: 3D modelling of facial on-
togenetic development during the pubertal spurt. European Academy of
Forensic Science Conference, Hague, Netherland, 2012
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• Cagáňová, V., Borský, J., Kraj́ıček, V., Hoffmannová, E.,
Černý, M., Veleḿınská, J., Three-dimensional facial morphology fol-
lowing neonatal cheiloplasty in six-old-years patients with unilateral cleft
of the lip and palate. Journal of Cranio-Maxillofacial Surgery, 2014. (sub-
mitted)

• Koudelová, J., Br̊užek, J., Cagáňová, V., Kraj́ıček, V.,
Veleḿınská, J., Development of facial sexual dimorphism in children
aged between 12 and 15 years: a three-dimensional longitudinal study.
Orthodontics & Craniofacial Research, 2015. (in press)

• Trefný, P., Kraj́ıček, V., Veleḿınská, J., Three-dimensional anal-
ysis of palatal shape in patients treated with SARME using a dense
surface model. Orthodontics & Craniofacial Research, 2015. (submitted)

Volume data

The last group relates to the processing of volume data, especially their seg-
mentation and registration. In the context of this thesis, this group of meth-
ods represents an attempt by the author to employ medical image-processing
methods in the field of shape analysis. In the case of physical anthropology,
published work focusing directly on volume data is scarce, since it is a relatively
new modality and not widely available in the field.

• Kraj́ıček, V., Pelikán, J., Horák, M., Measuring and Segmentation
in CT Data Using Deformable Models. In Skala, V. (ed.), WSCG’ 2007
Short Communications Proceedings, vol. 2, Union Agency, 2007, pp. 149–
152

• Kraj́ıček, V., Volume measurement in 3D data. Master’s thesis, Faculty
of Matematics and Physics, Charles University in Prague, April 2007

• Kolomazńık, J., Horáček, J., Kraj́ıček, V., Pelikán, J., Segmen-
tation on CUDA Using Graph-Cuts and Watershed Transformation. In
WSCG Poster Proceedings, Union Agency, 2012, pp. 35–38

• Kraj́ıček, V., Design of Segmentation Algorithm for Volume Measuring
CAD system. In Proceedings of MIS 2008, Matfyzpress, 2008b, pp. 47–57

• Kraj́ıček, V., Analyzing Contrast Enhanced MRI Sequences for Mam-
mography. In Proceedings of Contributed Papers: Part I - Mathematics
and Computer Sciences, Matfyzpress, 2008a, pp. 195–201

• Kraj́ıček, V., Dupej, J., Bejdová, S., Veleḿınská, J., Pelikán, J.,
Teeth and Jaw Segmentation Using Fast Level-set Algorithm and Local
Region Anisotropic Priors. Imaging Science Journal, 2014. (submitted)
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• Kraj́ıček, V., Bejdová, S., Veleḿınská, J., Pelikán, J., Improving
B-spline Deformation Based Fitting for Volume Registration. In Proceed-
ings of the 31st Conference on Geometry and Graphics, VŠB-Technical
University of Ostrava, 2011, pp. 139–154

1.3 Goals

In many fields of life sciences there is a noticable cross-over with image process-
ing related disciplines as novel imaging techniques emerge and find application
in various traditional areas. In particular, physical anthropology can signifi-
cantly benefit from medical imaging techniques, such as computed tomography
or surface scanning, as a source of shape information.

The characteristic requirement of life sciences is the quantitative approach
to data analysis, which is, in the case of shape information, connected with
the need for constructing corresponding primitives among all specimens in the
sample. The goals of this thesis are to address this need, and specifically to:

• Research current approaches in landmark-based shape analysis including
typical tasks.

• Develop effective registration procedures for dense correspondence con-
struction of new types of data (triangular meshes, volumes).

• Apply these registration procedures to similar tasks in order to show their
superiority, i.e. the advantages of including full shape information and
eliminating decisions made by researchers which can affect the outcomes
of experiments, as well as improve accuracy and repeatability.

1.4 Other contributions

Apart from the investigation into new methodological possibilities in the ap-
plication fields, the author has also participated in the creation of a software
tool — Morphome3cs (2015), which has gradually made these new methods
practically accessible, so that they can be used by researchers and students
in conducting their GMM tasks. The tool is under constant development and
the ambition of the author is to make it available for the broader community.

For several years, Morphome3cs has been used for research and educational
purposes in the Laboratory of 3D Visualization and Analytical Methods in the
Department of Anthropology and Human Genetics, Faculty of Life Sciences at
Charles University in Prague. A certain amount of the published work listed
above has been carried out with the help of Morphome3cs.

There are many GMM software tools, among which the most popular be-
long to Morphologica, MorphoJ, PAST, TPS Suite and many others listed
at SUNY (2015). The motivation for starting to develop Morphome3cs arose
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from the fact that most current tools are either outdated, closed-source, single-
purpose or offer no possibility of extending to new methods.

Morphome3cs combines the power of modern GUI with visualization meth-
ods for 2D images, meshes and volumetric data, embedded Python scripting
for easy extending, capabilities of R, as well as a statistical computation envi-
ronment (R Development Core Team, 2008).



Chapter 2

Geometrical methods for shape
analysis

Logic is the beginning of wisdom,
not the end.

Leonard Nimoy

The shapes and sizes of living, growing things can reveal much about their
essential make-up, history and future, about their relation to other things and
about their ability to accommodate to their ever-changing environments.

The ability of researchers to study the shapes and sizes of objects is con-
nected to technical development. Not so long ago, researchers were limited
to such rudimentary tools as rulers, calipers, protractors, weights or even re-
stricted to the simpler approaches of filling cavities with mustard seeds or
sand to obtain their volumes. Later, photography allowed planar projections
of, often, three-dimensional shapes to be produced. However, these projec-
tions were connected with a certain information loss and had the potential to
bias scientific results based on these data. Therefore, special care was required
when using photography as an input for morphometric analysis.

With the advent of digitization techniques, two-dimensional images started
to be processed on computers. An ideological shift came about when coordi-
nates of points (landmarks) started to be processed instead of just distances,
lengths and length ratios (indices). This resulted in the emergence of a whole
new field of landmark data methods, geometric morphometry — GMM. Re-
cently, new devices known as contact 3D scanners have appeared which can
capture physical coordinates of a point in 3D, which has in turn enabled shape
analysis of landmarks to be performed, unimpeded by 3D-to-2D bias. The
most recent, relatively complicated devices, comparitively well-known in other
fields, have started to be used for shape analysis in life sciences. Devices, such
as surface lasers scanners, optical scanners and medical grade CT scanners,
have revitalized a field that for hundreds of years had to make do with the
caliper.

15
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(a) (b) (c)

(d)

Figure 2.1: Examples of typical objects of interest in modern anthropology
and biomedicine shape analysis: (a) jawbone (or mandible); (b) pelvic bone;
(c) dental cast; (d) tibia.

Simultaneously with this change, the need for new software tools, algo-
rithms and mathematics has become more urgent. Of course, the tools that
now accompany these devices may be used, but they often lack the required
functionality. In this chapter, basic methods of analyzing landmark data will
be introduced as well as real-world examples of their application in actual
research.

2.1 Statistical shape analysis in anthropology

Geometric morphometry (Zelditch et al., 2004) has become an important tool
in sub-fields of anthropology (evolutionary, forensic, physical) that are con-
cerned with complex parts of the human body, their characteristic features
and differences. See Figure 2.1 for examples.

In general, the methodology may be divided into two stages. The first
stage is to directly process geometrical representation, which takes place on the
output of an acquisition device or technique. The second, more traditional and
common with the other fields of science is statistical processing and datamining
(Hastie et al., 2008), which must change to allow statistical results from actual
geometry to be interpreted. Let us start with laying backgrounds.
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2.2 Landmark-based methods

Landmarks are the basic GMM modality and incorporate information about
shape as well as size. One of the central ideas in GMM is the separation of
shape and size. Traditional methods have acknowledged that objects with
similar shapes can be reflected differently in measured lengths by introducing
length ratios. In GMM, the first step of analysis is to normalize measured
coordinates by geometrically aligning them to some common frame, while the
original size is measured and analyzed separately. The size of object is very
important because it contains a lot of information about the specimen, for
example, its age, sex, social status or health condition.

Size in GMM can be defined in various ways, but the most common is
by measuring centroid size (CS), which is a linear and non-negative function
of landmark configuration L = {l1,1, . . . , l1,d, . . . , ln,d} for d-dimensional land-
marks

CS(L) =

√√√√
n∑

i=1

‖li − l̄‖2, l̄ =
1

n

n∑

i=1

li

The shape of the object in relation to a sample of objects of the same kind
L = {Lj}mj=0 is defined in terms of all geometric information (landmark co-
ordinates, L) remaining after differences in size, orientation and position are
removed. Object geometry normalization employs various methods, but the
most frequently used is Generalized Procrustes Analysis — GPA (Bookstein,
1997). This method rotates, translates and scales all of the Lj landmark con-
figurations in the sample in order to minimize distances of all landmarks to a
corresponding mean landmark configuration L̄, which produces configurations
L′
j with unit centroid size

arg min
L
′

m∑

j

n∑

i

‖L′
j,i − L̄i‖2, L̄ =

1

m

m∑

j

L′
j

Configurations L′
j do not differ from each other in size, orientation or po-

sition; hence, they are numerical representations of shapes. The average L̄ of
L′
j is called the mean shape. Furthermore, it is difficult to make conclusions

about the shape variations represented by the sample just from L′
j, since they

are still coupled point clusters. In order to extract major trends in shape vari-
ations, Principal Component Analysis (PCA) is applied (Bishop, 2006). PCA
is a statistical method that has many applications in many fields. In shape
analysis, represented by a sample (a set of exemplars), it is used to create a
Point Distribution Model (PDM), i.e. it finds a basis {wk}n×d

k=1 that can be used
to represent deviations of each individual in the sample from the mean shape.
Moreover, the basis vectors are ordered so that the first represents directions
of landmark points in which the variation through the sample is the largest.
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(a) (b)

Figure 2.2: Landmark digitization: (a) Localizing landmarks on a physical ob-
ject using the MicroScribe G2X contact scanner device; (b) Placing landmarks
on a facial mesh using an interactive visualization software tool.

The second basis is orthogonal to the first and has the second largest variation
and so on. Basis vectors {wk}n×d

1 are called modes of variation.

L′
j = L̄+

n×d∑

k=1

αj,kwk (2.1)

The score vector αj = {αj,k}n×d
k=1 defines coordinates of specimen j in vector

space Rn×d, which is simply a rotation of the original space containing coordi-
nates of aligned landmarks. The condition on unit size reduces the occurrence
of shapes to a curved subspace of Rn×d called shape space. Sets of points in
shape space, their mutual relations and statistical properties are evidence for
various conclusions.

The number of specimens m is recommended to be larger then n× d, oth-
erwise, linear model (Equation 2.1) is overfitting. Since intrinsic dependency
between the landmarks, not all modes of variation are statistically significant,
i.e. not all of wk are required to make reconstructed shape unambiguously iden-
tifiable from the others. A number of statistically significant modes of variation
can by found by various criteria mentioned by Peres-Neto et al. (2005). In this
work, broken-stick criterion is implicitly used for this purpose.

In the following paragraphs, examples of these types of research studies
will be described.
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Case study 1: The human face

The human face is a focal point of interest for researchers as well as artists and
ordinary people, since reading the human face can reveal a great deal about the
owner. Although the face is a relatively complex object for description due to
the many features and characteristics it can be identified by, shape is the only
characteristic of surface geometry that becomes relevant, to the exclusion of
skin color, facial hair, eyebrows, eye color and hairline. Face shape information
is traditionally reduced to a set of landmarks that are placed according to Type
1-3 landmark taxonomy (Zelditch et al., 2004, chapter 2).

In a presented case study, a set of 101 faces of a young Czech population
(50 male and 51 female) was captured by a surface scanner and pre-processed,
after which landmarks were manually localized by an expert using a software
tool under controlled conditions. Figure 2.2(b) shows landmark configurations,
while Figures 2.3(a) and 2.3(b) show how the whole sample spread out through
the space as well as the alignment and normalization by GPA. Answers to
following frequent questions for GMM are sought:

• Mean shape — the mean shape of the sample can be constructed by
averaging the aligned landmarks. Mean shapes of subgroups can also
be constructed and compared. Thin-plate splines (TPS), introduced to
GMM by Bookstein (1997, chapter 2.2), are often used to deform a reg-
ular grid to demonstrate spatial deformation required for the transition
from one shape to another. See Figure 2.3(c).

• Form analysis — shapes are scaled back to their original size and ana-
lyzed when potentially different behavior is shown and provided the size
of the specimens is an important feature. See Figure 2.3(d).

• Variability — the most important and mutually independent trends are
isolated by PCA. The relation of shapes and groups of shapes is expressed
by the amounts of these trends presented in a particular shape instance.
See Figure 2.3(e).

• Separability — a property of a particular shape whose instances can be
clearly distinguished from each other according to different classes they
belong to. The first step is to prove the statistical significance of the
differences using statistical measures, i.e. multivariate statistical tests.
The second step is to visualize the subgroup, i.e. localize the differences.
The third step is to investigate the discrimination power of the shape
itself, i.e. compute a success rate while classifying a shape instance
into a correct class based on shape features with the help of a suitable
classifier.

• Sexual dimorphism — an example of separability according to sex affilia-
tion. In the case of sexual dimorphism of facial landmarks, leave-one-out
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Figure 2.3: Facial landmark analysis: (a) a sample of 101 landmark configu-
rations; (b) an aligned sample of landmark configurations; (c) visualization of
space deformation caused by a transition from the female to the male average
shape, exaggerated 3 times; (d) TPS visualization of form change from the av-
erage male to the average female, including size; (e) scatterplot of PC1, PC2
scores of facial landmarks. The figure also shows the LDA decision boundary,
optimally separating male and female groups.
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cross validation scored a success rate of 72.28% and a posterior success
rate of 76.24% using the Linear Discriminant Analysis (LDA) classifier.

Case study 2: Analyzing digitized models of tibial epiphyses

An actual GMM study that demonstrates all the methods described in the
previous paragraph was performed on shapes of tibial epiphyses (lower and
upper ends of tibia - in Figure 2.1(d)), the skeletal remains of an early medieval
Great Moravian population are shown (Brzobohatá et al., 2014). In the study,
bones were assigned to different classes according to three criteria: age of death
(young - adultus, old - maturus), sex (male, female), social status (castle or
sub-castle derived from the location of the grave).

The shapes of tibial epiphyses were described by landmarks (proximal -
upper end by 13, distal - lower end by 9). After alignment by GPA and
application of a PCA, differences according to individual criteria were tested.
It was found that sex and age significantly influence proximal shape while
distal shape is only affected by sex. However, social stratification could not be
proved in shapes of tibial epiphyses described by landmarks.

Brzobohatá et al. (2015b,a) extended the study by using samples from the
early 20-th century and 21-st century.

2.3 Missing landmarks

It is clear from the above description of the methodology that it is impor-
tant to have a relatively high number of specimens in the sample in order to
obtain better coverage of the population. More importantly, every specimen
in the sample must define all landmarks. This condition is sometimes diffi-
cult to fulfill since the nature of the material might be hundreds of years old,
damaged or incomplete. In general, there are many statistical methods (Little
and Rubin, 2002) that deal with missing data in the experiment, e.g. when
estimating PCA (Ilin and Raiko, 2010). However, it is more interesting to
recover incomplete shape data than just to deal with their statistical contri-
bution. Moreover, the geometrical nature and high redundancy of information
in landmark coordinates provide an opportunity to deliver more suitable and
specialized procedures (Mitteroecker and Gunz, 2009).

The geometry’s symmetry is a property that is often exploited. In partic-
ular, if a part of the specimen is missing, it can be filled in with landmarks
available on the corresponding symmetric part of the shape by transforming
them with respect to the symmetry.

Another approach uses thin-plate spline (TPS) interpolation to fill in miss-
ing data (Mitteroecker and Gunz, 2009). As mentioned above, TPS is a method
often used in GMM for visualization purposes (Bookstein, 1997). The method
takes two landmark configurations s and t with n corresponding landmarks as
an input and provides a transformation function f s→t

TPS of the entire Rn. TPS
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transforms points from s to points of t as well as the rest of the space in order
to minimize second derivatives and enforce smoothness, i.e. in 2D

∫∫ (
∂2f s→t

TPS

∂x2

)2

+

(
∂2f s→t

TPS

∂x∂y

)2

+

(
∂2f s→t

TPS

∂y2

)2

dxdy

This formulation leads to a solution for ~x = (x, y) in the form of

f s→t
TPS (~x) = a0 + axx+ ayy +

n∑

i=1

φ(|~x− si|2)wi

With φ(r) = r2 ln(r), f s→t
TPS (si) = ti and additional constraints

∑n
i wisi = 0

and
∑n

i wi = 0 it can be solved for a and w. There are more variants of TPS
since it is a widely used method in various other fields. TPS can be used to
estimate missing values by computing TPS between available landmarks of full
configuration s and corresponding landmarks of partial configuration t. After-
wards, missing landmarks of t are filled in by transforming these landmarks
from s using TPS interpolation. The advantage of this method is that only a
single full landmark configuration (reference) is needed; however, it should be
selected with care. The results are highly dependent on particular landmarks
that are later computed. For example, they depend on their relative position
with respect to the other existing landmarks, or on whether they are located
inside the convex hull of the existing landmarks or not.

One recent study (Brown et al., 2012) compared various methods for miss-
ing morphometric data imputation, while proposing a method based on the
regression of available values against principal components using a Bayesian
estimate of PCA (Arbour and Brown, 2014).

Case study 3: Nile Valley skull analysis

Missing landmark computation was used in a morphometric research study of
skull remains (crania without jawbones) from two ancient populations of the
Nile Valley (Chvojková et al., 2010). The first population originated from the
Mirgissa area of Lower Nubia between 1890 and 1580 B.C. and is represented
by a sample of 205 skulls. The second population originated from Wadi Qitna
in Upper Egypt during the period between the 3-rd and 5-th centuries A.D. and
is represented by 38 skulls. Figure 2.4(a) shows an example of full landmark
configuration. Both samples are described using 89 craniometric landmarks.
For more details of landmark location, see Chvojková et al. (2010). The first
sample has only 18 complete landmark configurations, while 6.70% of all land-
marks are missing due to the poor condition of the remains. In the second
sample, 13.60% of landmarks are missing while only one specimen shows a full
landmark configuration.

Following the previously mentioned approach (Mitteroecker and Gunz,
2009), missing landmarks were computed by TPS interpolation. Subsequent
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Figure 2.4: Nile Valley skull analysis: (a) Full craniometric landmark configu-
ration (89 landmarks); (b) Example of a specimen with incomplete landmark
configuration. Full black points represent landmarks that were were missing
and had to be computed (using the TPS method in this case).

analysis proved a significant difference in the shapes of the Mirgissa and Wadi
Qitna populations. Figure 2.4(b) shows a typical example of missing land-
marks that were computed using the method.

However, TPS does not reflect the variance of the sample, i.e. it might
result in an undesirable shape configuration. If there are enough full landmark
configurations in the sample, they can be used to create a statistical model
of the shape and use it to predict the full configuration for partial input, in
terms of least square differences.

Input sample L is split into Lf with full landmark configurations and Lm

with incomplete specimens. Lf is aligned with GPA, and variation of L′
f is

decomposed into principal components {wk}nk=1. Incomplete specimens Lm,j

are aligned to a mean shape L̄′
f of L′

f . A vector of coefficients α̃ is optimized
so the difference between corresponding existing landmarks is minimized, i.e.

arg min
α̃

∑

i∈Oj

|L̄′
f,i +

m∑

k=1

α̃kwk,i − L′
m,j,i|2 (2.2)

where Oj is a set of landmark indices that are not missing in a particular
specimen j and m is the number of statistically significant principal compo-
nents, e.g. determined by the broken-stick criterion (Peres-Neto et al., 2005).
Missing landmarks of incomplete specimens are replaced with the landmarks
of estimated complete landmark configurations, computed using model and
optimized coefficient vector α̃, i.e.

L̃j = L̄′
f +

m∑

k=1

α̃kwk
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Figure 2.5: Results of missing landmark computation methods in a comparison
experiment on Mirgissa skull samples: (a) PC error measure of statistically
significant components (23); (b) SSE measure of all landmarks (89).

Three different approaches (mean shape substitution, TPS interpolation
and the PCA model) are compared by randomly removing various numbers of
landmarks and recomputing them. Two error measures are evaluated: the sum
of squared errors (SSE) and the squared distance in a subspace of statistically
significant principal components (PCE).

SSE =
n∑

i=1

|Li − L̃i|2

PCE =
m∑

i=1

|αi − α̃i|2

Figure 2.5 shows a comparison of the methods. Missing landmark com-
putation is repeated 100 times for each number of missing landmarks and an
average of these measurements is presented. It appears that the PCA method
outperforms the TPS and mean shape methods for a reasonable number of
missing landmarks, but overfits the available data for a higher number of
missing landmarks. Adding a regularization term to minimization scheme 2.2
would solve this problem. The difference between the TPS and mean methods
used for PCE and SSE measures is caused by the fact that PC error measure
filters out noise in high-order components while keeping significant information
relevant to group statistics.
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2.4 Asymmetry

Object size and shape variability represent two upper layers of shape analysis
and description. Another individual feature that is manifested in shapes of
nature is symmetry, of which there is a great variety of types. On the one
hand, there are very complex types — spherical symmetry, observed often in
molecules, cells and unicelular organisms, which allows an object to be cut in
an arbitrary direction through the center in order to obtain two symmetrical
parts. On the other hand, there are simpler types such as bilateral symmetry,
which is found in higher species defined by a single plane of symmetry, i.e. the
medial plane (Conway et al., 2008).

Generally, it holds that the more complex the organism is, the more likely
it is to break the symmetry due to the specialization for the environment it
lives in. For example, the human body is bilaterally symmetrical, but even
this symmetry is often broken. Handedness is an example of broken bilateral
symmetry, which is exhibited by larger bones and muscles in the left or right
arm and connected with faster movement and improved physical strength. In
many other cases, it can reflect various facts about the life of a specimen or
population.

Traditionally, bilateral asymmetry has been studied by comparing measure-
ments of corresponding symmetrical parts of an object (Palmer and Strobeck,
1986). Recently, bilateral asymmetry has begun to be studied with regard to
its application to landmark data (Klingenberg et al., 2002). In order to be
able to compare symmetric features, landmarks in a configuration have to be
divided into two classes:

• Paired landmark — located on a shape feature that has its symmetric
counterpart in the shape according to its bilateral symmetry; a landmark
located on the symmetric feature is also included in the configuration.

• Non-paired landmark — located on a feature that lies or should lie on
the medial plane.

The asymmetry of an individual specimen is extracted as follows. In the
first step of the analysis, mirror landmark configuration must be created by
negating one coordinate of the landmark. The landmarks then have to be re-
ordered so that each paired landmark swaps with its symmetric counterpart.
Non-paired landmarks keep their position in the configuration. Subsequently,
original and mirror configurations are aligned by GPA. Differences between
landmarks in the original configuration and its paired counterpart in the mir-
ror configuration arise due to shape asymmetry. If the shape is absolutely sym-
metric, the differences vanish; however, the greater the asymmetry, the greater
the misalignment. Because GPA is used for alignment, properties of GPA are
projected to asymmetry evaluation, i.e. large asymmetry in one landmark is
distributed into small asymmetries of all landmarks and one larger asymmetry
of the respective landmark, since GPA distributes misalignment error evenly.
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Figure 2.6: Explanation of bilateral asymmetry extraction from landmark
data: (a) Original (solid thick line and black landmarks) and mirror shapes
(solid thin and white landmarks) aligned by mirror-corresponding paired land-
marks (connected by dotted lines), where the symmetrized shape is the average
of the two (gray solid thick line); (b) Individual asymmetry (solid line) is com-
posed of group directional asymmetry (thick arrows) and specimen fluctuation
asymmetry (thin arrows).

The average of the aligned mirror and original landmark configuration is sym-
metric — a symmetric component of the shape; whereas the difference from
the original configuration is called the asymmetry or asymmetric component
of the shape. Figure 2.6(a) illustrates the procedure described above.

In group asymmetry analysis, all landmark configurations are aligned by
GPA beforehand. The average of shape asymmetry components, also called
directional asymmetry (DA), represents the group asymmetry. The differ-
ence in directional asymmetry from a particular specimen asymmetry is called
fluctuating asymmetry (FA). An illustrative explanation is shown in Figure
2.6(b). The difference between individual shape asymmetry and FA is that
shape asymmetry is distributed normally with a mean equal to DA, while FA
resembles uniformly distributed noise with a zero mean. For DA interpreta-
tion, it is important to know its actual direction; whereas, in the case of FA,
only its magnitude plays an important role.

The contrast of asymmetric components in group pairs can be confirmed by
multivariate tests for mean equality, such as Hotelling’s T 2 or non-parametric
variants. Multivariate analysis of variances (MANOVA) can be used to com-
pare multiple groups at once or to analyze the effect of independent continuous
variables on an asymmetric component.

Asymmetry and, especially, FA are very sensitive to accurate measure-
ment. Often picking landmarks is not a completely error-free process. Because
asymmetry magnitudes can come very close to error as a result of improperly
measured landmarks, it is necessary to make repeated measurements in order
to prove that the variation caused by repeated measurements is much lower
that the one reflected in FA. In order to isolate sources of variation caused
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by asymmetry, measurement error and other sources from mis-alignement er-
ror, repeated GPA is required before applying multivariate statistics using
Procrustes (M)ANOVA (Klingenberg et al., 2002).

Case study 4: Asymmetry as a proof of socioecomomic structure

Asymmetry analysis in anthropology is frequently used to prove differences in
life conditions of studied populations. For example, Bigoni et al. (2013a,b)
used asymmetry as a major tool to analyze the socioeconomic structure of a
particular area (the Mikulčice settlement) in Early Medieval society (Great
Moravian period). The studied sample consisted of 200 well-preserved skulls
(crania without jawbones).

The sample was further divided into castle (129 specimens, 61 female and
68 males) and sub-castle groups (71 specimens, 38 females and 33 males)
according to the location of burial ground and under the assumption of a con-
nection with social class affiliation. The Mikulčice sample was compared with
a representative sample from the Pachner Collection from the 1930s, which
examined lower socioeconomic classes of Prague. Three landmark configura-
tions were designed to describe the facial area, base of the skull and cranium
so that these areas could be analyzed separately.

It was shown that:

• Differences in asymmetry of the Mikulčice sample were more obvious
among females (statistically significant between the castle and sub-castle
groups).

• DA was more pronounced in the Mikulčice than in the Pachner sample
due to the more solid diet examined, which required greater mastication
of food.

• On the other hand, FA was stronger in the Pachner Collection which
indicates that this population faced higher environmental stress then
the Mikulčice population who lived in relatively favorable conditions.

• Inside the Mikulčice sample, DA demonstrated that levels of biomechan-
ical stress connected to the quality of the diet were higher in the sub-
castle population who probably had to eat grittier and more solid foods
such as cereals, while in the castle group the population lived on a more
meat-based diet.

• Taking sex into consideration, while looking at the Mikulčice sample, the
difference between males in the castle and sub-castle groups was not so
strong. However, females of the sub-castle group were much smaller and
much more directionally asymmetric. This supports the hypothesis that
sub-castle females ate lower amounts of protein and had a grittier diet
than females of the castle group and that both male groups from the
castle and sub-castle groups were from more mixed sub-classes.
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• FA is connected to increased environmental stress and the simultane-
ously increased variability of a population (genetic stress). Males in the
Mikulčice sample exhibited no significant differences, whereas, for fe-
males, the differences were noticeably higher in the castle population to
the point that they were comparable with FA in the Pachner Collection
sample. The higher population variability derived from this finding could
be connected to the phenomenon of patrilocality (females move to their
husbands’ homes instead of staying near to their parents’ or family resi-
dence), common in Early Medieval societies. Alternatively, the high FA
could indicate that, in the castle region, many highly environmentally
stressed, lower socioeconomic females (servants) were buried.

Case study 5: Jawbone microevolution over a 1200-year period

One important case study, which demonstrates the methodological contribu-
tion of this thesis, analyzed the microevolution of the jawbone (see Figure
2.1(a)) over the last 1200 years (Bejdová et al., 2013). The study is based on
four samples from four different eras:

• Great Moravian Empire sample (GM) — 900–1000 A.D.; the sample
consists of 81 skulls with jawbones.

• High Middle Ages sample (HM) — 1100–1400 A.D.; 53 skulls with jaw-
bones. It must be noted that the samples were not preserved very well
due to burials in coffins whose top lids were often destroyed after years
in the ground, resulting in damage to the interior remains.

• Early Modern Ages sample (EM) — 1600–1800 A.D.; 64 skulls with
jawbones. Some specimens were also damaged for the same reason given
for the HM sample.

• Recent Population sample (RE) — 2000 A.D.; 92 skulls with jawbones
of living people whose images were obtained by CT imaging in hospital
(Department of Radiology in Na Homolce Hospital, Prague).

Special care was taken so that no patients with abnormal jaw development
were included in the sample. Other factors were also considered, such as age,
sex and health condition, so that their comparison would be unbiased by these
factors. Three pre-processing procedures are performed before data enter the
analysis.

The first is the computation of missing landmarks, without which the study
would not be even possible. This is because the HM and EM samples were so
damaged that they could not provide enough complete individuals for GMM
analysis. Table 2.7 summarizes the structure of the samples and the extent
of their damage. For landmark computation, the method based on the PCA
model of full landmark configurations was used.
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Popu-
lation

Sample
size
(#)

Missing
landmarks

(%)

CV Raw
(%)

CV Sym
(%) P-value

GM 81 0 69.14 79.01 0.0010
HM 53 7.3 56.60 90.57 0.0130
EM 64 16.3 64.06 60.94 0.0280
RE 92 0 82.61 80.43 0.0001

Table 2.1: Jawbone sexual dimorphism discrimination results. The CV Raw
column represents the LDA cross-validation success rate of raw landmark data,
while the CV Sym column represents the success rate of data with asymmetry
and allometry removed.

The second step is the elimination of asymmetry from the shape data.
In this case, asymmetry is not expected to carry any information for distin-
guishing between sexes. On the contrary, it may act as a systematic noise or
error which disguises the sex differences. Asymmetry is eliminated so that the
symmetric component of each individual is used instead of raw landmark data.

The third step is the removal of the effect of allometry. Allometry is the
relation between the size of the specimen and its shape, i.e. a deviation from
isometric scaling. Studying allometry is based on the principle that larger
specimens have specifically different shapes compared to smaller ones, due to
different rates of body part development while accommodating to the environ-
ment. In GMM, allometry is expressed by a linear model of size (e.g. centroid
size, CS) as an independent variable and shape α as a multivariate-dependent
variable.

αCS = a+ CSb (2.3)

where αCS is a vector of PC scores, which, if substituted to Equation 2.1,
will give a landmark configuration of an average specimen with a centroid size
equal to CS.

The effect of allometry on shape descriptors is removed when analyzing
residuals rL = L−L(αCS) instead of landmark configurations L. If there is no
significant relation between size and shape, i.e. the average shapes of various
sizes are similar to the average shape of the sample, then the variability of
residuals rL = L− L(αCS) will be identical to the variability of L.

After these steps, landmark residual rL data were tested for separability
with respect to sex using the LDA classifier. The results of leave-one-out
cross-validation are shown in Table 2.1. In the same table, it is evident how
the elimination of asymmetry and allometry elimination changed the separa-
bility of the data on the cross-validation rate of data not treated for asymmetry
and allometry. It seems that these two additional factors display a decreas-
ing tendency relative to sexual dimorphism. However, this theory was not
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Figure 2.7: Jawbone sexual dimorphisms: (a) Full landmark configuration on
all historical jawbone samples (27 landmarks; see Bejdová et al. (2013) for
exact definitions); (b) An example of sexual dimorphism in a Great Mora-
vian sample (900–1000 A.D.), where the size of the landmark discs shows the
measure of the impact on sexual dimorphism.

investigated further.
The localization of sex differences is obtained from a discriminant function

which defines a decision plane

c = ~v~x

where ~v, if used in a weighted sum of statistically significant principal com-
ponents as a coefficient vector, i.e

∑m
k=1 vkwk, gives landmarks influence in

discrimination (see Figure 2.7(b)). Apart form shape comparison, size differ-
ences between sexes were also compared in all the samples, which revealed
an increasing trend over time. For the full analysis of all samples, the reader
should refer to Bejdová et al. (2013). Although, differences in shape between
sexes were statistically significant in all populations, they were always exceeded
by the differences between populations. Therefore, a population-specific sex
classifier is needed, in this case.

Sexual dimorphism is much stronger in some bones in the human body, to
the extent that it can overcome population differences. This is demonstrated in
the last case study of this chapter, which also shows a transition from methods
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requiring user-localized, explicitly corresponding landmarks to algorithmically-
computed correspondence.

2.5 Non-landmark methods

Until now, shape analysis has been based on the most simple geometrical
primitives — landmarks — specifically defined by the researcher. The previ-
ous sections specified how to computationally fill in missing data, even when
represented by landmarks. Naturally, more complex primitives can now be
used to represent the shapes of real world objects. However, these shapes
might be difficult to digitize, not to mention the complications involved in
defining correspondence between different instances or group-wise correspon-
dences. Overcoming these obstacles will allow shapes and shape features,
which have previously been difficult or impossible to describe by landmarks,
to be digitized.

In particular, the analysis of outlines in 2D images Ii will be described. It is
assumed that the images are taken under controlled conditions in the context
of preserving shape features while projecting into 2D space. Perspective pro-
jection caused by a pinhole-type camera sensor results in loss of information
on the depth of the structure. In order to reduce the loss, analyzed features
should lie in the plane parallel to the projection plane. If this is not possible,
at least all of the shapes should be oriented identically, so that the distortion
is similar. Features such as edges and landmarks, which define the analyzed
outline, should be clearly visible in the image.

The first step of the analysis is to extract the shape from the image. In
order to apply the method, which is described further on, the outline is defined
as a curve starting and ending at points defined by a pair of landmarks Ls and
Le. The curve itself is automatically segmented as a sequence of neighboring
pixels (pi is a neighbor of pi+1) with minimal overall cost

CP =
k∑

i=0

c(pi), forP = {p0, . . . , pk}, p0 = Ls, pk = Le

The cost of a pixel p is defined as

c(p) = |∇I(p)|2 −maxq∈I(|∇I(q)|2)

The actual sequence P is found using dynamic programming according
to Martelli (1976). The sequence itself cannot be used to compare between
different specimens, since it is not invariant due to resolution and conditions of
image acquisition. Therefore, the use of approximative curve representations
is a reasonable advancement as a next step. Also, reduced information from
curve representations might serve as a guideline for simplified in-field shape
classification.
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Six different approximative curve representations were used to analyze the
outline shape. The first three representations use the term semilandmark.
A semilandmark is a point-primitive, in that it is not defined by a user but
generated algorithmically, e.g. by equidistant subdivision along the curve, and
so on.

• Semilandmarks-by-angle — This method is used to represent simple con-
vex arc-like curves with a center c in the middle of the line connecting Lb

and Le. For a given number of semilandmarks, all are distributed along
the curve so that subsequent points hold equal angles with the center,
i.e. ∠picpi+1 = ∠pjcpj+1.

• Semilandmarks-by-arc — For a given number of semilandmarks, semi-
landmarks are distributed along the curve so that the curves between
the subsequent landmarks have an equal length.

• Distances-by-angle — This method is similar to semilandmarks-by-angle.
However, instead of coordinates of semilandmarks, which are redundant,
only the distances from the center c are stored.

• Normal polyline subdivision — The curve is subdivided hierarchically by
casting a normal from the center between the endpoints of one segment
to the segment. The intersection divides the segment into two subseg-
ments. For a given number of coefficients, distances ni,j of centers and
intersections are recorded for i-th segment of j-th level of subdivision.

• Fourier coefficients of circular harmonics — This method makes use of
the fact that the curve is a simple arc which can be expressed in polar
coordinates, r(φ). Since only one angle parameter is involved in a polar
representation of the curve, circular harmonics can be used to encode its
shape very effectively, i.e. by a small number of coefficients. The circular
harmonics are a set of basis functions that can efficiently represent a
function defined over a circle, given by the Fourier series

B =

{
1√
2π
,
cos(θ)√

π
,
sin(θ)√

π
,
cos(2θ)√

π
,
sin(2θ)√

π
, . . .

}

It can be seen that the basis functions are orthonormal and orthogonal,
which means they can be used to decompose function r(φ).

fi =

∫ 2π

0

r(φ)Bi(φ)dφ

Figure 2.8(e) shows how the curve is reconstructed using only five coef-
ficients. The advantage of polar space descriptors lies in their invariance
to rotation. Kazhdan et al. (2003) shown that their superclass — spher-
ical harmonics outperform orientation-dependent descriptors on shapes
roughly aligned by principal axes.
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(a) (b) (c)
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Figure 2.8: Various curve representations of segmented curves in 2D using an
example of the incisura ischiadica major : (a) Semilandmarks-by-angle; (b)
Semilandmarks-by-arc; (c) Distances-by-angle; (d) Normal polyline subdivi-
sion; (e) Curve approximation reconstructed using five Fourier coefficients of
circular harmonics; (f) Curve approximation reconstructed using eight Legen-
dre coefficients of circular harmonics.

• Legendre coefficients of circular harmonics — This method is identical
to the previous one with the only difference being that, as a set of basis
functions, Lagendre polynomials P = {P0, . . . , Pn, . . .} are used

P0(x) = 1, P1(x) = x, Pn+1(x) =
2n+ 1

n+ 1
xPn(x)−

n

n+ 1
Pn−1(x)

Rao et al. (2010); Sharma and Dhole (2013) have demonstrated the high
classification efficiency of Legendre moments in combination with SVM
classifier.

All described representations are shown in Figure 2.8.

Case study 6: Sexual dimorphism of the incisura ischiadica major

The incisura ischiadica major (greater sciatic notch) is an anatomical feature
that is found on the pelvic bone (see Figure 2.1(b)), which is well known for
high sex discrimination ability. Velemı́nská et al. (2013) studied this ability in
photographs of pelvic bones by using the representations described above.

In the experiment, two samples were used: The first one consisted of 114
photographs of adult human pelvic bones (57 males, 57 females) from a col-
lection of Euroamericans at the Maxwell Museum (MM), University of New
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method
coefficients

(#)
success rate (%)

pooled MM UNAM

SL-by-angle 4 90.83 92.11 88.70
SL-by-arc 9 90.39 90.35 89.57
Distances 7 90.83 90.35 88.70
Normal 7 91.27 89.47 90.43
Fourier 5 92.14 92.11 92.11
Legendre 22 92.14 89.47 89.57

Table 2.2: The incisura ischiadica major classification results of SVM with a
radial basis. The success rate of leave-one-out cross-validation for each popu-
lation sample as well as for the pooled sample.

Mexico, Albuquerque; the second sample consisted of Hispanics from the Oste-
ological Collection of the Universidad Nacional Autónoma de México (UNAM),
made up of 115 photographs of adult human pelvic bones (55 females and 60
males). All photographs were take in the same position under controlled and
identical conditions.

In the first step, landmarks indicating the beginning and end of the curve
must be located. In this case, landmarks Lb and Le were located at at the tip
of the piriform tubercle and at the base of the ischial spine in each image (see
Figure 2.8). Outlines were segmented out as mentioned above and the num-
ber of coefficients was optimized for each representation to establish the best
discrimination results. To evaluate discrimination ability, a Support Vector
Machine (radial basis) classifier was used (Cortes and Vapnik, 1995). Discrim-
ination ability is expressed by the leave-one-out cross-validation success rate.
Table 2.2 summarizes the results and the optimal number of coefficients for all
the methods in individual as well as in pooled populations.

In order to visualize shape variation, a semilandmarks-by-arc representa-
tion with a high number of semilandmarks (32) was generated for all curves.
Semilandmarks were considered to correspond with each other, since they ap-
peared along the curve across the entire sample. Principal component analysis
was performed in the same way as for landmarks in all examples of this chap-
ter. It was found that the first two components represent 97.85% of the total
variability. In this way, the curve can be parameterized with a loss of 2.15% of
information by only two numbers — the first two principal component scores.
In Figure 2.9, shapes matching part of the shape-space projection given by
PC1 and PC2 are shown.

Incisura ischiadica major analysis revealed that male shapes tend to be
higher and asymmetric, whereas female ones tend to be lower and symmetric.
Female variability is much lower than male variability, which is connected to
the specialized role of the pelvic bone in females. High variability in male
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Figure 2.9: Shape variability of the incisura ischiadica major. Circles corre-
spond to males; triangles correspond to females. Full symbols correspond to
the MM Collection sample, hollow symbols correspond to the UNAM sample
and symbols represent the subgroup mean.

shapes causes higher mis-classification. The overall discrimination rate ex-
ceeds 92% in the best case and is generally better for pooled samples in all
representation, due to the better generalization of the classifier when a more
variable training set is provided.

The analysis also proved that the methods are very robust to Ls and Le

localization precision. The endpoints were shifted randomly along the curve
with a magnitude of 10% of the overall curve length, during which the success
rate was measured. The Legendere polynomial method was the most suscepti-
ble to noise, with a drop in the success rate of 3.2%, when the noise was applied
to both training and testing specimens. The most resilient representation was
found to be the semilandmarks-by-arc method, with a drop on average of only
0.1%. All methods produced marginally better results when noise was applied
to test specimens only.

2.6 Conclusions

In this chapter, the general topic of the thesis was introduced and demon-
strated in many practical examples.

It was shown that shape analysis is performed on landmark data, requir-
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ing explicitly user-defined landmarks and that the only difficult task is to
normalize landmark configurations to obtain comparable vectors which can
represent shapes. General statistical methods, such as multivariate statistical
tests for mean equality, classification methods and linear modeling, are used
to answer questions and prove theories. The author contributed by applying
the methodology to an analysis of tibial epiphyses (Brzobohatá et al., 2014,
2015b,a).

If some landmarks cannot be localized due to damaged specimens, there
are statistical methods of dealing with this situation or by the imputation of
missing data with extrapolated values. Missing landmark computation was
performed by Chvojková et al. (2010); Bejdová et al. (2013) with the contri-
bution of the author.

Asymmetry is a very sensitive shape property and it is used to prove phe-
nomena connected to environmental impact, genetics and lifestyle. It is also
an independent feature of shapes that mingle with shape variability and can
distort sample separability. The author has analyzed the asymmetry of human
skulls in connection with the socioeconomic structure of a Middle Ages society
(Bigoni et al., 2013a,b).

Landmarks are not the only geometrical primitive used to describe shapes.
Two general approaches have been introduced to handle non-landmark data
with the author’s contribution (Velemı́nská et al., 2013). The first uses shape
transformation from a geometric representation to a parameter space and con-
tinues using these parameters with statistical methods. Alternatively, densely
sampled geometry can be constructed based on the original shape representa-
tion and normalized, after which PCA can be used to extract trends in high
dimensional data. The second approach will be investigated in the rest of the
text using data that provide more information on shape, even though they do
not explicitly define correspondence.

Other fields that benefit from statistical shape modeling are worth men-
tioning. For example, a statistical model could be used as a constraint in
model-based image segmentation. Cootes and Taylor (1992) introduced active
shape models to segment simple outlines in two-dimensional images. The ad-
vantage of model-based segmentation lies in its high robustness against noise
or partial occlusion. Therefore, it could be used to segment noisy data such as
ultrasound images (Cootes et al., 1993) or for video tracking (Koschan et al.,
2003). It has subsequently been extended to model not only shape, but also
intensity, in what are known as active appearance models (Cootes et al., 1998).

On the other side of the spectrum, there is a popular and much older ap-
plication of linear modeling of raster images of human faces, called eigenfaces
(Sirovich and Kirby, 1987). The approach completely ignores geometrical in-
terpretation of content and simply relies on a picture taken from a normalized
position, where correspondences are made by an overlayed pixel.



Chapter 3

Triangular mesh analysis

You are in pretty good shape for
the shape you are in

Dr. Seuss

Boundary is an integral part of shape abstraction and represents an inter-
face between shape interiors and the background. Boundary is a set of points
in space where various physical properties such as atomic density are subject
to rapid change. In the case of many real-world objects, often it is the only
part of their shape that is visible. Hence, capturing the boundary of an object
provides complete unambiguous information about that object’s shape geom-
etry. In tree-dimensions, a boundary is actually a surface, 2D manifold in R

2.
One common way to represent a boundary is to densely sample the surface
and connect the sample points to a triangular mesh.

The triangular mesh is a subclass of a general polygonal mesh. It is a
data type used in many fields of computer graphics, geometry modeling and
engineering in general due to its reliable approximation and adaptability prop-
erties. In practice, it is used as a design tool to create shapes from scratch
since there are many algorithms which allow the creator to work with the rep-
resentation of shapes naturally. It is also used to efficiently describe existing
objects with a controllable amount of information loss. Either way, triangular
meshes are easy to store and, due to advances in current graphics hardware,
very easy to visualize on a large scale.

State-of-the-art shape analysis often works with surface- (range-) scanning
technologies (see Figure 3.1) by exploiting optical properties of the object’s
surface in order to sample its boundary and produce a dense cloud of points
connected into a triangular mesh. These devices are often able to capture a
photographic image of the surface, and providing a surface texture that repro-
duces an even more realistic look of the digitized object. Since the focus of
interest here is shape which is comprised of all geometric information, surface
texture, color and any other non-geometric information associated with the
mesh is unimportant. However, color variations can give practitioners infor-

37
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(a) (b) (c)

Figure 3.1: Various surface-geometry capturing devices used for shape analysis:
(a) box laser scanner (Roland LX-1200); (b) optical surface scanner (Canfield
Vectra 3D); (c) hand-held optical scanner (Artec Eva).

mation about an object’s geometry that goes beyond the resolution of scanning
devices, which means that texture can be used for better shape-feature local-
ization.

The benefits of shape digitization are obvious. It allows researchers to
keep and preserve accurate information about the shape of a unique object’s
geometry, which could otherwise become unstable over time due to growth
or decomposition. There are also drawbacks to the approach, which are con-
nected to the limitation of scanning technologies and the imperfect way they
are handled. Acquired triangular meshes sometimes exhibit artifacts, cracks,
holes, non-manifoldness, loss of detail, etc. Therefore, they must be manu-
ally treated, which can lead to inaccuracies in shape approximation, especially
when global operations such as smoothing or remeshing are used.

Current applications of geometric morphometry in anthropological research
are aimed only at extracting the simplest primitives from these digitized shapes
— landmarks. These landmarks are subsequently processed by the means de-
scribed in the previous chapter. The historical motivation for this approach is
understandable since its methodological framework existed before the appear-
ance of surface scanning. On the other hand, the reduction in information by
the selection of only a few landmark points is unnecessarily radical. Moreover,
the selection of landmarks by the researcher in the planning phase of the study
significantly influences the outcomes of the research at the end.

Before progressing further, the basic formalism for triangular meshes should
be outlined. Triangular mesh T is defined as a tuple T = (V, F ), where V is a
set of n vertices vi ∈ R

3

V = {v1, v2, . . . , vn}, vi = (xi, yi, zi)
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F is a set of m triangular faces

F = {f1, f2, . . . , fm}, fi ∈ V × V × V

For each fi three edges can be defined

{ei,1, ei,2, ei,3} = {(fi,1, fi,2), (fi,2, fi,3), (fi,3, fi,1)}

The number of n vertices and the number of m faces are not usually equal
for two triangular meshes representing the shapes of two different objects of
the same kind. Therefore, the vertices and faces of these two meshes are not
homologous, i.e they do not represent identical loci. In order to be able to
compare two meshes or a set of meshes representing studied shapes, corre-
spondences between these meshes must be found.

The first part of this chapter focused on various methods of correspon-
dence construction, targeting practical usability in processing large data sam-
ples. The second part aims to utilize found correspondences through several
tasks: shape variability and its visualization, shape asymmetry evaluation,
longitudinal data processing and missing data computation.

3.1 Correspondence of mesh shapes

In the previous chapter, correspondences were explicitly constructed when
the user selected a particular landmark manually. More importantly, the user
defined the set of landmarks in consideration of what would reflect the features
of the shape. These kinds of correspondences, sparse correspondences, are
often used because they considerably reduce the amount of information and,
furthermore, carry significant parts of that information. For example, in face
recognition in 2D images, detection of facial landmarks is a key step.

However, in the case of featureless shapes such as the last example given
in the previous chapter — the incisura ischiadica major, a different approach
to correspondences must be taken. Apart from capturing shape descriptors,
correspondences between multiple parts of a curve are created by interpolation
of semilandmarks. Such correspondences, dense correspondences, apparently
greatly increase the dimensionality of shape representation.

Matching the vertices of two meshes is a natural and often-used approach
to create correspondences (van Kaick et al., 2011). In the case of two meshes,
TQ and TP , correspondences Σ between their vertices, P = {p1, . . . , pNP

} and
Q = {q1, . . . , qNQ

}, are defined as a subset of P × Q, where each member
{pi, qj} represents a paired correspondence of i-th point from P and j-th point
of Q.

The most common way to determine Σ is to find its nearest neighbor from
the other point cloud with respect to the first point clouds (Figure 3.2(a)).
This approach is asymmetric, since Σ with respect to the other point cloud
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(a) (b) (c)

(d) (e)

Figure 3.2: Approaches to mesh correspondences: (a) vertex-to-vertex corre-
spondence; (b) vertex-to-point correspondence; (c) fuzzy correspondence; (d)
plane intersection correspondence; (e) normal intersection correspondence.

can be completely different. Nevertheless, it is well-suited to the following
algorithms.

In scenarios where there are sparse vertices and demands for higher pre-
cision or dissimilar point clouds, correspondences other than vertex-to-vertex
type correspondences must be used. For any particular point in the first point
cloud, a corresponding point is computed — a phantom point — based on the
second cloud or mesh. Fuzzy correspondences, i.e. vertex-to-multiple-vertex,
increase the robustness of the algorithms which are based on them, since their
criteria are continuous and piecewise differentiable. See Figures 3.2(b), 3.2(c),
3.2(d) and 3.2(e) for examples.

Provided that the found corresponding point is too far from the vertex,
due to the high disimilarity of the meshes or the missing partial geometry, it
should be discarded. The decision to discard the correspondence can either be
based on refined criteria or just on a threshold on the distance.

3.2 Mesh registration

Mesh and point cloud registration is a major tool in statistical mesh shape
analysis. Comprehensive surveys on mesh and point cloud registration have
been conducted by Audette et al. (2000); van Kaick et al. (2011); Tam et al.
(2013). In this section, existing mesh and point cloud registration algorithms
will be briefly introduced. Surface mesh registration maps multiple surface
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meshes to the same coordinate system so that overlapping parts of the shape
are aligned. First, the aligning of a pair of meshes starts with simplifying
the surface representation by replacing triangular meshes with surface point
samples, i.e. point clouds made by triangular mesh vertices (Figure 3.2(a)).
Second, a point cloud P , representing the vertices of the first mesh, is called
the source and a point cloud Q representing the vertices of the second mesh
is called the target. Transformation f is sought in order to satisfy an align-
ment criterion, i.e. to minimize alignment error. Alignment error is expressed
through correspondences as

Err =
1

|Σ|

|Σ|∑

i=1

‖qj − f(pi)‖2, {pi, qj} ∈ Σ (3.1)

The algorithms for mesh and point cloud registration can generally be
divided into groups with respect to various criteria. The whole registration
task consists of three components: a transformation model, matching criteria
and an optimization strategy. Classification of the algorithms is based on the
realization of these three components.

Primary classification of the registration algorithms allows for a transfor-
mation to map one mesh or point cloud to the other. The transformation
model is partially given by the ability of the model to perform rigid or non-
rigid registration. The former represents a transformation that only consists of
translation and rotation. Occasionally, scaling is also considered. Frequently,
multiple calibrated scans of the same object are registered together so that
the scaling factor can be omitted. The latter group of transformations allows
deformations, i.e. elastic changes in shape or coherence in the mutual positions
of potential rigid parts of one object.

Rigid transformation models are usually characterized by 6 degrees of free-
dom (DoF), for translation and rotation in a three-dimensional space. For
non-rigid registration, there are several options for various DoF. If the num-
ber of DoF does not depend on the number of points in the point cloud, the
transformation model is called parametric. Such a transformation depends on
the geometric model of space deformation described by auxiliary primitives
or parameters, e.g. control points, skeleton nodes, etc. On the contrary, if
the number of DoF depends on the number of cloud points, it usually de-
scribes individual translation of each point in the cloud. Hence, it is called
non-parametric, even though there could still be some parameters involved.

Matching criteria and constraints offer means of restricting the search space
of all possible transformations to only those that make sense for a particular
task. These criteria and constraints cover, for example:

• Landmark fitting — optimal transformation should obtain certain cor-
responding points (landmarks) as close as possible to each other.

• Closest point criterion - for all points in a source cloud, the transforma-
tion minimizes overall distance to the closest point (Besl and McKay,
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1992).

• Principal axes — the transformation aligns according to orthogonal axes,
which are identified in the clouds and along which the clouds span with
the highest variance.

• Saliency — the transformation fits points with matching properties based
on local differential geometry (e.g. curvature)

• Features — fitting of locations with matching descriptors based on vari-
ous criteria.

• Template fit — fitting to a predefined template shape or shape parts.

• Regularization — enforcing the smoothness of the transformation to
avoid implausible space deformations.

• Diffeomorphism — transformation is sought in both directions, of which
each is an inversion of the other. The concept of the source and target
images becomes irrelevant.

Practical applications that employ registration methods do not always
stand on fully automatic processing, especially in the case of non-rigid reg-
istration. Although non-rigid registration is a rapidly developing field, it still
fails to deliver satisfactory results in all scenarios. By providing more informa-
tion, however, the user can improve registration results, guide the algorithm
and fix input data appropriately, all of which might help to successfully realize
the final goal. Traditional shape analysis using landmarks depends on the very
precise localization of anatomically important points. This precision is key to
positive outcomes of the analysis. For example, it may be the reason why
statistical tests of the difference between sample groups are not positive, since
the magnitude of the noise caused by impressions surpasses the magnitude of
the signal.

Despite being able to switch from landmark-based shape analysis methods
to non-landmark methods applied on triangular meshes, landmarks should still
be incorporated into the correspondence search as constraints. Similarly, other
types of geometric primitives that define correspondences should be incorpo-
rated as constraints.

In order to compare and contrast methods with different levels of sophisti-
cation, as well as to cover methods that are used in actual research projects,
several algorithms have been chosen for further presentation:

• Rigid registration based on surface landmarks selected by experts.

• Standard iterative closest point (ICP) rigid registration (Besl and
McKay, 1992).

• Non-rigid registration based on TPS.
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(a) (b) (c)

Figure 3.3: Dense correspondence using landmark-based registration: (a) input
meshes with landmarks; (b) fitted meshes; (c) color-coded distances (in mm)
of corresponding points with Err = 9.92239.

• Non-rigid parametric registration using free-form space warping.

• Non-rigid non-parametric registration using the coherent point drift al-
gorithm (CPD) by Myronenko et al. (2006).

3.2.1 Landmark-based registration

Assume two landmark sets LQ and LP are placed on the surface of triangular
meshes TQ and TP by an expert. These two landmark sets are aligned by GPA
(see Section 2.2 [page 17]) and the same transformation is used to align the
meshes’ vertices of TQ and TP . Figure 3.3 shows the result of landmark-based
rigid alignment using an example of facial meshes (see also Figure 2.2(b) for
landmark configuration) as well as deviations of corresponding points found
after alignment by the nearest neighbor principle, as described above.

3.2.2 Iterative closest point registration

Iterative closest point (ICP) is one of the most popular algorithms for mesh and
point cloud registration. The original algorithm by Besl and McKay (1992) has
been continuously improved and generalized for more and more applications,
e.g. by Rusinkiewicz and Levoy (2001). For the sake of completeness, the
original ICP will be explained here.

The input of ICP is a pair of point clouds, P and Q. First, centers of mass
of P and Q are defined

µp =
1

Np

Np∑

i=1

pi, µq =
1

Nq

Nq∑

i=1

qi
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The original ICP iteratively searches for the optimal transformation t =
(tT , tR), i.e. translation and rotation, which will minimize the objective func-
tion Ek in k-th iteration

Ek(t) =
1

Np

Np∑

i=1

‖q̂i −R(tR)pi − tT‖2 (3.2)

where tT is a translation parameter vector and tR is the quaternion de-
scribing the rotation. Vector q̂i is a point of Q that corresponds to pi based
on the nearest neighbor principle for the current iteration k, i.e. after point pi
is transformed by the transformation found in the previous step k − 1, start-
ing with the identity. Rotation matrix R(tR), characterized by quaternion
tR = (t0, t1, t2, t3), is defined

R(t) =



t20 + t21 − t22 − t23 2(t1t2 − t0t3) 2(t1t3 + t0t2)
2(t1t2 + t0t3) t20 + t22 − t21 − t23 2(t2t3 + t0t1)
2(t1t3 − t0t2) 2(t1t2 − t0t3) t20 + t23 − t21 − t22




The optimal rotation is computed using a method by Horn (1987) from a
3× 3 covariance matrix of P and Q

Σpq =
1

Np

Np∑

i=1

(pi − µp)(q̂i − µq)
T (3.3)

and from the cyclic component of the anti-symmetric matrix A = Σpq−ΣT
pq,

∆ = [A2,3, A3,1, A1,2]. Σpq and ∆ are used to form a 4x4 matrix M

M(Σpq) =

[
tr(Σpq) ∆T

∆ Σpq + ΣT
pq − tr(Σpq)I3

]
(3.4)

The unit eigenvector of M(Σpq) corresponding to the largest eigenvalue is
a unit quaternion representing the optimal rotation, minimizing Equation 3.2
for the current set of corresponding points. The optimal translation vector is
given by

tT = µq −R(tR)µp (3.5)

A detailed derivation of this closed-form solution for optimal rotation be-
tween given pairs of points is described by Horn (1987). The algorithm de-
scribed above is equivalent to Ordinary Procrustes Analysis (see Section 2.2
[page 17]) and can be used instead.

After the translation and rotation vector t is computed, it is used to trans-
form P . Next, a new {q̂i|i = 1 . . . Np} is found and the process is repeated
until changes in the mean-square matching error drop below a given threshold,
i.e Errk − Errk+1 < τ .

The ICP procedure is summarized in Algorithm 1.
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Algorithm 1: Iterative closest point

Input : target point cloud Q, source point cloud P
Output: aligned source P
begin

P0 = P
for k = 0, . . . ,max iterations do

For each pi ∈ P k find closest point q̂i ∈ Q.
Compute Σpq according to Equation 3.3.
Compute rotation matrix M(Σpq) (Equation 3.4) and translation
vector tT (Equation 3.5)
Compute Pk+1 = {pk+1

i |pk+1
i =M(Σpq)p

k
i + tT}

if Err(Pk+1, Q)− Err(Pk, Q) < τ then
break

end

end

end

The most time-consuming part (more then 95%) of the algorithm is com-
putation of the closest points to the arbitrary point of Q. A typical approach
to this problem is to employ space partitioning acceleration structures that
are capable of rapidly executing the nearest neighbor operation. For exam-
ple, a k-d tree has logarithmic nearest neighbor time complexity and is very
effective for point cloud and vertex-to-vertex correspondence (Samet, 2005,
Chapter 1.5). In the case of vertex-to-point correspondence in a triangular
mesh, where the k-d tree is built on a triangle soup, it loses its efficiency due
to the more complicated traversing of the tree. In these instances, an R-tree
can be more efficient (Samet, 2005, Chapter 2.1.5).

The result of ICP applied to the reference face meshes is shown in Figure
3.4. Alignment is similar to landmark registration, but in this basic variant of
ICP it is influenced by point distribution in the mesh or by missing parts of
one of the meshes.

3.2.3 Registration by landmark-fitted TPS

Thin-plate spline interpolation was mentioned in Section 2.2 [page 19] as a
non-rigid transformation model for analysis and visualization of the change in
geometry between two shapes. TPS is fairly popular for non-rigid registration
in 2D as well as in 3D. In this section, TPS will be utilized as a landmark-based
non-rigid registration tool for mapping one triangular mesh onto another. As-
sume two landmark sets LQ and LP are placed on the surface of triangular
meshes TQ and TP by an expert. These landmark sets will be used to con-
struct the TPS transformation function fTPS : R3 7→ R

3 that maps LP to LQ

and interpolates space between them, as described in Section 2.2 [page 19].
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(a) (b)

Figure 3.4: Dense correspondence using ICP registration: (a) fitted data; (b)
color-coded distances (in mm) of corresponding points with Err = 8.55524.

Function fTPS can be used to transform vertices P of mesh TP .
Figure 3.5 shows deviations of nearest neighbor corresponding points after

TPS mesh alignment. The method causes large deviations at the margin of
the meshes since they lie outside the convex hull of the landmarks, although
the center of the face is relatively well aligned.

One disadvantage of using TPS arises in instances of very different shapes,
where corresponding points can even cross. These cases cause singularities in
TPS transformation, i.e. two close points near the singularity are transformed
far from each other. Such behavior can be controlled to a degree by relaxing
interpolation conditions and enforcing smoothness in reformulated smoothing
TPS satisfying in 2D

E(fTPS) =
K∑

i=1

‖yi − fTPS(xi)‖2 + λ

∫∫ (
∂2fTPS
∂x2

)2

+

(
∂2fTPS
∂x∂y

)2

+

(
∂2fTPS
∂y2

)2

dxdy

and where λ is the smoothness control parameter. This problem has a unique
solution (Wahba, 1990).

3.2.4 Free-form space warping

Free-form space warping is a well-described parametric transformation model
for medical image registration, introduced by Rueckert et al. (1998). It was
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(a) (b)

Figure 3.5: Dense correspondence using TPS registration: (a) fitted data; (b)
color-coded distances (in mm) of corresponding points with Err = 49.3197.

originally developed for registration of MRI images of deformable objects and
inter-patient comparisons in 2D and in 3D images. However, in this subsection
it will be used to register of point cloud data (Wenckebach et al., 2005). It is
based on the free-from deformation (FFD) function of d-th order in 3D

fFFD(~x, c) =
l+d∑

i=l

m+d∑

j=m

n+d∑

k=n

ci,j,kB
d
i,j,k(~x)

Parameter c is a tensor containing the configuration of a rectangular grid of
control points that span the space around the object, c = {ci,j,k ∈ R

3, for i ∈
{0, . . . , ni}, j ∈ {0, . . . , nj}, k ∈ {0, . . . , nk}}. The density of c defines the
details of the deformation that the FFD can model. The other way around,
the sparsity of c works as an intrinsic regularization. Moreover, FFD has
natural subdivision properties that allow it to be adaptively refined. Function
Bd

i,j,k is non-zero only for control points in the subgrid of c; hence, there are
only (d + 1)3 summands in the above equation. The subgrid depends on ~x,
l = ⌊x/(ni − d)⌋, m = ⌊y/(nj − d)⌋ and n = ⌊z/(nk − d)⌋. Weight function
Bd

i,j,k is composed of B-spline bases of d-th order over knots {ti} which are
defined recursively

Bd
i (x) =

x− ti
ti+k−1

Bk−1
i (x) +

ti+k − x
ti+k − t− i+ 1

Bk−1
i+1 (x)

B1
i (x) =

{
1 if ti ≤ x < ti+1

0 otherwise
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However, in practical applications, the particular baseB for the cubic spline
is defined by four third-order polynomials on four disjunctive intervals of the
B-spline base, mapped to interval [0, 1]

B3
0(x) = (1− x)3/6

B3
1(x) = (3x3 − 6x2 + 4)/6

B3
2(x) = (−3x3 + 3x2 + 3x+ 1)/6

B3
3(x) = x3/6 (3.6)

For x′ = x/(ni − 3) − l, y′ = y/(nj − 3) −m and z = z/(nk − 3) − n, the
weight function is then defined as

B3
i,j,k(~x) = B3

i−l(x
′) ∗B3

j−m(y
′) ∗B3

k−n(z
′)

Non-rigid registration is defined as the minimization of a certain functional
with respect to a transformation model. In the case of FFD, it is effectively
reduced to a minimization of a cost function E with respect to control point
grid c of fFFD deformation. The cost function E consists of various terms
that reflect the data correspondence or penalize the transformation’s intrinsic
properties, such as volume preservation (Rohlfing et al., 2003) or minimal
second derivatives. In the presented case, the functional E is defined as follows

E(c) = Ed(c) + wrEr(c)

=
1

N

Np∑

i=1

‖qi − fFFD(pi, c)‖2 +

wr
1

M

M∑

i=1

(
∂2fFFD
∂x2

)2

+

(
∂2fFFD
∂y2

)2

+

(
∂2fFFD
∂z2

)2

+

2

[(
∂2fFFD
∂x∂y

)2

+

(
∂2fFFD
∂y∂z

)2

+

(
∂2fFFD
∂z∂x

)2
]

(3.7)

The first sum reflects the total distance of corresponding vertices. Mini-
mizing this term brings the corresponding vertices closer to each other. The
second sum affects the second derivatives of the transformation. The transfor-
mation is stiffer during the optimization process, and thus more resistant to
undesirable warping of the space and the possibility of falling into narrow local
minima. Weight wr ≥ 0 allows the user to balance between these two effects.
The main difference between the two sums is that the first sum counts samples
of the registered point cloud, while the second sum counts samples everywhere
in the range of the FFD transformation function. A simple approach for the
second sum is to regularly sample the space transformed by the FFD function
and then evaluate second derivatives in these samples. The number of space
samples relative to the number of samples from the cloud affects the balance
of the data fitting and the smoothing effect of the registration.
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(a) (b)

Figure 3.6: Problems with point clouds registration with changing nearest
neighbor correspondence: (a) normal direction weighting by target normal
direction and target-to-source point direction consine; (b) normal direction
weighting by cosine of source and target normal directions.

The disadvantage of nearest neighbor correspondence is that the corre-
sponding pairs can change during the registration process due to the complex-
ity of the point cloud shapes, non-uniform point distribution in the clouds and
the general dissimilarity of the registered shapes. These factors can cause, for
example, the surfaces (represented by the point clouds) to slide along each
other introducing local contractions. Increasing the value of the regularization
term weight wr will help to avoid local contractions. However, such restric-
tions might not be advantageous everywhere. Therefore, it would be beneficial
to exploit surface geometry features, such as normals, to weight the impact of
particular correspondences on control point movement.

Integrating surface geometry requires additional geometrical information,
i.e. a vertex normal or a vertex triangulation from which the vertex normal
can be approximated. One possibility is to weight correspondence according to
the angle between points and normals in target shape TQ (see Figure 3.6(a)).
The data term — i-th summand — is weighted by wn,i

wn,i = 1− qi − fFFD(pi, c)
‖qi − fFFD(pi, c)‖

· n(qi)

Another option is to use the normal of both the target and deformed source
shape, as suggested by Wenckebach et al. (2005).

Normal direction weighting is integrated to the data term

Ed(c) =

Np∑

i=1

(wn,iwn + (1− wn))‖qi − fFFD(pi, c)‖2 (3.8)

Weight wn, ranging from 0 to 1, controls the overall impact of normal weighting
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on the data term. If wn is equal to 0, normal direction weighting is completely
disabled.

Actual application usually employs various kinds of constraints or explic-
itly defined correspondences, which can be determined manually or by an
automatic feature-matching algorithm. Either way, these correspondences can
be naturally incorporated into the cost function above

E(c) = Ed(c) + wrEr(c) + wc
1

C

C∑

j=1

‖cpi − fFFD(cqi )‖2 (3.9)

Weight wc controls the effect of constraint correspondences from completely
disabled (wc = 0) to perfectly fitting wc ≫ 0. The optimal value for this
particular study depends on the data.

Optimization strategies

The problem of cost function in Equation 3.9 minimization is well suited for
various methods of local numerical optimization (Antoniou and Wu-Sheng,
2007, chapter 5). Due to higher order polynomials, partial derivatives and
nearest neighbor distances, the optimization problem is highly non-linear. In
general, local optimization starts at some approximation of the solution (ini-
tial solution) and continuously improves by iteratively exploring the adjacent
problem space. The following list includes numerical methods for non-linear
optimization which are often used in parametric image registration, as ordered
by the amount of gradient information it depends on:

• Powell’s method (PM) does not depend on partial derivatives at all. It
aims to optimize along predefined directions di and their combinations
as if one-dimensional problem E(c+ γdi) is being solved with respect to
variable γ.

• The downhill simplex method (DS or Nelder-Mead method) does not
depend on partial derivatives either. Cost function E is evaluated in all
directions around the current position and the optimal direction towards
lower values is approximated.

• The steepest descent method (SD) evaluates gradient ∇E and moves
in its direction. There are various approaches for making decision on
step size: either it is fixed, continuously decreasing, adaptively changing,
gradient magnitude dependent or determined by a one-dimensional line
search. This method has been used by Kybic and Unser (2003) for
volume registration.

• The conjugate gradient method (CG) evaluates gradients of E in every
step. Gradients are continuously accumulated and the direction in the
current step is based on the gradient of E in the current step as well as
on gradients in previous steps (conjugate directions).
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• The Levenberg-Marquardt algorithm (LM) blends the SD and Newton’s
method using an approximation of the Hessian matrix inverse. The ap-
proximation works well only if E is quadratic. This condition is satisfied
for general E when close to the minimum; it behaves like SD when far
from the minimum. The balance between the two strategies is tuned
by a damping parameter. Kabus et al. (2004) have shown that LM is
superior to SD for volume data registration tasks.

• The Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS) evaluates
gradient of E and continuously approximates its Hessian matrix (sec-
ond derivatives) as well as its inverse, so that no repeated inverse matrix
computation for high dimensional problems is needed, unlike for LM.
Nevertheless, storage of full Hessian matrix approximation is required,
which might be difficult in high dimensions, especially for applications
with memory-limited environments (e.g. GPU implementations, mobile
devices, etc.).

• The limited-memory BFGS variant (L-BFGS) stores only a few vectors
for low-rank approximation of the Hessian matrix. Song et al. (2014)
have successfully applied the L-BFGS approach to B-spline non-rigid
multi-modal registration of MRI and CT images.

• Newton’s method (NM) evaluates first and second derivatives of E. It
advances in the direction of the gradient multiplied by the inverse of the
Hessian matrix.

SD is the easiest to implement and works well. However, the convergence
is rather slow if certain accuracy is required and the step parameter must be
tuned accordingly. Memory requirements are linear with regard to the number
of variables. However, L-BFGS is the state-of-the-art method for the task and
also many existing implementations are available, e.g. by Okazaki (2010) and
by Johnson (2014).

In order to speed up the convergence and improve robustness, a multi-scale
approach is employed. The B-spline can be subdivided by increasing the num-
ber of control points while keeping the transformation identical. This property
is used to let the algorithm converge on various levels of detail (starting with
the most coarse), while fitting the point clouds with low-frequency, non-rigid
space warping. After the convergence, the number of control points in one
dimension is almost doubled, i.e. if nk is the number of control points in one
dimension on k-th level, nk+1 = 2nk − d for d equal to the B-spline order.
In other words, the total number of control points is approximately 8 times
larger in 3D and the size of the detail that space warping can fit is halved. For
ordinary shapes, 3 to 5 levels of subdivision are usually used. For example,
5-th level of the control point grid subdivision, starting with 43 at the first
level, accounts for the optimization problem with 0.13 milion variables. It
might cause trouble for algorithms that must hold data with quadratic space



CHAPTER 3. TRIANGULAR MESH ANALYSIS 52

Algorithm 2: B-spline mesh registration algorithm

Input : mesh P, Q
Output: mesh Pk
begin

initialization of c
for l := 1 to max subdivision do

optimize E with respect to c
if l != max subdivision-1 then

subdivide c
end

end

end

complexity in a number of variables. The general structure of the multi-scale
registration algorithm is summarized in Algorithm 2.

B-spline control grid subdivision essentially adds new knot points between
each pair of knot points from the previous scale, i.e. if 4 control points in
2D defines the cubic B-spline with 2 knot points, by subdivision it becomes a
B-spline with 5 control points and 3 knot points. See Figure 3.7(a).

A subdivision algorithm (Lane and Riesenfeld, 1980) for the B-spline grid
of the B-spline of degree d starts by doubling the control points, so that
c′(2i, 2j, 2k) = c′(2i + 1, 2j + 1, 2k + 1) = c(i, j, k). Actual control points
representing space deformation identical to c are computed by averaging the
adjacent control points d-th times. The algorithm is summarized in Algo-
rithm 3. It can be seen that the computational complexity of the algorithm is
O(8 · d · nxnynz)

Nearest neighbor search

As mentioned above, most of the local optimization strategies evaluate partial
derivatives of E with respect to variables represented by coordinates of points
in control grid c

∂E

∂ci,j,k,l
=

∂Ed

∂ci,j,k,l
+ wr

∂Er

∂ci,j,k,l
+ wc

∂Ec

∂ci,j,k,l
(i, j, k, l) ∈ {1 . . . nx} × {1 . . . ny} × {1 . . . nz} × {x, y, z}

Since all terms of E integrate function fFFD, the chain rule is applied while
computing the derivatives.

∂Ed

∂ci,j,k,l
=

∂Ed

∂fFFD

∂fFFD
∂ci,j,k,l

Due to the locality of fFFD, its value is only influenced by a limited number
of surrounding control points. Similarly, the particular control point partic-
ipates in computating of the transformation of a limited area. The partial
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(a) (b)

Figure 3.7: B-spline control points in 2D: (a) two levels of control points
subdivision — first level (circles) defines the same deformation as the second
level (squares) on the image space (red area); (b) the effect area (blue and
green squares) of particular control points (blue and green discs) is limited in
the image space (red area).

derivative of fFFD, with respect to a coordinate of a particular control point
(∂fFFD/∂ci,j,k,l), is non-zero on a limited area, on which transformation this
control point participates (see Figure 3.7(b)). This behavior has a very ad-
vantageous speed-up factor.

The most time-consuming part of the computation of Ed is the evaluation
of (qi − fFFD(pi, c)) (see Equation 3.7), since it is not explicitly defined which
qi and fFFD(pi, c) form a corresponding pair. Moreover, it differs in every iter-
ation because grid c changes, which in turn affects fFFD(pi, c). Therefore, the
mutual distances to qi change as well as the inferred correspondences. This
is the same reason for the major computational burden faced by ICP regis-
tration. In order to deal with that nearest neighbor search, an acceleration
structure must be implemented. Often, the data structure used for nearest
neighbor queries in point clouds is the k-d tree, but octrees or R-trees can
also be used (Elseberg et al., 2012). However, a nearest neighbor query to k-d
tree has computational complexity O(log n), which is still too much for the B-
spline surface registration of point clouds containing 10000+ points. The most
successful ICP acceleration approaches are those that employ approximative
nearest neighbor search structures. The first example of such a structure is
locality-sensitive hashing, described by Datar et al. (2004), which improves
query time complexity to O(nǫ) with ǫ given by the choice of hashing func-
tions. A locality-sensitive hashing framework was previously used by Mayer
and Greenspan (2007) for white matter trajectories registration in MRI. The
second example is grid caching with a query complexity of O(1), proposed
by Marden and Guivant (2012), which trades off some accuracy and higher
memory demands. The last approach worth mentioning is a two-level data
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Algorithm 3: Degree d B-spline control points 3D grid subdivision

Input : grid c with nx × ny × nz control points
Output: grid c′ with (2nx − d)× (2ny − d)× (2nz − d) control points
begin

C ←− grid with 2nx × 2ny × 2nz control points
for (i, j, k) ∈ 2nx × 2ny × 2nz do

C(i, j, k) := c(⌊i/2⌋, ⌊j/2⌋, ⌊k/2⌋)
end
C ′ := C
for l = 1 to d do

for (i, j, k) ∈ (2nx − l)× (2ny − l)× (2nz − l) do
C ′(i, j, k) := 1

8

∑1,1,1
i′=j′=k′=0C(i+ i′, j + j′, k + k′)

end
C ←→ C ′

end
c′ ←− grid with (2nx − d)× (2ny − d)× (2nz − d) control points
for (i, j, k) ∈ (2nx − d)× (2ny − d)× (2nz − d) do

c′(i, j, k) := 2C(i, j, k)
end

end

structure which employs an octree on top of a Voronoi diagram giving the
exact nearest neighbor in O(log(log(n)) (Drost and Ilic, 2013).

The method of choice to speed up nearest neighbor searches in partial
derivative computation is an approximative approach of caching the nearest
neighbor in a fine grid structure. The actual result of the nearest neighbor
query is linearly interpolated using values fetched from the cache grid in O(1)
time. Refinement of the grid depends on the amount of memory available.
The grid values can be either computed on the fly or pre-computed. Pre-
computation is also rather computationally expensive, i.e. for a grid with 5123

cells, 134 million nearest neighbor queries must be evaluated.
Pre-computation is still a possible approach since it can be performed ap-

proximately and faster for points that are further from the point cloud, without
harming the accuracy of the registration. In other words, evaluation of near-
est neighbor queries for points distant from the point cloud will not generate
as many exact nearest neighbor searches as points queried closer to the point
cloud. An octree data structure can be built upon points in the point cloud.
Each cell of the octree evaluates the exact nearest neighbor search using the
k-d tree eight times, once for every corner of the cell cube. The interior of
the cell is approximated by a linear interpolation. The cells of the octree that
are far from the cloud are larger, while the whole space they occupy generates
only eight nearest neighbor searches. The sizes of the leaf cells in the octree
are given by the cell subdivision criterion, which reflects the size of the cell in
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(a) (b) (c)

Figure 3.8: B-spline registration acceleration structures in 2D: (a) Tree refine-
ment on a point cloud containing a single point (green). Subdivision is per-
formed if the distance of the cell center (red) from the nearest point (green) is
lower then the tree cell diagonal length and if the tree cell diagonal length is
higher than the cache grid cell diagonal length; (b) Corresponding distances
to point cloud approximations interpolated from tree cell corners (blue) in 1
to 3 levels of subdivision compared to the true distance map; (c) An example
of a slice through the cache grid for acceleration of face mesh registration.

the cache grid and the distance to the nearest neighbor point in the cloud, i.e.
the leaf very close to the cloud is the size of the cache grid cell while the cell
further apart is as large as its approximate distance to the cloud. For a clearer
description, see Figure 3.8(a).

Sampling

Although the complexity of the nearest neighbor query is reduced to O(1) at
the acceptable cost of sacrificed accuracy, the time needed to compute the
partial derivatives is also determined by the number of points in the point
cloud, i.e. the number of summands in evaluation of Ed. By employing various
sampling strategies, the number of samples can be lowered without significant
loss of registration accuracy and with a huge improvement in convergence
speed. Various approaches to sampling are possible:

• Uniform random sampling — a certain fraction (e.g. 30%) of the original
samples are chosen randomly and used in the registration. In the case
of very dense meshes with few details, this strategy helps significantly.

• Poisson disk sampling — distributes points randomly while ensuring that
no two samples are closer to each other than a certain minimum. This
kind of handling is computationally expensive. A popular algorithm
for approximation of Poisson disk sampling is Mitchell’s best candidate
algorithm (Mitchell, 1991).
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Mesh sampling approaches showing point distribution and color-
coded point density of random uniform sampling (a) and (d); Poisson sampling
(b) and (e); and importance sampling (c) and (f).

• Importance sampling — random sampling is weighted by data properties
(local point density, geometrical features, etc.). This strategy might be
very helpful in enabling decimated point clouds to describe objects that
contain important features such as edges, ridges and borders that are
difficult to use as constraints with explicit correspondence.

• Normal sampling — Rusinkiewicz and Levoy (2001) proposed uniform
sampling with respect to the normal directions at sample points. This
method is advantageous for large flat meshes with sparse features with
significantly different surface orientation, e.g. edges, embossed struc-
tures, dents, etc. These surfaces have too many points in non-feature
areas, but fewer points with different orientations on feature structures
which, on the other hand, might help fitting considerably.

The first three mentioned sampling approaches are relevant to facial data
registration and are used further in the experiments. See Figure 3.9 for a
demonstration.

Various aspects of B-spline mesh registration of meshes were tested. Figure
3.10 shows results with reference face data that are comparable to the results
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(a) (b) (c)

Figure 3.10: Dense correspondence using B-spline warping registration: (a)
color-coded distances of corresponding points (in mm) of rigidly aligned meshes
entering non-rigid registration; (b) a source mesh fitted to a target mesh; (c)
color-coded distances (in mm) of corresponding points after non-rigid registra-
tion with Err = 0.90659.

of the other algorithms.
Figure 3.11 shows the results of B-spline registration with various depths of

B-spline control point grid subdivision. It shows how the density of the control
points’ grids influence local details of the deformations as well as resulting
deviation criteria (Err). Another parameter that influences the precision of
the fitting is resolution of the nearest neighbor approximation data structure
— the cache grid, as shown in Table 3.1.

Sampling density has a significant impact on the speed of convergence as
well as on the precision of the result. Fewer samples cause higher resulting
deviations compared to results with all vertices included (see Table 3.2).

Table 3.3 shows how optimization strategy influences the speed of conver-
gence and the deviation of the result. However, specific configuration of the
optimization routine, especially its convergence criterion, has an important
effect on convergence time, since the objective function tends to drop quickly
at the beginning of the optimization and improve very slowly in later itera-
tions. The convergence criterion of SD and L-BFGS, which stops optimization
when improvement gain drops below a certain threshold is set identically to
ǫ = 0.0001. Note that in order to obtain comparable results, all Err evaluation
is computed from all samples and not the sampled subset.

A comparison of various sampling strategies is shown in Table 3.4. The
efficiency of the sampling approach is connected to the total number of samples
the strategy utilizes. As shown, uniform sampling is outperformed by Poisson
sampling, which is outperformed by importance sampling in equal sample sizes
measured by the alignment error. But the convergence time is worsened in the
exact same order. Either more samples could be used for an inferior sampling
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(a) (b) (c)

Figure 3.11: B-spline registration using various levels of subdivision: (a) 1
level of subdivision resulted in surface deviation Err = 1.734; (b) 3 levels of
subdivision, Err = 1.218; (c) 5 levels of subdivision, Err = 0.907.

#
levels

cache
resolution

#
control
points

time
(s) Err

1 256 64 54.85 1.9517
2 256 125 124.80 1.7767
3 256 343 249.81 1.3041
4 256 1331 362.35 0.9799
5 256 6859 619.65 0.8792
1 384 64 65.40 1.9044
2 384 125 105.82 1.7939
3 384 343 283.36 1.2174
4 384 1331 439.24 0.8859
5 384 6859 698.62 0.7733

Table 3.1: Evaluation of B-spline registration of faces with respect to subdivi-
sion levels of control point grids.
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cache
resolution

samples
(%)

time
(s) Err

256 50 269.44 0.8933
256 25 147.82 0.8947
256 10 60.07 0.9210
256 5 34.01 0.9420
256 1 16.30 1.1263
384 50 303.94 0.7914
384 25 216.34 0.8011
384 10 128.65 0.8283
384 5 72.44 0.8632
384 1 53.30 1.0438

Table 3.2: Evaluation of uniform random sampling in B-spline registration of
faces with 5 levels of control point grid subdivision.

samples
(%)

optimization
time
(s) Err

100 SD 646.75 0.7730
10 SD 80.48 0.8073
100 L-BFGS 260.97 0.7571
10 L-BFGS 63.55 0.8038

Table 3.3: Evaluation of optimization methods in B-spline registration, with
5 levels of control point grid subdivision and 3843 grid resolution.
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samples
(%)

optimization
sampling
method

time
(s) Err

50 L-BFGS uniform 199.13 0.8692
50 L-BFGS Poisson 246.11 0.8650
50 L-BFGS importance 240.91 0.8558
50 SD uniform 385.85 0.8996
50 SD Poisson 369.19 0.8910
50 SD importance 328.57 0.8806
10 L-BFGS uniform 51.45 0.9328
10 L-BFGS Poisson 63.88 0.9138
10 L-BFGS importance 79.92 0.9030
10 SD uniform 88.01 0.9268
10 SD Poisson 100.45 0.9286
10 SD importance 80.20 0.9121
5 L-BFGS uniform 32.29 0.9490
5 L-BFGS Poisson 38.63 0.9729
5 L-BFGS importance 52.76 0.9478
5 SD uniform 43.04 0.9743
5 SD Poisson 54.86 0.9496
5 SD importance 64.11 0.9359

Table 3.4: Evaluation of sampling methods in B-spline registration, with 5
levels of control point grid subdivision and 2563 grid resolution.

method, which would either match with the better method in the same time,
or the better sampling method would converge earlier to get the same result
faster.

3.2.5 Coherent point drift

Coherent point drift (CPD) is a novel rigid or non-rigid point cloud regis-
tration algorithm introduced by Myronenko et al. (2006) and extended by
Myronenko and Song (2010). The previous algorithms depend on explicit
point-to-point correspondence between source and target point clouds. CPD,
on the other hand, treats these correspondences in a probabilistic way. The
algorithm makes use of Gaussian mixture (GM) models to relate the source
point cloud as a data points and target point cloud as a GM model centroids.
The GM model is a probability density model, consisting of a certain num-
ber of components represented by Gaussian kernels, which allow fitting to an
arbitrary number of data points. In other words, it enables two point clouds
X = {xn}Nn=1 and Y = {ym}Mm=1 with a different number of points N and M
to be registered, while expressing the correspondence between pairs of points
in the clouds as a probability. GM probability density function (PDF) in CPD
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is expressed as

p(x) =
M+1∑

m=1

P (m)p(x|m) (3.10)

where P (m) = 1/M for m ∈ {1, . . . ,M} and correspondence probability of x
given vertex m

p(x|m) =
1

(2πρ2)D/2
exp−

|x−ym|2

2σ2

The last summand (M + 1-th in Equation 3.10) is a uniform distribution
added to the mixture model to account for noise and outliers, where p(x,M +
1) = 1/N . Noise and outlier influence can be controlled by the weight w of
the uniform distribution.

p(x) = w
1

N
+ (1− w)

M∑

m=1

1

M
p(x|m)

Increasing the value of w reduces the influence of fitting the GM model to the
data by blending in a uniform distribution. This mitigates the effect of outliers
and noise in the PDF.

The optimal GM model is found by looking for GM model centroid loca-
tions θ that maximize the value of the mixture model, which is equivalent to
minimizing the negative log-likehood function E.

E(θ, σ2) = −
N∑

n=1

log
M+1∑

m=1

P (m)p(xn|m)

The expectation-maximization (EM) approach is then used to iteratively
look for optimal transformation τ (rigid, affine or non-rigid) of GM model
centroid locations θ, while progressively recomputing posterior probabilities
P prev(m|xn). In each iteration, it improves the objective function Q value
which is partially evaluated with parameters found in the previous step.

Q(θ, σ2) = −
N∑

n=1

M+1∑

m=1

P prev(m|xn) log(P next(m)pnext(xn|m))

=
1

2σ2

N∑

n=1

M∑

m=1

P prev(m|xn)‖xn − τ(ym, θ)‖2 +
NPD

2
log(σ2) (3.11)

The probabilistic model is rewritten so that it uses Euclidean distance as an
estimator for a negative logarithm of the correspondence probability. Posterior
probability P prev(m|xn) is calculated using Bayes’ theorem, i.e. P (m|xn) =
P (m)P (xn|m)

P (xn)
= P (m)P (xn|m)∑

P (k)P (xn|k)
. By substituting normal distribution, it results in

P prev(m|xn) =
exp (−1

2
‖xn−τ(ym,θprev)

σprev ‖2)
∑M

k=1 exp (−1
2
‖xn−τ(yk,θprev)

σprev ‖2) + (2πσ2)D/2 w
1−w

M
N
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In non-rigid registration, the variant of CPD represents transformation τ
by an arbitrary motion field υ

τ(Y, v) = Y + υ(Y )

Further, non-rigid CPD is formulated as a variational problem by plugging
τ into 3.11 and adding term ‖Pυ‖2, which ensures the smoothness of the
solution.

Q(θ, σ2) =
1

2σ2

N∑

n=1

M∑

m=1

P prev(m|xn)‖xn − (ym + υ(ym))‖2

+
NPD

2
log(σ2) +

λ

2
‖Pυ‖2 (3.12)

The functional above is minimized by function υ which satisfies the Euler-
Lagrange equation with a form of radial basis function (see Myronenko and
Song (2010) for details)

υ(z) =
1

2σ2

N,M∑

n,m=1

P prev(m|xn)(xn − (ym + υ(ym)))G(z, ym)

=
M∑

m=1

wmG(z − ym) (3.13)

where G is the Gaussian kernel and wm = 1
2σ2

∑N
n,m=1 P

prev(m|xn)(xn −
(ym + υ(ym))). The choice of Gaussian kernel G is connected to the regu-
larization of the solution. It also makes the algorithm valid according to the
Motion Coherence Theory by Yuille and Grzywacz (1989); hence, the name of
the algorithm. Plugging equation 3.13 into 3.12 and taking derivatives with
respect to W, a linear system of equations is formed

∂Q

∂W
=

1

σ2
G(d(P1))((Y +GW)−PX) + λGW = 0

0 = d(P1)Y + d(P1)GW −PX+ λσ2W

PX− d(P1)Y = (d(P1)G+ λσ2I)W (3.14)

where d(·) is a diagonal matrix made out of the argument, 1 is the column
vector of 1, W is the M ×D matrix of the coefficients and G is the M ×M
kernel matrix where gij = exp 1

2
‖yi−yj

β
‖2. The new value of σ2 is recomputed

at the end of the maximization step of the EM algorithm by equating the
derivative of Q with the new transformation τ of ym to zero.

σ2 =
1

NPD

M,N∑

m,n=1

‖xn − τ(y,W )‖2

=
1

NPD
(tr(XTd(PT1)X)− tr((PX)TT) + tr(TTd(P1)T)) (3.15)
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Algorithm 4: Non-rigid coherent point drift registration

Input : target point cloud X, source point cloud Y
Output: aligned source T
begin

initialize W = 0
initialize σ2 = 1

DNM

∑M,N
m,n=1 ‖xn − ym‖2

initialize w ∈ (0, 1), β > 0, λ > 0
construct G, gij = exp (− 1

2β2‖yi − yj‖2)
while not converged do

E-step: compute P prev

pmn =
exp (−1

2
‖xn−τ(ym,θprev)

σprev ‖2)
∑M

k=1 exp (−1
2
‖xn−τ(yk,θprev)

σprev ‖2) + (2πσ2)D/2 w
1−w

M
N

M-step: solve linear system 3.14
recompute σ2 according to 3.15

end
Optimal transfomation τ is given by τ(Y,W ) = T = Y +GW

end

Complete non-rigid CPD is summarized in Algorithm 4. As shown, the
computational complexity is derived from the complexity of the matrix oper-
ations, such as multiplication which is O(MN), and the solving of a linear
system which is O(M3).

The authors of the original algorithm (Myronenko and Song, 2010) lowered
the time complexity in two ways. First, fast Gaussian transform (FGT) by
Greengard and Strain (1991) is employed to compute matrix-vector multipli-
cation of P1, PT1 and PX in O(M +N) time. This way, matrix P does not
have to be evaluated and stored. Second, low-rank matrix approximation is
used to speed up the solution of linear system 3.14. Equation 3.14 is rewritten
in a form where the left-hand matrix is symmetric and positive definite

(G+ λσ2d(P1)−1)W = d(P1)−1PX−Y (3.16)

Matrix G can be replaced by matrix Ĝ with rank K (K < M) and min-
imal difference from G expressed by the Frobenius norm, i.e. ‖Ĝ − G‖2F =
minḠ{‖Ḡ−G‖F , rank(Ḡ) = K}. In other words, matrix Ĝ is the low-rank
approximation of matrixG. The most popular way of finding low-rank approx-
imation of a real symmetric matrix is to use eigenvector decomposition (Golub
and Van Loan, 1996) (or Singular Value Decomposition with computational
complexity O(n3)), which gives an optimal solution for k-rank approximation.

Matrix Ĝ can be written as

Ĝ = QΛQT
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where Λ is the K × K diagonal matrix with K largest eigenvalues of G on
its diagonal and Q is the M ×K matrix of corresponding eigenvectors of G.
Using Woodbury’s identity, the inversion of the left-hand term approximation
of Equation 3.16 can be rewritten as

(QΛQT + λσ2d(P1)−1)−1 =
1

λσ2
d(P1)− 1

(λσ2)2
d(P1)Q(Λ−1 +

1

λσ2
QTd(P1)Q)−1QTd(P1)

Computing the matrix inversion this way leads to O(K3). For K ≪ M ,
time complexity is significantly improved. Authors have recommended using
K =M1/3, the largest eigenvalues of which make actual time complexity linear
(O(M)).

The only remaining difficult problem is the computation of eigenvectors of
matrix G. These vectors are computed once at the beginning and used repeat-
edly in EM algorithm iterations. The pre-computation can also be performed
very effectively. Authors have suggested using the deflation technique, which
involves matrix-vector products that can be accelerated via FGT. In general,
there are many numerical algorithms capable of approximating eigenvectors
of large matrices differing in numerical stability, computational complexity
and precision. Currently, the most successful algorithms for eigenvector de-
composition are based on a projection onto Krylov subspaces. One of these
algorithms is Arnoldi’s method (Saad, 1992), an iterative numerical algorithm
for general matrices, which gives the first few eigenvalues after a relatively
small number of iterations. Practical implementations (e.g. Matlab’s eigs(),
ARPACK) use implicitly restarted Arnoldi method (IRAM) which effectively
handle high numbers of large eigenvectors. The computational complexity of
Arnoldi’s method is (O(M2N)).

One class of alternative method for low-rank matrix approximation, also
known as randomized low-rank decomposition, attempts to build the approx-
imation using columns sampled from the matrix itself and use them as eigen-
vectors instead of looking for actual eigenvectors (Deshpande and Vempala,
2006). The error of the approximation is only (1 + ǫ) times the error found
by an algorithm that looks for true eigenvectors (i.e. IRAM). The algorithm
iteratively adds columns to sample S in pace derived from the approximation
error. In each iteration, the columns are chosen randomly based on a prob-
ability that is proportional to their size, relative to the norm of continuously
reduced matrix Ej = A− πspan(S)(A)

P
(j−i)
i >= c

‖E(i)
j−1‖2

‖Ej−1‖2F
Computational complexity of the described randomized k-rank decompo-

sition is O(mk/ǫ), where m is the number of non-zero elements of the matrix.
Another approach to approximate eigenvectors when constructing low-rank

matrix approximation, is derived from the Nyström method. The Nyström
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method dataset
init
(s)

total
(s) Err speedup

IRAM face 131 245 0.0144 1.00x
Nyström face 41 196 0.0529 1.25x
k-means face 14 119 0.0841 2.05x
IRAM dragon 2204 2504 0.0014 1.00x
Nyström dragon 1395 1695 0.0014 1.48x
k-means dragon 82 394 0.0051 6.36x

Table 3.5: Evaluation of CPD speed-up methods: eigen decomposition using
Arnoldi, Clustered Nyström and point cloud clustering. The face dataset con-
sists of 13400 vertices; Stanford Dragon has 50016 vertices in the experiment.
Data were taken from Dupej et al. (2014a).

method is a numerical method for solving integral equations by replacing them
with a finite sum, which makes an integral equation into a system of linear
equations. Various quadrature rules (interval approximations) for the Nyström
method are used, including stochastic approximations and their error estimates
(Kumar et al., 2012). Williams and Seeger (2001) have used the Nyström
method to approximate eigen decomposition simply by randomly choosing a
k ≪ n number of columns of the full matrix K and using them as an input
for the eigenproblem of size k. The solution of the k-sized problem is used as
an approximation of the solution of the full-scale eigenproblem on matrix K.

Quantization of the full matrix column can be used to produce a more sys-
tematic choice of columns for eigenvector and eigenvalue approximation using
the Nyström method, as suggested by Zhang et al. (2008). Matrix columns
can be seen as points in a high-dimensional space. For better eigenvector
approximation, it makes sense to choose points that are far apart from each
other than points that are members of the same cluster, since they do not
significantly contribute to the variation of the approximation. Error bounds
of Nyström sampling can be estimated as quantization errors by choosing a
particular representative column for its neighbors in a high-dimensional space.
Authors have proposed the k-means clustering algorithm as an optimal sam-
pling method with minimal quantization error for the desired k. This method
has been further referenced as Clustered Nyström CPD.

The columns of the large matrix in the CPD algorithm correspond to points
of the source point cloud in the three-dimensional space. If the points in the
cloud are relatively far from each other, the norm of the difference between the
corresponding columns in the matrix will also be large. Therefore, k-means
clustering of points in the source point cloud provides meaningful sampling of
the corresponding columns of the matrix using the Nyström method. Because
k-means clustering is performed on data of much lower dimensionality than the
dimensionality of the columns, it significantly speeds up the CPD algorithm
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(a) (b)

Figure 3.12: Dense correspondence using coherent point drift registration:
(a) fitted data; (b) color-coded distances (in mm) of corresponding points
Err = 3.9312 (β = 5.0, λ = 0.01, w = 0.1).

while keeping the accuracy in acceptable bounds, compared to a method that
uses exact low-rank approximation (Dupej et al., 2014a).

As shown in Table 3.5, the authors of this idea also evaluated improved
CPD registration on facial scan data. The measurement is divided into two
phases of the algorithm. The initialization phase consists of pre-processing at
the point at which eigen decomposition of the G matrix is computed, which is
the actual bottleneck. This is followed by the registration phase where the algo-
rithm iteratively drifts the points to the optimal result. The results show that
speed-up scales quickly with the input data size; on the other hand, the differ-
ence in the error measure scales much faster to the algorithm’s disadvantage.
However, the time complexity of the improved algorithm — low-dimensional
clustered Nyström CPD — is O(nk2). Furthermore, the parts of the algorithm
are implemented in CUDA and run on GPU.

Figure 3.12 shows how CPD handles registration of reference face data
compared with other methods. It definitely manages to decrease differences in
areas such as the cheeks and forehead, but the region around the lips is not
fitted very well.

The disadvantage of CPD is that in the current state it does not allow
explicit correspondences to be incorporated, i.e. landmarks set by a user to
guide the registration. Nevertheless, the CPD algorithm, as a representative
of non-rigid registration, has introduced the non-parametric transformation
model as well as fuzzy-like correspondence into the convergence criterion.
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3.3 Statistical models of mesh shapes

A statistical shape model is built from a sample that is large enough and
appropriately distributed to cover the variability of a population. A procedure
analogous to the creation of the point distribution model, previously mentioned
in Section 2.2 [page 17], can be applied to mesh geometry if two conditions are
fulfilled:

• there is an equal number of vertices

• there is group-wise point-to-point correspondence

A very basic algorithm for mesh modeling is called the dense correspon-
dence model (DCM), published by Hutton et al. (2001). It is based on the user
placing landmarks onto the surface of every model in the sample, which can
result in very tedious and error-prone work. The algorithm itself makes use of
GPA and TPS (Section 2.2 [page 17]) for correspondence construction. This
results in the geometrical representation of each specimen by a mesh with the
same number of vertices and those of identical topology, i.e. vertex-to-vertex
correspondence. The procedure is summarized in Algorithm 5.

It is also important to note that TPS transformation does not have an
implicitly defined inversion. Therefore, f−1

TPS is computed numerically using
iterative gradient-based optimization or the Gauss-Newton method by mini-
mizing a squared distance F (~x) = ‖fTPS(~x)− ~y‖2

f−1
TPS(~y) = arg min

~x

‖fTPS(~x)− ~y‖2

First derivatives of the squared distance expression should be equal to zero

∂F

∂~x
= 2(fTPS(~x)− ~y)TJ(fTPS)(~x) = 0 (3.17)

where J(fTPS) is the Jacobian matrix with partial derivatives of fTPS, i.e.
J(fTPS)i,j = ∂fTPS(~x)i/∂xj, which is specifically defined as

∂fTPS,x
∂x

(~x) =
m∑

i=1

wx
i

∂ϕ

∂r

∂r

∂x
(ci, ~x)

r(c, ~x) = ‖c− ~x‖, ϕ(r) = r3

The numerical solution of 3.17 is obtained by iteratively updating ~xi,
initialized close to the expected solution (e.g. ~x0 = ~y). In other words,
xi+1 = xi − δ(∂‖fTPS(~xi) − ~y‖2/∂~x) until it converges for some small δ > 0.
Initialization is usually critical for local numerical optimization. Nevertheless,
initializing the iteration in ~y is a good choice in this case because the land-
marks defining TPS are already aligned by Procrustes analysis and the affine
part of the TPS is close to the identity. Therefore, only the deformation part
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Algorithm 5: Dense correspondence model construction procedure

Input : Input meshes M = {Mi} and input landmarks L = {li} for
i ∈ {1, . . . , n}

Output: Average mesh M̄ , C = {Ci} meshes with identical topology
and shape of a selected base mesh

begin

Align L using GPA for each li producing matrix Ai and l̂i
for i← 1 to n do

M̂i ← mesh with vertices of Mi transformed by matrix Ai

end
B ← selected base mesh, e.g. B =M0

l ← landmarks corresponding to B
for i← 1 to n do

M̃ ← mesh with vertices of M̂i transformed by using f l̂i→l
TPS

Ci ← copy of mesh B
for j ← 1 to |Ci| do

~v ← nearest point to j-th vertex of Ci on the surface of M̃

j-th vertex of Ci ← (f l̂i→l
TPS )−1(~v)

end
if we study shape then

scale Ci by factor inverse to centroid size of li
end

end
M̄ ← copy mesh B
for j ← 1 to |M̄ | do

j-th vertex of M̄ ← 1
n

∑n
i=1 j-th vertex of Ci

end

end

of the TPS is inverted, which means that the input coordinates are not as far
from the output because the deformation is usually not so prominent.

For faster convergence (i.e. in a fewer number of iterations), a second-order
method, e.g. the multidimensional Newton’s method, can be used. However,
it requires a computation of second derivatives and an inversion of the Hessian
matrix, which might be slightly more time-consuming and less stable.

~xi+1 = ~xi − δH−1
F (~xi)∇F (~xi)

where HF is the Hessian matrix of F , i.e. H i,j
F (~x) = ∂2F (~xi)/∂xi∂xj

∂2F

∂x∂y
= 2

(
∂fTPS
∂x

∂fTPS
∂y

+ (fTPS(~x)− ~y)T
∂2fTPS
∂x∂y

)
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The Hessian of the TPS, ∂2fTPSTPS/∂xi∂xj is actually a tensor of order 3.

∂2fTPS
∂x∂y

=
m∑

i=1

wx
i

∂ϕ

∂r

∂r

∂x
(ci, ~x)

Unfortunately, due to the computational burden of Newton’s method men-
tioned above, practical experiments have demonstrated that Newton’s method
takes twice as much computational time, compared to the first-order steepest
descent method.

Alternative to a numerical TPS inversion approximation is to express the
position of ~y on a triangular surface of M̂i by barycentric coordinates of the
point in a particular triangle. Since inverse transformation of the triangle
vertices is known, the barycentric coordinates can be used with these known
vertices. This approach works well in cases where meshes consisting of small
triangles, which are not significantly non-linearly deformed.

The correspondence construction is explained visually in Figure 3.13 using
a two-dimensional illustrative example.

Once the correspondences are found, PCA analysis can be executed as if the
corresponding vertices were considered corresponding landmarks (Section 2.2
[page 17]). This is the basic principle of shape analysis applied on a sample
of n meshes. The difference is that in the case of landmark-based analysis
the number of landmarks is significantly lower than the number of vertices.
Moreover, the number of variables p defined by p/3 vertices’ coordinates is
usually substantially higher than the number of observations in the sample.
This imposes a fundamental limitation for PCA. A direct algorithm for PCA
computation based on eigen decomposition assumes p < n; otherwise, it is not
possible to compute the full rank covariance matrix, which is the reason many
eigenvalues are zero. In addition, the computational cost is scaled with the
dimension of the data, i.e. computational complexity is O(p3).

PCA on mesh data is performed similarly to PCA on landmarks, i.e. the
meshes’ vertices are packed into one-dimensional vectors in the same order
with respect to the found correspondences. The average of these vectors is
an average mesh or a mean shape. Subtracting the mean shape from each
specimen vector will center the dataset to origin.

In order to compute PCA on data with a high number of variables per
observation (p > n), an algorithm for high-dimensional PCA (HDPCA) must
be employed (Bishop, 2006, page 569). Input data are centered and represented
by matrixX with n×p dimensions. First, n×nmatrix S̃ = 1

n
XXT is evaluated

instead of computing the covariance matrix of input data X which would be
p× p. For eigenvectors ui and coresponding eigenvalues λi of S̃, the following
equation holds

1

n
XXTui = λiui
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(a) (b) (c)

(d) (e)

Figure 3.13: An explanation of a dense correspondence algorithm in 2D: (a)
a pair of input polylines (the equivalent of a triangular mesh, where black
dots represent vertices) with user-placed landmarks (gray squares); (b) rigid
alignment using GPA; (c) TPS deformation; (d) nearest neighbor search; (e)
inverse transformation.
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By pre-multiplying by XT

1

n
XTX(XTui) = λi(X

Tui)

The expression XTui = vi is, by definition, the eigenvector with a corre-
sponding eigenvalue λi of S = 1

n
XTX, which is a covariance matrix of the

original dataset. In this way, n eigenvectors vi and eigenvalues λi of S can
be obtained, while the rest of the eigenvalues are zero. The computational
complexity is O(n3). Eigenvectors, in descending order of the corresponding
eigenvalues, represent a basis of the shape space where first dimensions account
for the most variable components of the shape. PCA scores si, i.e. coordinates
of the inputted sample observations in this space can be computed.

si = V Txi

where V is p× n matrix with unit eigenvectors vi as columns, xi is the p long
vector and xi,3j, . . . , xi,3j+2 = the coordinate deviation of j-th vertex of Ci from
M̄ . The particular specimen i can then be computed

Ci = M̄ + V si (3.18)

Model properties

A certain degree of quality in any statistical model (Equation 3.18) is reflected
in its ability to generate a given specimen in the population with the least
error possible. This ability is connected with the complexity of the shape, the
size of the training sample used for the creation of the model as well as the
distribution of the sample in the population. All these factors are reflected in
the properties of generalization and the specificity of the model (Davies et al.,
2008, chapter 4.2.2). Specificity indicates how well the distribution and density
of the training sample correspond to the population, such that it is measured
as the average shortest distance between randomly generated specimens to the
nearest member of the training sample.

A generalization property, on the other hand, measures how well the model
is able to represent unseen specimens. This ability is measured by the leave-
one-out approach so that one specimen is removed from the training set, after
which the model is created and used to reconstruct the removed specimen. The
error between the reconstruction and the actual specimen is then measured.
The whole process is repeated for all specimens in the training set.

G(M) =
1

|M |

|M |∑

i=0

‖Mi − C̃i‖2 (3.19)

The measure depends on the complexity of the shape and whether the size
of the training sample covers all of the shape variations, even when one of
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the specimens is removed. The quality of the model is also influenced by the
quality of found correspondences. Better correspondences are able to reflect a
more complex shape space, which means that more specimens are required to
represent it properly.

3.4 Mesh shape analysis

The major goal of many life science disciplines is to describe the world around
us. In the case of physical shapes, the ability to fulfill the task is very limited
when using simple tools because the shapes of natural objects are very complex.
Moreover, presenting these descriptions is also very difficult when only using
numbers and tables. As already shown, geometric morphometry introduced
ways of realizing these tasks on shapes represented by landmarks or similarly
simple primitives (see Chapter 2).

Using a statistical model of correspondences, created using non-rigid
registration introduced above, the variability of samples of various three-
dimensional triangular surfaces can now be studied in a geometrics morphom-
etry fashion.

3.4.1 Mean shape and shape variability

The first goal is to study mean shape, referenced in the previous section where
it was needed to perform high-dimensional PCA. As well as the mean shape
of the whole sample, one can also switch focus to the mean shape of a sub-
sample. For example, in many research tasks, the point of general interest is
the difference between the average shape of the male and female variants of
the object.

Comparison of the shapes of the male and female human face has been
examined by Velemı́nská et al. (2012). In the study, a model was created
with a dense correspondence algorithm using TPS for non-rigid registration
(see Section 3.3), which is now considered inferior to B-spline-based non-rigid
registration. The reason for this is addressed further. There are many traits
that are typical for each sex and which are clearly noticeable to the experi-
enced observer. Others, however, may not be so obvious. The advantage of a
computational method is to help the observer to notice these differences and
describe them impartially.

Figures 3.14(a) and 3.14(b) show average male and female faces where the
extent of how diffcult it can be to spot, isolate and describe these differences is
evident. Average shapes, on the other hand, have a disadvantage in that they
can be very close to each other in the shape space. It is generally known that
males have a protruding superorbital ridge, a deeper position of the eyes in
relation to the facial plane, a larger and wider straight nose and nostrils, and
larger lower face. These features can be observed if mean shapes are aligned
and overlayed (see Figure 3.14(c)).
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(a) (b) (c) (d)

Figure 3.14: Comparison of mean shapes of male and female faces. Subtle
differences can be seen while meshes are overlayed and distances between cor-
responding points are measured: (a) mean shape of the male face; (b) mean
shape of the female face; (c) overlayed mean shapes; (d) color-coded distance
map between mean face meshes of males and females.

In addition to computing the group averages, the model can be used to
extrapolate the extreme cases of hyper-masculine or hyper-feminine faces by
constructing a shape corresponding to the parameters in the shape space lying
on the line that connects male and female averages s1 and s2 in the space far
away from their common mean s̄.

se = s̄+ α(s1 − s2)

This solution will work if the groups have very similar variances. However, in
the case of different variances and different orientations of the subgroups in
the shape space, a simple line representing extrapolated shapes might miss a
large part of one group or the other, i.e. the extrapolated shape is not very
close to extreme cases in the subsample. In that case, the direction should be
weighted by inversion of the covariance matrix, Σ−1. The covariance matrix
of the sample in the shape space obtained using PCA is a diagonal matrix.

se = s̄+ αΣ−1(s1 − s2)

Such a weighted direction generally does not progress via group means. More
likely, it follows the shape of the sample in the shape space. It is worth
mentioning that the weighted direction is equal to the normal of the groups
separating plane, which comes out of linear discriminant analysis (Section 2.2
[page 19]). These artificial shapes are often used to visualize actual differences
in cases both where actual differences are subtle and where comparing exact
averages is not illustrative.

Moreover, the information-mining property of PCA can be exploited to ex-
trapolate the shape, which represents group-specific traits beyond the mean,
so that the only part of the shape’s variability that is significant for shape de-
scription is used. In order to do this, only statistically significant components
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(a) (b) (c)

Figure 3.15: Extrapolated shapes representing trends between mean shapes
using only eight statistically significant principal components according to the
broken-stick criterion: (a) extrapolated male; (b) extrapolated female frontal
and lateral view; (c) overlayed frontal view with ever more prominent sexually
dimorphic traits.

are used for extrapolation. The number of statistically significant components
is determined by using the broken-stick criterion (Peres-Neto et al., 2005). Fig-
ure 3.15, in comparison with Figure 3.14, shows the difference in a situation
where the shapes are extrapolated using all information and where shapes are
extrapolated using eight statistically significant components only.

In the case of more complex categorization or continuous categorical pa-
rameters, the least square-fitting of the various types of curves can be applied
to the data points, which pass through mean configurations with respect to
these parameters.

3.4.2 Form and allometry

Up to this point, only shape differences with sizes removed by registration have
been considered. Instead of modeling differences between shapes of normal-
ized size, triangular meshes can preserve their original size; hence, subsequent
analysis becomes an analysis of form. Analysis of form and shape can differ
significantly (see example in Figure 2.3(c) and 2.3(d)). If this is the case, the
first component in PCA of form will reflect the size of the object, i.e. individ-
ual specimens will be sorted along the PC1 axis with respect to their actual
size. Nevertheless, the shapes and sizes of natural objects are connected by
allometry (for more details, see Case study 5 [page 29]). Therefore, certain
shape characteristics connected with size are preserved even though the size is
removed.

The relation of size and shape can be studied by constructing a linear model
of dependent shape variables si and independent size variable s. Size can be
computed using arbitrary methods depending on the information available in
order to better reflect the size of the particular class of object, i.e. linear
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measurement, surface area or landmark-based centroid size (Equation 2.3) can
be used. In the case of facial surface, centroid size is used. The linear model
of shape-by-size is defined as follows

s = as+ b

Model parameters a and b are computed using multiple simple linear regres-
sions as follows

bi =

∑n
j=1(si,j − s̄j) · (sj − s̄)∑n

j=1(sj − s̄)2
a = s̄− bs̄

where s̄ is the average shape and s̄ is the average size. An example of relating
the shape to the size property is shown in Figure 3.16.

Case study 7: Human face meshes

Using the tools described above, a study of a young adult Central European
(Czech) population was carried out (Velemı́nská et al., 2012). The aim of the
study was to prove and describe the sex differences in facial shape as well
as the relationship between size and shape in a population represented by a
sample of 101 specimens (50 male, 51 female). The general observations are
summarized as follows:

• Static allometry (individual variation within a population and age class)
is a substantial part of sexual dimorphism. The cross-validation score
of sex classification using linear discriminant analysis (see Section 2.2
[page 19]) exhibited a strong correlation with centroid size (R = 0.578,
R2 = 0.334, p < 0.0001). Apart from that, discrimination rates of
shape variables (size-normalized) yielded 87.13% of correctly classified
specimens using leave-one-out cross-validation. Large sizes are related to
facial elongation, while small faces are more rounded. For a comparison,
see Figures 3.16(a) and 3.16(c).

• The sexual dimorphism of the shape is expressed by the width propor-
tionality of the face. Masculine faces display a low and narrow forehead
in combination with a larger lower face (Figure 3.15(a)). For feminine
faces, a high, vaulted and wide forehead is associated with a smaller
and less prominent lower face (Figures 3.15(b)). Female variation is al-
most completely overlayed with part of the male variation (see Figure
3.17). Therefore, for female classification, shape in sexual dimorphic
traits appears to be more important while, in males, there is a stronger
association with size.

• The forehead in males is more sloping while the eyes are located deeper in
relation to the periorbital area. The deeper position of the eyes in males,
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Figure 3.16: An example of allometry in facial meshes: (a) average small face;
(b) Average medium-sized face; (c) average large face; (d) histogram of face
sizes in the sample.

in combination with a narrower eye fissure, is probably the consequence
of a larger and more protuberant frontal sinus (Figure 3.15(a)).

• In the mid-facial area, the male external nose is enlarged anteriorly (a
larger convex nose) and the nostrils are strikingly larger and more flaring.
The face is relatively narrower with less prominent cheeks and a smaller
amount of soft (probably fatty) tissue in the cheeks. For a comparison,
see Figures 3.15(a) and 3.15(b).

• The lower face in males is larger with massive, well-shaped musculature
enveloping the mouth aperture and prominent chin (Figure 3.15(a)).

As mentioned above, the research was realized using a dense correspon-
dence construction algorithm based on landmarks and TPS for non-rigid reg-
istration (Section 3.2.3). It is also interesting to see how B-spline based regis-
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Figure 3.17: A scatterplot of specimen scores in the first two principal compo-
nents (38.14% of the overall variability) showing projection of the shape space
where the relation of sexes is the most distinguishable. Confidence ellipses in
the plot approximate 95% of the represented population.

tration (Section 3.2.4) performs in the same tasks on the same datasets. The
average shapes are shown in Figure 3.18. Yet, no ground truth exists against
which the results can be compared with, so the assessment is based purely on
visual observations.

In comparison to mean shapes acquired via TPS-based registration (Figure
3.14), the differences between males and females are also very subtle. How-
ever, they better reflect commonly known sex differences, i.e. high superorbital
ridges; a larger nose positioned higher in the face; massive soft tissue surround-
ing the mouth along with a pronounced chin in the male face in contrast to the
round face of the female with prominent cheeks and vaulted forehead. On the
other hand, results of sex discrimination by LDA can provide strong evidence
that additional computational and algorithmic labor are worth the effort. Ac-
tual results of LDA on the same data give a 94.1% discrimination success rate
with leave-one-out cross-validation, which is approximately 7% better, i.e. 7
specimens were classified correctly in the sample in contrast to the inferior
TPS-based registration method. This difference is particularly significant and
suggests that LDA discrimination ability reaches its limit on this dataset and
cannot be improved considerably, even when it is applied to much more pre-
cise feature descriptors. Experimenting with more complex classifiers, such as
various modifications of support vector machines (Cortes and Vapnik, 1995),
naive Bayesian classifier or artificial neural networks, yielded even better clas-
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(a) (b) (c) (d)

Figure 3.18: Comparison of mean shapes of male and female faces created
using B-spline non-rigid registration (compare with Figure 3.14): (a) male
mean face; (b) female mean face; (c) overlayed mean faces; (d) color-coded
difference in local size measure.

classifier
B-spline

(%)
TPS
(%)

difference
(%)

landmarks
(%)

LDA 94.1 87.1 +7.0 72.3
SVM(radial kernel) 97.0 83.2 +13.8 74.3
Naive Bayes 92.1 87.1 +5.0 68.3
ANN(hidden=4) 89.9 79.0 +10.9 60.8

Table 3.6: The success rate of sexual dimorphism classification of facial shapes
using various classifiers of correspondences constructed using B-spline regis-
tration and TPS-based registration. In addition to surface analysis, sexual
dimorphism evaluation on landmarks is included for comparison purposes.

sification success rates in some cases (see Table 3.6).
The variability of shape captured by the two models is better compared by

visualizing the effect of principal components on the shape itself (see Figure
3.19). The difference in coverage of the principal components between models,
acquired using two different registration methods, suggests that they reflect
similar features of the shape, i.e. PC1 reflects border parts of the shape (not
clearly visible in Figure 3.19(a)), PC2 reflects the forehead, PC3 reflects the
forehead, chin and lateral parts of the face and PC4 reflects the forehead and
cheeks. However, the components of the B-spline-based model go into more
detail (central part of the face, asymmetry), probably because of the stability
of found correspondences. On the other hand, component coverage of the
TPS-based model is more general, mainly covering the forehead and marginal
parts of the face. This is confirmed by generalization measure G (Equation
3.19), which is equal to 3.25 · 104 for the TPS-based model and 4.17 · 104 for
the B-spline-based model.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.19: Comparison of face variability acquired using two registration
methods: (a)-(d) PC1 - PC4 of the model based on TPS registration repre-
senting 24.5%, 13.6%, 9.4% and 7.5% of variability, respectively; (e)-(h) PC1
- PC4 of the model based on B-spline registration representing 23.3%, 15.5%,
11.9% and 5.7% of variability, respectively. Color-coded maps show the dis-
tance in mm by which the components affect a position of a particular point
scaled by 104.

Case study 8: Cleft lip and palate

The second case study that demonstrates mesh shape variability analysis is an
application used in the field of biomedicine, namely, the analysis of the shape
of the human palate with respect to the evaluation of cleft lips and palate
conditions. This analysis is performed on a sample of patients and compared
to healthy population. A cleft lip and palate is a clefting deformity caused by
abnormal facial development during the gestation period. This condition is rel-
atively common in newborns, with a prevalence of approximately 0.15%, which
is equal to 1 per 700 births worldwide and affected by various factors (ethnic-
ity, genetic factors). In the Czech Republic, the incidence is approximately
1.8 per 1000 births (Peterka et al., 2000). Apart from the esthetic aspects of
the condition, there are many others that affect the quality of the patient’s
life, such as mastication and food intake difficulties, speech problems, hearing
problems and psychosocial development problems. A severe case of cleft lip
and palate is called complete cleft palate, since it continues above the upper lip
into one or both nostrils. There are generally two types of complete cleft lip
and palate: unilateral (UCLP) and bilateral (BCLP) cleft lip and palate. Due
to the severity of this condition, a great deal of research has developed, with
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Figure 3.20: An example of shape analysis based on a TPS registration-dense
correspondence model of a human palate: (a) digitized model of a human
palate with landmark configuration; (b) mean shapes of a healthy (gray) palate
and a BCLP patient (green); (c) visualization of local size differences between
means, i.e FESA (taken from Bejdová et al. (2012a)).

many procedures now capable of fixing the condition. Surgical procedures are
even performed on infants in their first months of life. The advantage of the
treatment at this very young age is that the natural growth will allow the
palate to develop to a healthy looking shape. The measure of success of a
particular protocol for early-age surgery can be evaluated over a decade or
decades of natural growth.

A digital image of the human palate is captured by scanning a palate
cast with a surface scanner, usually based on more precise laser technology.
An example of a cast and its digital image is shown in Figure 2.1(c) and
Figure 3.20(a). These digital scans are further processed using software tools
(Rapidform, INUS Technology), mostly manually, to remove teeth arches so
that the analysis will only consider the shape of the palate. Until recently,
the condition of the palatal shape was analyzed only by linear measurements
on palate casts or by constructing cross-sections of a digital model (Šmahel
et al., 2009). The first palate shape analysis of a complete surface model was
performed on BCLP and UCLP by Bejdová et al. (2012a) and Rusková et al.
(2014) using TPS-based registration.

Figure 3.20(b) shows the shape of an average BCLP palate of a sample,
which forms a group of 29 Czech boys between 12.1 and 16.5 years, who under-
went the same treatment procedure (modified Veau technique at an average
age of 8 months followed by pharyngeal flap surgery at the age of 5 years).
The control group of a healthy population consisted of 29 Czech boys with an
average age of 14.7 years. One difficulty in the application of TPS registration
is finding enough well-defined and stable landmarks. The shape of a palate ba-
sically recalls a half of a paraboloid without as many significant feature points.
A configuration of four landmarks are suggested: the first is placed on the tip
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of the palate, two more are positioned on the most medial cervical margins of
the second premolars and the fourth is placed in the middle of a line connecting
the first molars at the most medial cervical margins (see Figure 3.20(a)). Four
points in a three-dimensional space do not allow for very complex deformation
using TPS. Bejdová et al. (2012a) used the visualization of shape differences
between treated cleft patients and controls as the key results. The comparison
might answer the question whether the treatment is actually able to restore
a healthy shape and, if not, focus the attention on what to change in future
surgical and treatment protocols.

For a detailed depiction of the local differences, finite element scaling anal-
ysis was used (FESA), developed by Cheverud and Richtsmeier (1986). The
method compares the geometry of individual corresponding triangles between
two triangular meshes and assigns two values expressing the difference in local
size and shape. In the case of the study, the pair of meshes correspond to
a mean healthy palate and a mean clefted palate. Figure 3.20(c) shows the
local differences in size. The figure appears to be rather noisy, which is due to
element-wise FESA factors evaluation.

The summary of observations uncovered in the study are the following (for
more details, see Bejdová et al. (2012a)):

• The variability of palatal size and shape in BCLP patients is much
greater in comparison with that observed in the non-clefted population.

• The palatal size and shape of BCLP patients (ranging from 12.1 to 16.5
years) are not correlated with age. This means that there is no connec-
tion between how the palate looks and how much time it has taken to
develop. Hence, there is no bias connected with the age structure of the
sample.

• A comparison of the mean palatal shapes of the clefted and non-clefted
groups shows that the BCLP is flatter and narrower. The most notable
size difference is seen in the area between the maxilla and premaxilla.
This phenomenon could be associated with the persisting separation of
the premaxilla from the rest of the palate.

• The shape of the mean palatal configuration of the premaxilla and ad-
jacent area in lateral projection is concave in the non-clefted population
and convex in BCLP patients.

As mentioned above, a palatal shape is difficult to describe using anthropo-
metrical landmarks. However, TPS registration heavily depends on a number
of landmarks that cover the whole body of the shape. Regions away from
landmarks and outside of their convex hull are not aligned very well due to
the global behavior of the TPS interpolation function.

Free-form deformation, on the other hand, behaves locally with various
levels of refinement. An advantage of B-spline-based registration is that it is
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Figure 3.21: B-spline non-rigid registration of palates: (a) input of a healthy
palate with landmarks; (b) an example of a clefted palate; (c) rigidly aligned
palates; (d) non-rigid registration of a clefted palate to a healthy palate; (e)
non-rigid registration with landmark constraints; (f) mean shapes of a healthy
sample; (g) mean shapes of a BCLP sample; (h) local size differences of a mean
healthy palate and a BCLP mapped onto a mean BCLP shape.

able to fit mesh borders, especially beneficial in cases where palate meshes
are trimmed along the teeth line. The teeth line actually serves as a helpful
feature for correspondence matching. An example of a pre-processed healthy
palate and BCLP is shown in Figure 3.21(a) and 3.21(b). Applying B-spline-
based registration and minimizing the sum of squared distances to the nearest
neighbors will not result in the expected fitting, because the simple feature-
less shape of the palate allows the source surface (clefted) to slide along the
target surface (healthy) and shrink, while minimizing the distances before the
movement is stopped by regularization. In order to deal with this problem,
the B-spline registration framework makes use of landmark constraints (see
Section 3.2.4). The landmarks keep the homologous places overlaid, while the
sum of squared distances brings the respective surfaces closer to each other,
where regularization prevents the undesired local deformation. Constrained
B-spline registration results in almost a perfect fit (see Figure 3.21(e)). Con-
sequently, meaningful correspondences are found which allow plausible mean
shapes of healthy (see Figure 3.21(f)) and clefted palates (see Figure 3.21(g))
to be created, compared with means acquired using TPS-based registration
(Figure 3.20(b)). Although the model basically reveals similar results, the
shape of the mean clefted palate significantly differs from the TPS version.
The lateral teeth line is concave along the entire side, making the middle sec-
tion of the shape fairly narrow. The detail of the valley between the maxilla
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Figure 3.22: A scatterplot of specimen scores in the first two principal com-
ponents containing subsamples of the healthy population and BCLP patients
approximated with 95% confidence ellipses.

and the premaxilla is preserved in the mean shape. Instead of FESA, local
size differences are computed using a k-nearest neighbor mean distance ratio,
which proves the local size expansion due to the valley and the convex ”bump”
on the side of the premaxilla (see Figure 3.21(h)).

In agreement with published results, Figure 3.22 shows that the variability
of the BCLP group is much larger than the variability of the healthy population
and that these two subgroups are well separated by the score value related to
the second principal component. The effect of the second component in the
geometry of the palate is seen in the area of the lateral teeth line in the middle
section and in the valley between the maxilla and the premaxilla, as shown in
Figure 3.23.

Case study 9: Evaluation of a SARME procedure

The last case study of mesh shape variability analysis also focused on the shape
of the human palate. However, in this study the primary goal is to visualize the
effect of a surgically-assisted rapid maxillary expansion (SARME) procedure.
SARME is a solution for a medical condition called ”transverse maxillary
deficiency”, which occurs when the upper jaw is too short and narrow for the
jawbone, resulting in misalignment of the upper teeth arch with the lower
teeth arch. The condition causes esthetic and functional problems. SARME is
applied to young adult and adult patients who have already reached skeletal
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(a) (b)

Figure 3.23: Palatal shape analysis with a B-spline registration-based dense
correspondence model of a human palate: (a) magnitude of PC1 affecting a
palatal shape; (b) magnitude of PC2 affecting a palatal shape.

maturity. In practice, the surgery is based on fixing an appliance (a Hyrax
expander) to the middle of the upper teeth arch in the patient’s mouth. This
is bound to the first and the third molar and screws are then used to apply
lateral force while cutting the maxilla bone (osteotomy) horizontally above the
teeth roots and vertically behind the teeth arch. The arch is realigned to a
desired position in which the separated tissues grow together. After several
weeks the appliance is removed.

In the case study (Trefný et al., 2015), dental casts of 15 patients were
made before the surgery and after the appliance was removed. The size of
the sample was limited since the condition is relatively rare. The sample was
compared with a control group of 50 healthy palates (23 males and 27 females).
A TPS-based dense correspondence algorithm was used to evaluate palate
variability of the control group and pre- (SARME T1) and post-treatment
patients (SARME T2), while the statistical significance of differences between
pre-treatment and control groups and post-treatment and control groups were
tested (using a multivariate permutation test for mean equality).

Although the samples were relatively small, the results are rather conclu-
sive. Figure 3.24 shows that SARME patients have a much wider variabil-
ity than the control group. However, statistically significant differences were
proved only between the control group and SARME T1, not between the con-
trol group and SARME T2. One possible interpretation is that the SARME
procedure changed the shape of the palate to the extent that it could no longer
be distinguished from the palate of a healthy person. The arrows in Figure
3.24 unambiguously demonstrate shape changes favoring the control group in
all cases as a result of the SARME procedure. Figure 3.25 shows mean shapes
of the aforementioned sub-groups.
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Figure 3.24: A scatterplot of specimen scores in the first two principal com-
ponents of shape analysis from mixed SARME patients in both pre-, post-
treatment (T1 and T2) and control groups. Groups are approximated with
80% confidence ellipses.
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Figure 3.25: SARME pre- and post-treatment mean shapes compared to a
control sample mean shape computed using a TPS-based correspondence con-
struction algorithm: (a) SARME T1 mean shape (before surgery); (b) SARME
T2 mean shape (after removal of the corrective appliance); (c) control sample
mean shape.
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3.5 Mesh asymmetry analysis

In this section, methods used to assess bilateral asymmetry — the deviation
from ideal bilateral symmetry on mesh data — are presented. The importance
of symmetry in life sciences was already highlighted in the introductory chapter
(see Section 2.4).

In connection to non-landmark data, a couple of studies have been per-
formed recently which evaluate bilateral asymmetry in medical images. For
example, symmetry as an important feature of the human brain is a topic that
has been intensively studied in the past. In the modern era there have been
many attempts (e.g. by Fournier et al. (2011)) to analyze MRI images and
interpret brain asymmetry in terms of their connection to illnesses, functional
abilities and genetics.

However, there have not been many attempts at automatic analysis of
asymmetries in mesh data. One particular approach developed by Liu and
Palmer (2003), maps objects of interest onto a surrounding cylindrical surface.
In the reference cylindrical coordinate system, the corresponding symmetric
points are found with the help of manually placed landmarks. Asymmetry is
then deduced from these pairs. This approach obviously works only for simple
shapes that can be unambiguously projected onto a cylinder.

A different method by Ólafsdóttir et al. (2007) assumes the existence of
an ideally symmetric template and then maps each subject in the study onto
this template using B-spline-based non-rigid registration. Construction of the
ideal or, indeed, any symmetric template for a given group is no trivial task.
Constructing such a template requires a mid-sagittal plane, around which the
template needs to be bilaterally symmetrical.

Another approach suggested by Combes et al. (2008) constructs a mid-
sagittal plane using a modified EM algorithm (Combes and Prima, 2008) and
uses it to mirror the studied shapes. Asymmetry is then represented as the
distance between the corresponding points on the original and mirror shapes.
Correspondence is determined using non-rigid registration, bending the mirror
shape to the original.

In geometric morphometry, asymmetry has been analyzed on landmark
datasets (e.g. in Bookstein (1997); Schaefer et al. (2006)) by mirroring land-
mark configuration and reordering the landmarks so that the mirror and the
original can be realigned. The asymmetry is then defined as the difference
of the ideally superimposed mirror and the original. More importantly, the
approach decomposes the asymmetry, as has been traditionally studied in bi-
ological sciences (Van Valen, 1962; Palmer, 1994). The following presented
approach utilizes some of these ideas.

The method captures group mesh asymmetry and uses the concept of
decomposing the asymmetry into directional and fluctuating components
(Kraj́ıček et al., 2012). Concurrently, dense triangular meshes allow the asym-
metry to be expressed on a very localized level. Moreover, captured correspon-
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dences help to explore the variability of the asymmetry using statistical tools
such as PCA.

Before the local asymmetries can be compared in all meshes, they need to
be transformed into a common coordinate space. This is done by applying
a group-wise rigid landmark-based registration, specifically, the use of gener-
alized Procrustes superimposition. The meshes’ vertices are transformed the
same way as the landmarks in the Procrustes superimposition.

The next step is to recompute the meshes to the same number of vertices
and the same topology. The dense correspondence construction algorithm
based on TPS registration described in Section 3.3 is used.

At this point, the individual mesh asymmetry is computed as the differ-
ence between the mesh and its aligned mirror reflection. The result is a list
of directions for every vertex. If all vertices are moved by their respective
displacement, the mesh becomes ideally symmetric. The mirror mesh must be
constructed by negating one of the vertex coordinates; the same is done with
landmarks placed on the mesh.

The landmarks are then used to align the mirror mesh back to the original
mesh. In order to do that, the landmarks must be reordered, since they change
their homologous meaning after mirroring, e.g. some landmarks on the left
side of a bilaterally symmetric mesh become the landmarks on the right side
of the mirror mesh. These are known as paired landmarks; they swap their
positions with their mirror counterparts. The others non-paired landmarks are
not affected by mirroring (see Figure 3.26(a)).

After mirroring and landmark reordering, the mirror meshes are realigned
by ordinary Procrustes superimposition (Figure 3.26(b)). Any non-rigid regis-
tration procedure can be used to deform the mirror meshes in order to get them
closer to the original ones and to enable subsequent correspondence searching.
Such a procedure may be different to the registration method used for group
correspondences. The impact of the chosen procedure is discussed further be-
low. The closest points on the mirror meshes to each vertex of the original
correspondence meshes are found using search acceleration structures. Again,
a k-d tree is used for this purpose.

The vectors defined by the difference between the original mesh vertices
and their closest mirror mesh points are the local measures of the asymmetry.
Completely symmetrical shapes have identical mirrors and, when aligned, the
distances between the original mesh vertices and the closest points are zero. If
asymmetries occur on the mesh, the difference between the left and the right
part of the mesh appears and the distance between the part of the mesh and its
mirrored counterpart becomes non-zero. Furthermore, the associated vector
holds the information about the direction of the asymmetry, i.e. how the part
of the mesh is moved to form the asymmetry. This information is exhibited on
either side of a bilaterally symmetrical mesh in opposite directions. Therefore,
it is not possible to determine which part of the mesh originates from a sym-
metric shape and which is altered, assuming that this is the way the analyzed



CHAPTER 3. TRIANGULAR MESH ANALYSIS 88
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Figure 3.26: Principles of individual mesh asymmetry analysis: (a) the original
mesh and mirror mesh with corresponding paired landmarks; (b) the aligned
original mesh and mirror mesh; (c) individual asymmetry (scale in millime-
ters).

asymmetric shape was created. From this point of view, bilateral asymmetry
is a symmetric feature. The vector field that represents the displacement of a
point on a mesh, from where it would lie if the mesh were ideally symmetric,
is called individual asymmetry.

The aforementioned vector field on the original mesh is visualized with
color-coded signed distances (see Figure 3.26(c)). The sign is the same as
that of the dot product of the mesh normal and the vector of the individual
asymmetry in that point. The color images can be simply interpreted in the
following way: red areas lie in front of the corresponding mirrored counterpart
which means that they are larger than the corresponding paired counterpart,
while blue areas are smaller and lie behind the aligned mirrored counterpart.
The areas that are close to green are not significantly larger or smaller. This
interpretation does not include any information about the direction of the
asymmetry. This sort of visualization is also known as clearance vector map-
ping and is useful in quantifying the facial surface asymmetries in the areas
where anthropometric landmarks are scarce. The volume of detected asym-
metries is potentially significant in patients who have their unilateral facial
deficiencies corrected using injections or implants (O’Grady and Antonyshyn,
1999).

All individual asymmetries are already aligned group-wise; therefore, direc-
tional asymmetry is computed as the average of all corresponding individual
asymmetry vectors. The lengths of the respective individual asymmetry vec-
tors are the same for all the meshes and they correspond to one another for
every element since the meshes are reconstructed to have the same topology.
The directional asymmetry is visualized in the same way as the individual
asymmetry (see Figure 3.28(a)).

Fluctuating asymmetry FAi is computed as the difference between indi-
vidual asymmetry IAi and directional asymmetry DA. Its visualization is also
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Figure 3.27: Schematics of statistical mesh asymmetry analysis.

based on color-coded distances without considering the sign of direction, as
performed for individual and directional asymmetry above. As stated in Sec-
tion 2.4, the point of interest is the overall magnitude of the fluctuating asym-
metry, which is computed as the sum of the squared distances of the fluctuating
asymmetry vectors. It can be compared across the group or, if normalized by
the number of vectors, between groups just as effectively. Figure 3.27 shows
explanatory schematics of mesh asymmetry analysis.

In order to prove that the directional asymmetry reflects the global trend
of the group and is not the result of randomness in the group, it must be
tested statistically. A standard t-test is performed on the signed lengths of
corresponding individual asymmetry vectors. The significance map can then
also be visualized (see Figure 3.28(b)). This way of interpretation is especially
important for specific research in sub-fields of life sciences.

Apart from the directional asymmetry that reflects the overall asymmetry
trend in the sample, the asymmetry can be decomposed into orthogonal com-
ponents and analyzed in a similar way to the variability of the mesh shape, as
discussed above. This is especially useful both when analyzing samples of two
populations together and when searching for differences in their asymmetry
trends. The approach is based on PCA of individual asymmetry vectors and
construction of linear asymmetry models, i.e.

IAi = DA+
n∑

j=1

αi,jAj
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(a) (b) (c)

Figure 3.28: An example of shape asymmetry analysis based on a dense cor-
respondence model of a human face: (a) directional asymmetry with a general
trend in the sample; (b) significance map (p-values); (c) the first component
of asymmetry, i.e. an independent part of the asymmetry with the highest
variance.

where αi is the asymmetry score vector of the particular specimen. Individual
asymmetry components (modes of variation) demonstrate the variability of
the asymmetry in the sample, similar to shape variability components (see an
example of a component in Figure 3.28(c)). For visualization purposes, the
shape of the specimen can be reconstructed

Ii = Si + IAi

where Si is the individual symmetrical shape, which can be simply replaced
for visual asymmetry inspection by symmetrical mean shape S̄.

The direction of the individual asymmetry vector is another important
property that should be taken into account. The local orientation difference
asymmetry measure is defined as a cosine of the angle between the correspond-
ing individual asymmetry vectors. The lengths of the individual asymmetry
vectors and the local orientation differences of the asymmetry measures can be
summarized in terms of total asymmetry (TA) and total orientation asymmetry
(TOA).

TA =
1

|C|

|C|∑

i=1

‖~ai‖2

TOA =
1

|C|

|C|∑

i=1

~ni · ~mi

The approach described above gives a generic idea of how to extract infor-
mation from asymmetries in a group of samples. The results can be improved
using different registration procedures for group normalization as well as for
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Figure 3.29: Comparison of correspondence mapping deviations using various
registration methods: (a) landmark-based rigid registration; (b) TPS-based
original mesh-to-mirror fitting; (c) TPS-based original mesh and mirror mesh-
to-symmetrized landmark configuration fitting; (d) B-spline-based non-rigid
registration.

individual asymmetry computation. Coherent point drift has been used with
satisfactory results by Dupej et al. (2013). The main advantage in this case is
that no user-defined landmark points are needed for the registration, which is
one step closer to automatic analysis.

Further, the suitability of the registration procedure and correspondence
matching between the original mesh and the mirror mesh is evaluated by com-
paring four approaches: rigid landmark-based alignment, TPS-based fitting of
the mirror to the original mesh, TPS-based fitting of both the mirror and the
original mesh to a symmetrized landmark configuration, and B-spline-based
non-rigid registration (see Section 3.2.4). Symmetry is an important trait
when observed in a color map of corresponding point distances. Although
the method is not perfect due to the asymmetric nature of the specific mesh
topology, the main features of the symmetry tend to be generally preserved
because small features on one side appear as larger features on the other side
and vice versa.

An individual asymmetry assessed by the four above-mentioned methods
is visualized in Figure 3.29. The asymmetry of the specimen captured by the
methods is generally the same. However, the difference is in the details and the
magnitude as well as in the direction, of which the latter, although not visible,
is the most significantly influenced by the correspondence mapping associated
with the registration method.

In order to determine the quality of found correspondences with respect
to the bilateral symmetry, the correspondence symmetry error metric must be
defined.

ErrSym =
∑

A∈P

‖AP − t(l(A′))P‖2 (3.20)

where P is a mesh and X is its mirrored copy rigidly aligned with P . P ′ and
X ′ are the same meshes non-rigidly deformed to fit each other. A is a point on
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Figure 3.30: An explanation of the correspondence symmetry error metric:
(a) a diagram showing the principle of symmetry error metric computation;
(b) an example of an asymmetrical sheet and its mirror; (c) an asymmetry
error computed using correspondence mapping between rigidly aligned shapes
(left) and between non-rigidly tightly fitted shapes with B-spline registration
(right).

P ′. AP is a corresponding point on the original mesh P . Function l(.) finds the
closest point on X ′ to the argument. Function t(.) finds a topologically iden-
tical point on P ′ to the argument via an equal triangle index and barycentric
coordinates of the argument in X ′. A′ = t(l(A)) is a point on the other side of
the mesh P ′. t(l(A′))P is a point corresponding to A′ on the other side, which
is found by the procedure applied twice to A. If a symmetric point is found
through nearest mapping, the distance between AP and t(l(A′))P is zero. For
a better explanation, see Figure 3.30(a). The rationale of the measure is that
the points keep their homological meaning, i.e. the point on the mirror mesh
represents the same feature and its correspondence on the other side of the
mesh should be identical to the correspondence of that point on the original
mesh.

Figures 3.30(b) and 3.30(c) also show a difference in the symmetry error
metric of correspondences found after rigid alignment and after non-rigid fit-
ting on artificial shapes. It seems that reliable asymmetry evaluation is related
to reliable non-rigid registration, although it might not be true in the case of
an actual application to face meshes. According to Figure 3.29, the asymme-
try captured after rigid alignment and non-rigid fitting using B-spline-based
registration is almost identical. However, as will be shown further, the value of
the correspondence symmetry error metric is not very convincing when using
B-spline-based non-rigid registration as is shown further. It appears that the
mirror mesh is fitted tightly to the original mesh. However, symmetric points
found by projecting the fitted mirror mesh onto the original mesh are shifted
locally along the surface, which means that the total correspondence symmetry
error metric is higher, even higher than in the case of TPS non-rigid registra-
tion. These results depend heavily on the various parameters that B-spline
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specimen
#

GPA TPS
symmetric

TPS
B-spline

symmetric
B-spline

1 0.37 0.69 0.51 0.53 0.16
2 0.35 0.36 0.28 0.46 0.16
3 0.38 0.47 0.37 0.44 0.15
4 0.38 1.04 0.76 0.46 0.20
5 0.31 0.72 0.62 0.41 0.19
6 0.38 0.49 0.41 0.53 0.15
7 0.42 0.46 0.46 0.55 0.14
8 0.36 0.42 0.33 0.51 0.16
9 0.30 0.41 0.39 0.48 0.13
10 0.50 0.73 0.58 0.65 0.16

average 0.37 0.58 0.47 0.50 0.16
std. dev. 0.06 0.21 0.15 0.07 0.02

Table 3.7: Mean correspondence symmetry error metric (ErrSym) acquired
using various registration methods, reflecting the reliability of found corre-
spondences with respect to symmetry.

registration is controlled by:

• Regularization — higher regularization in a mirror-to-original registra-
tion process causes sub-optimal fitting, but the symmetry error metric is
not significantly worse. However, it is not better than rigid registration
alone.

• Normal direction weighting — high normal direction weighting influence
(Equation 3.8) causes the moving mirror mesh to fit to the original mesh
in a perpendicular direction. It limits sliding along the mesh surface,
which causes higher correspondence asymmetry.

• Peripheral area weighting — the total symmetry error metric is biased
by the fact that the mesh does not cover the same amount of area on
both sides of the median plane. This factor can be reduced by weighting
the samples in non-rigid registration by their initial distance after rigid
pre-alignment.

• Minimization of the correspondence symmetry error metric — the B-
spline framework allows the symmetry error metric to be included in the
minimized cost function. Registration simultaneously minimizes symme-
try error (Equation 3.20) as well as alignment error (Equation 3.1).

Ten face meshes were randomly chosen and all four registration methods
were used to assess their individual asymmetries. The correspondence symme-
try error metric and the respective alignment error, i.e. the overall distance
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specimen
#

GPA TPS
symmetric

TPS
B-spline

symmetric
B-spline

1 0.89 1.23 1.23 0.59 0.27
2 1.21 1.04 1.04 0.65 0.21
3 1.22 1.22 1.22 0.68 0.21
4 1.17 1.62 1.63 0.59 0.26
5 1.19 1.99 1.98 0.57 0.25
6 1.12 1.13 1.13 0.63 0.20
7 1.14 1.64 1.64 0.62 0.18
8 0.92 0.87 0.87 0.53 0.23
9 0.86 1.53 1.52 0.59 0.21
10 1.18 1.44 1.43 0.68 0.19

average 1.09 1.37 1.37 0.61 0.22
std. dev. 0.14 0.34 0.33 0.05 0.03

Table 3.8: Mean alignment error measure (Err) using various registration
methods, reflecting the reliability of found correspondences with respect to
the distance from where they are found after registration.

on which correspondences are found by the nearest neighbor principle, were
evaluated. The results are shown in Table 3.7 and Table 3.8. For B-spline
registration, normal weight wn is set equal to 0.8, regularization weight wr

is set equal to 0 and all samples of the mirror mesh further than 2mm from
the original mesh, since initial rigid registration does not contribute to the
registration criterion. The fifth experiment involves B-spline registration with
a minimization of the correspondence symmetry error, which outperforms all
previous methods in measured characteristics.

An example of symmetry error metric distribution over a face mesh, cap-
tured by various registration methods, is shown in Figure 3.31

In conclusion, correspondence between the mesh and its aligned mirror
version is an effective tool for assessing asymmetry. However, in particular
cases where the deviation from the symmetry is not extreme and the object
of interest contains enough paired feature points (manually or automatically
found), correspondences found by simple rigid alignment and nearest neigh-
bor projection can be as good as, or even better than correspondences found
using a sophisticated non-rigid registration procedure. At any rate, either
the reliability of paired correspondences should be evaluated by the symmetry
error metric before interpreting asymmetry results, or a registration method
which directly optimizes the measure should be used. A surprising side effect
of B-spline-based registration, the one which minimizes the symmetry error
metric (ErrSym), is the better minimization of the alignement error (Err),
i.e. fitting of the symmetric features improves the registration itself.
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(a) (b) (c)

(d) (e)

Figure 3.31: Comparison of correspondence symmetry error metric distribu-
tion using various matching methods: (a) landmark-based rigid registration;
(b) TPS-based original mesh-to-mirror fitting; (c) TPS-based original mesh
and mirror mesh-to-symmetrized landmark configuration fitting; (d) B-spline-
based non-rigid registration; (e) B-spline-based non-rigid registration with
minimization of the symmetry error metric.

Case study 10: Face asymmetry of UCLP patients

One particular example of mesh asymmetry assesment was presented in a
study that evaluated the difference between unilateral cleft lip and palate pa-
tients (several years after treatment therapy) and a normal population sample
(Cagáňová et al., 2014). In Case study 8, the significance of the cleft lip and
palate condition was explained in terms of how it affects many aspects of hu-
man life, both physiologically (how it influences the shape of the face and
scarring up to the upper lip) and psychologically.

The study was based on facial scans of 12 children with complete UCLP
at 5.5 years. All children had undergone neonatal cheiloplasty in the first
week of their postnatal life. This surgical procedure is a promising technique,
delivering very impressive immediate esthetic results along with many other
benefits. The scans of the patient group were compared with a control group
of 12 healthy children with an average mean age of 6.5 years.

The mesh variability analysis (see Section 3.4.1) of these two groups does
not reveal significant differences, which may be attributed to the small size of
the sample. However, the difference in the asymmetry score from these two
samples appears to be statistically significant, after a permutation multivariate
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Figure 3.32: Face asymmetry in patients with UCLP: directional asymmetry of
a healthy sample (left); directional asymmetry of a patient with UCLP (right).

test for means equality is performed (p = 0.035). In Figure 3.32, it is clear
that the directional asymmetry is much stronger in UCLP patients than in the
healthy sample.

3.6 Paired and longitudinal analysis

Extending the idea of searching for correspondences between related meshes
allows various phenomena to be analyzed. When analyzed quantitatively, this
offers a great opportunity to uncover behavior that would otherwise be un-
observable in a single individual. One such example, analysis of the SARME
procedure, was introduced in Case study 9. However, in that case, quanti-
tative analysis was performed without searching for correspondences between
the patient’s shape before and after the procedure.

Paired analysis is defined as the quantitative analysis of the transition
between the shape configuration of one shape at time t1 and time t2. A question
of interest might be whether there are statistically significant differences in
transitions between various groups. For example, is there a difference in the
growth of male and female specimens over a period of one year, given their
shapes are captured at the beginning and end of the defined period?

There are generally two types of scenarios for a correspondence search.
The first is inter-individual correspondence matching, applied to the tasks in
Section 3.4.1. This does not assume any relation or similarity between the two
objects that are to be registered, not even in size or shape. Therefore, less
precise correspondence matching can be expected because some parts of the
shape might be missing in one shape of a pair or the other. This depends on the
likelihood of similarity and regularization weights and landmark constraints (if
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12 years 13 years 14 years 15 years

Figure 3.33: An example of longitudinal data — annual facial scans.

present) being set.
The second scenario is intra-individual correspondence matching, which as-

sumes certain relations or similarities, at least in the parts of the shapes that
overlap. It is also more likely for far greater detail to be captured since the an-
alyzed group differences consist of many intra-individual specimen differences,
as opposed to differences between two mean groups. Here, the registration
algorithm should be chosen and attuned differently than for inter-individual
correspondences. Intra-individual correspondence matching is the center of
interest of this section.

To these methods of shape variability analysis (dense correspondence,
PCA), longitudinal data can also be included (Kraj́ıček et al., 2013). Lon-
gitudinal data are multiple measurements of a single specimen collected in
defined intervals over a period of time. An example of such data is shown in
Figure 3.33. The goal is to analyze transitions from one stage of j-th specimen
X1

j to another stage of specimen X2
j . The first step of the analysis is to find

correspondences across the first stages of the two for all the specimens in the
sample. The base mesh is chosen arbitrarily. At this point, the mean mesh of
the first stages X1 can also be computed. In the second step, correspondences
between the two stages of each specimen are found individually, choosing the
correspondence mesh (a mesh with common topology) found in the first step as
the base mesh. Correspondences can be found using an arbitrary registration
method, but this choice significantly influences the analysis. Kraj́ıček et al.
(2013) have used TPS registration-based correspondences.

Now the matrixMc with n rows and k×3 columns can be defined, where n
is the number of specimens in the sample and k is the number of vertices that
are found during the correspondence search in the first step. The j-th row and
(i× 3)-th, (i× 3 + 1)-th, (i× 3 + 2)-th column of the matrix is a shift vector
(dx, dy, dz) representing a shift of i-th vertex of the j-th specimen toward its
second stage found during the second step (see Figure 3.34).

Matrix Mc captures complete information about the stage changes in the
sample. The column average of Mc can be computed to get the average stage
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Figure 3.34: The difference between analyses of shape variability and analyses
of stage changes and corresponding matrices.

change Xc or to study individual vertex shift variances, although this would
be too much information to interpret. For this reason, PCA is applied to the
matrix Mc to obtain principal components vci of the changes manifested in
the sample. These principal stage changes can be used to model a particular
specimen’s second stage

X2
j =X1

j +Xc +
n∑

i=1

αc
j,iv

c
i

An approximation of the second stage can be created using a pre-computed
mean shape of the first stage

X̃2
j =X1 +Xc +

n∑

i=1

αc
j,iv

c
i

The coefficients αc
j,i have a similar meaning to si,j. In Equation 3.18, they

represent coordinates of the specimen within a space of stage changes. The
space is oriented so that the first coordinates allow the largest orthogonal
differences to be captured.

Case study 11: Development of sexual dimorphism in adolescent
face morphology

The method described above was used by Kraj́ıček et al. (2013) to analyze
a longitudinal collection of human faces. In parallel, the same data were
analyzed by Koudelová et al. (2015) with an emphasis on searching for sexual
dimorphism in forms (shape representation with sizes preserved). The faces
were collected between 2009 and 2012 by annually scanning approximately 60
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children in two schools in Prague and Kladno. The scanning started when
the children were roughly about 12 years of age and continued up until the
ages of 13, 14 and 15 years (see Figure 3.33). The scanning was performed in
order to capture the continuous development and growth of the sample group.
Data acquisition was performed with a Vectra 3D scanner (see Figure 3.1(b))
and manually pre-processed using 3D editing software to remove any scanning
artifacts and to reduce the mesh density to a reasonable number of vertices per
mesh for the analysis. The final meshes contained about 20k vertices. Sets of
nine landmarks were placed on each mesh by an expert. The locations of the
landmarks are also shown in Figure 2.2(b). The goal of the study was to find
out at what point and in what way the shapes of the children’s faces would
start to exhibit sexually dimorphic traits.

In the first experiment, all age groups are put together and a shape variabil-
ity analysis is performed by searching for correspondences across the combined
sample and by subsequently applying PCA to the correspondences. Plotting
a projection of the shape space (see Figure 3.35), which represents the scores
of the first two principal components, records changes within age groups and
determines whether there are any common features that they follow while ag-
ing. As shown in Figure 3.35(a), the centroid of the age groups slides towards
negative parts of x-axes and moderately towards negative parts of y-axes with
increasing age. What is not so visible is the slight increase in the size of the age
group as the subjects grow older. This observation is consistent with the idea
that as the specimen has more time to grow it has more time to reach a wider
variety of shape configurations. Similar behavior is shown in the plot colored
according to sex (Figure 3.35(b)). The male group exhibits larger variability
because the male specimens are significantly larger in general and also have a
better chance of reaching the larger part of the shape space than the female
group. The groups move away from each other at the ends of the ellipses,
which represent the shapes of older faces. In other words, growing differences
are observable between sexes in this longitudinal population sample.

Equation 3.18 can be used to generate shapes that correspond to arbitrary
points in the shape space. The shapes at extrema of x- and y-axes of the plot
are generated and shown in Figure 3.35 in order to give a better understanding
of the features that are represented by principal components. The features are
complex and manifest themselves in various places in the mesh and are best
seen on face profiles. Figure 3.36(a) shows that the first principal component
is connected with the size of the nose and the size of the chin. The negative
direction of PC1 is related to the larger nose and larger chin, a feature related
to adult face shape, while the positive direction represents the more child-
looking features. The second principal component (Figure 3.36(b)) is also
connected with the size of the nose and additionally with the shape of the
forehead. The negative PC2 direction represents a receding forehead which
is a strong masculine feature, while the positive direction is more advanced
which represents a more feminine feature.
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Figure 3.35: Shape variability of a combined dataset represented by the first
two components: (a) grouped by age; (b) grouped by sex. The 50% ellipses
approximate the shape of the population.
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(a) (b)

Figure 3.36: Interpretation of shape features represented by the first two prin-
cipal components of shape variability: (a) change with increasing PC1; (b)
change with increasing PC2.

Another visible feature in Figures 3.36(a) and 3.36(b) is that the PC1 and
PC2 control the overall width of the face: PC1 from a masculine width to a
narrow width and PC2 from a thin oval, almost triangular to a wide round
width. To conclude, interpreting the features is no simple task since individual
PCs cannot be easily identified by a single anatomical feature. To that end, it
could be useful to rate particular anatomical features in order to try to find a
specific basis in the shape space.

A certain trend is found in the face shape changes in aging children, ei-
ther identified as male or female. In order to prove in which age group the
differences become statistically significant, an individual analysis is performed
for each age group and the resulting PCA scores are tested with a multivari-
ate permutation test for group equality between male and female subgroups.
According to these results (shown in Table 3.9), the differences become statis-
tically significant at the age of 15.

The previous experiment ignored the fact that the age groups were actually
longitudinal data. Neither did it exploit the relation between the specimen
stages contained in the groups. Therefore, in the second experiment, the
analysis of stage changes is performed as described above. Figure 3.37(a)
shows projections of the stage change space for 12 year-old to 13 year-old
children. Although the plot is difficult to interpret, a trend is observable since
the groups do not overlie it in the most ideal way. The sample size is also rather
small so the difference in stage changes between the sexes is not statistically
significant (see Table 3.10).
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age
group

#
specimens

#
PCs

p-value

12 32 6 0.3245
13 32 6 0.6215
14 32 5 0.1425
15 34 5 0.0380*

Table 3.9: Statistical significance of shape differences between males and fe-
males in various age groups from combined dataset analysis.

stage
change

#
specimens

#
PCs

p-value

12-13 32 5 0.0961
12-14 32 5 0.0328*
12-15 32 5 0.0005****
13-14 32 5 0.0536
13-15 29 6 0.0145*
14-15 29 6 0.4496

Table 3.10: Statistical significance of differences between males and females in
various stage change groups.

On the other hand, Figure 3.37(b), shows visibly separated groups, partic-
ularly along the x-axis. The first principal component can be interpreted in a
similar way to shape variability analysis, i.e. it is connected with overall face
width (see Figure 3.38).

Unfortunately, the projected data do not seem to be normally distributed
and there are outliers, especially along the y-axis. Such results manifested
in scatterplots often indicate errors in the data (e.g. switched landmarks,
misplaced landmarks, etc.). Figure 3.38(b) shows that the y-axis is connected
with shape changes along the jawbone towards the ears. In this case, the prob-
lem stemmed from improperly manually pre-processed data, i.e. the border
of the meshes did not go through the same anatomical area in all the meshes.
This may have been caused by excessive facial hair which the scanner failed
to capture.

However, this particular error is isolated in the second principal component.
The third principal component is the most prominent in the forehead area (see
Figure 3.39(b)). Statistically significant differences between males and females
were already found in the changes between the 12- and 14 year-old groups (see
Table 3.10). This observation indicates that growth in this period is different
for boys and girls.
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Figure 3.37: Variability of changes between stages: (a) between 12 and 13
years of age; (b) between 12 and 15 years of age. The 50% confidence ellipses
approximate the shape of the population.
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(a) (b)

Figure 3.38: Interpretation of paired analysis for stage changes between 12- and
15-year olds. (a) Increasing PC1 is connected with overall widening/narrowing
of the face. (b) Increasing PC2 is connected with sexual differences, but also
with a posterior jaw area change caused by improperly trimmed borders of the
meshes.

(a) (b) (c)

Figure 3.39: Color-coded principal components influence magnitudes of stage
changes between 12- and 15 year-olds: (a) PC1; (b) PC2; (c) PC3 — represent-
ing 20.13%, 15.60% and 10.30% in the variability of stage changes, respectively.
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3.7 Missing data computation

A statistical shape model collects general information about the shape of a
particular class of objects from the training sample. This information can
be diverted back to recover the shape of an actual specimen based on much
sparser or incomplete geometry. In other words, parameters of the model can
be sought to optimize the relation to available data, similar to the computation
of missing landmarks introduced in Section 2.3. An interesting and beneficial
application of this approach is the approximation of missing geometry. The
accuracy of this type of approximation is guaranteed by the amount and quality
of the shapes the model is based on, as well as on the amount of the missing
area.

Approximation of missing geometry could be used in various situations.
For instance, imperfect scanning procedures might cause part of the mesh to
be damaged. One limitation of scanning technology is that it does not allow
parts of the object with particular material and structural properties to be
captured, e.g. facial hair causes difficulty for laser as well as photogrammetric
surface scanners. Facial scans of people with moustaches, beards or bushy
eyebrows contain holes or very rough geometry. In other cases, parts of the
geometry can be absent simply because the object of interest is incomplete
at the time of scanning. However, it would be interesting to see how the
object might look based on an approximation using a large sample of objects
of the same kind. There is a large number of potential applications in the
fields of forensic science and biomedicine connected with shape prediction and
reconstruction.

Various methods deal with statistical modeling of shape to satisfy external
conditions. For example, Blanz and Vetter (1999) attempted to reconstruct a
3D shape from a single two-dimensional image by fitting a statistical model
of a textured triangular mesh to an imaginary one. This was achieved while
optimizing the texture, pose and shape parameters as well as material and
lighting properties of an illumination model (i.e. ambient, diffuse, specular
reflection constants, light direction and intensities). To handle the computa-
tional complexity, the authors chose stochastic gradient descent to optimize
the cost function, relating the rendered model to the input image. However,
the study did not evaluate the precision of the reconstructed geometry. The
radiometric properties of the actual object, along with the environment and
the illumination model of choice (a Phong illumination model in this case)
made it more difficult to precisely approximate the exact shape. Incorpora-
tion of multiple two-dimensional views into the computation can also improve
approximation of the shape.

Blanz et al. (2004) solved fitting of the statistical model to the 3D mesh
in order to reconstruct the shape, even with the missing parts. The approach
assumes that there is a correspondence between the model y vertices and the
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present vertices of the target mesh x that are to be fitted.

y = v̄ +
n∑

i=0

siσivi

Parameters s = {si}ni=0 of the model are searched for in order to minimize
cost function E. Vectors vi are normalized eigenvectors and σi is a variance of
the individual coefficient for the members of the training set. These variances
are equal to corresponding eigenvalues. As mentioned above, eigenvectors are
ordered with respect to the amount of information they represent, which is
equal to the variance and magnitude of the respective coefficients, i.e. the
coefficients of the first components are higher in value and variation then the
coefficients with higher indices. To normalize the space of the coefficient unit,
eigenvectors must be scaled by respective variances.

E = ‖SV s+ v̄ − x‖2 (3.21)

= ‖Qs+ v̄ − x‖2

where V is a matrix with columns representing components of a linear model
(eigenvectors) and S is a diagonal matrix with variance, i.e. Si,i = σi and
Q = SV . Minimization of E is achieved by solving the following equation

0 = ∇E = 2QTQs− 2QT (v̄ − x)

2QTQs = 2QT (v̄ − x) (3.22)

Since V is a matrix with orthonormal columns and V TV = I, the situation
simplifies to

s = (V S)T (v̄ − x)

Moreover, vector s computed this way has a useful property. Although s is one
of the possible solutions to equation 3.22, it is the solution that has minimal
norm ‖s‖, which means that it is as close to average as possible, i.e. it has
maximum prior probability.

Such a solution overcompensates in modeling the data at the expense of
the missing parts, which might not benefit from the generalizing property and
thus the approximation might not be as successful as expected. Blanz et al.
(2004) improved the model by adding a regularization term to cost function
3.21.

E = ‖Qs+ v̄ − x‖2 + η‖s‖2

where ‖s‖2 is the Mahalanobis distance of the configuration from the average.
The amount of regularization is controlled by parameter η, even though the
solution of 3.22 is still rather simple

s = (S + ηS−1)−1V T (v̄ − x) = S∗V T (v̄ − x)

S∗
i,j =

{ σi

σ2

i +η
i = j

0 otherwise
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Another problem of fitting the model to an arbitrary mesh is that the
model only embodies geometrical variation in shape, but the particular shape
representation also includes pose properties, i.e. translation, orientation and
scale in space. Only the shape variation needs to be modeled, not the shape
pose using column vectors of V . The second improvement by Blanz et al.
(2004) was to include additional terms for y that describe pose information of
the particular shape. These terms represent translation, rotation and scale in
a natural way without breaking the linearity of E.

y = v̄ +
n∑

i=1

(λsi)vi + (1− λ)v̄ +

stxvtx + styvty + stzvtz + sγvγ + sθvθ + sφvφ

Translation is modeled by vtx, vty, vtz allowing arbitrary shifts of y along the
axes.

vtx = (1, 0, 0, 1, 0, 0, . . . , 1, 0, 0)T

vty = (0, 1, 0, 0, 1, 0, . . . , 0, 1, 0)T

vtz = (0, 0, 1, 0, 0, 1, . . . , 0, 0, 1)T

Scaling is allowed by multiplying the model with scaling factor λ ≈ 1 which
is equivalent to adding 1 − λ times the mean shape v̄ and obtaining scaled
coefficients λsi. Rotation compensation for small angles is estimated by adding
vectors that approximate multiplication by general rotation matrix R

R = RγRθRφ =



cγcθ − sγsφsθ −sγcφ cγsθ + sγsφcθ
sγcθ − cγsφsθ cγcφ sγsθ − cγsφcθ
cφsθ sφ cφcθ


 ≈




1 −sγ sθ
sγ 1 −sφ
sθ sφ 1




where sγ = sin(γ), cγ = cos(γ), etc. Using a simplified rotation matrix, the
vector rotation can be expressed as a linear combination of four vectors

R



x
y
z


 ≈ sin γ



−y
x
0


+ sin θ




0
−z
y


+ sinφ




z
0
−x


+



x
y
z




The operation can be applied to the whole shape vector v̄

Rvv̄ = sγvγ + sθvθ + sφvφ + v̄

vγ = (−ȳ1, x̄1, 0,−ȳ2, x̄2, 0, . . .)T
vθ = (0,−z̄1, ȳ1, 0,−z̄2, ȳ2, . . .)T
vφ = (z̄1, 0,−x̄1, z̄2, 0,−x̄2, . . .)T

The method described above assumes that there is an ideal point-to-point
correspondence as an input. Blanz et al. (2004) applied the method to compute
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missing parts of a tooth crown while using an ad-hoc registration procedure.
The algorithm works with manually placed landmarks on a two-dimensional
height map in two subsequent refinement passes. The study evaluated RMS of
the reconstructed mesh (43% of the missing area) and original surface, which
was approximately 100 µm on shapes that were 1 cm in diameter, i.e. 1%
relative error.

Mueller et al. (2011) presented a very interesting application of the above
model-from-photograph approach. The issue presented in the paper is a com-
putation of the shape and texture of a part of the human face for use in the
creation of a natural-looking prosthetic appliance for a patient after a complete
rhinectomy and resection of a large section of the facial area. As an input, the
authors used a database of 200 3D facial scans, a photograph of the patient
before the illness affected his face, and a 3D scan of his current face.

Another application of surface statistical modeling is face recognition
framework presented by Bustard and Nixon (2010). Apart from face geometry,
the authors included ear geometry as well because the ear is a very complex
feature and differs from specimen to specimen. Therefore, it is able to increase
the classification success rate significantly. The proposed framework also in-
corporated a number of manually placed landmarks, as well as initial rigid
registration and optimization-based fitting.

Model fitting

A new algorithm presented here further combines the useful points from all
the mentioned approaches. The goal is to use a statistical model constructed
from a set of faces using non-rigid B-spline registration and to fit it to the
mesh with missing parts. The main difference to the approach by Blanz and
Vetter (1999) and Blanz et al. (2004) is that the algorithm does not construct
correspondences prior to the fitting of the model. Instead, the model is opti-
mized to fit the data while correspondences are computed every time they are
needed for the evaluation of the minimized cost function.

E(s) =
∑

i

w(‖ys

i − xi‖)((ys

i − xi) · n(xi))
2 + η‖s‖2 (3.23)

ys = v̄ +
∑

(λsi)vi + (1− λ)v̄ +

stxvtx + styvty + stzvtz + sγvγ + sθvθ + sφvφ

Points xi corresponding to points y
s

i of the model are searched for based on the
nearest neighbor principle with the use of acceleration and approximation data
structures described in Section 3.2.4 [page 52], namely the k-d tree, octree, grid
cache, tri-linear interpolation and extrapolation outside of the grid cache.

The pose optimization of E with respect to t = {stx, sty, stz, λ, sγ, sθ, sφ}
is optional. It depends on the possibility and accuracy of pre-registration, by
using landmarks or other variants of rigid registration of partially missing data
to a model mean shape.
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Figure 3.40: The model-fitting weighting function distinguishes correspon-
dence from the missing geometry.

The weight of a particular point depends on three criteria. The first is the
squared distance between model point ys

i and nearest neighbor xi.
The second criterion is the distance weighting function w which should can-

cel out points that are too far to be considered as corresponding, or which are
more likely to be missing in the modeled surface mesh. The specific function
w used in the computation is as follows

w(r) =
1

1 + exp 4(r − t)
where parameter t approximately reflects a distance, beyond which the cor-
respondence is discarded and discontinued in order to attract model vertices.
Figure 3.7 shows the behavior of the suggested weighting function for various
values of parameter t.

The third criterion is normal weighting, i.e the squared cosine of an angle
between the line segment connecting ys

i and xi and the normal of the surface
at point xi. The rationale behind the dot product is that the points are more
attracted to the corresponding points on the surface of the modeled mesh in
a perpendicular direction to the surface than in a direction parallel to the
surface. Figure 3.41 shows how distance weighting and a normal-weighting
influence model fitting in a particular example.

The last improvement is multi-stage fitting. The idea of fitting a PCA
model to the data is based on preferring the first few components while damp-
ing the higher order components, since the first components represent more
general shape features and the last components model noise. This is partially
done by scaling eigenvectors vi by respective eigenvalues. However, the op-
timization procedure can still use noise components to improve the value of
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(a) (b) (c)

Figure 3.41: Effects of cost function components on model-fitting results dis-
played as a deviation of the modeled mesh and the original: (a) no normal
and distance weighting; (b) distance weighting only (t=8); (c) distance and
normal weighting in a single optimization stage.
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Figure 3.42: The model components’ amount of variability in the face dataset.
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Algorithm 6: Optimization based missing geometry model fitting

Input : model components V
mean shape v̄, mean shape landmarks k
missing data mesh x, missing data mesh landmarks l
number of components per level c

Output: fitted model y
begin

pre-align x with v̄ (e.g. with use of landmarks)
initialize s and t with zeros
for i← 1 to number of levels do

s, t← Optimize Equation 3.23 initialized by s, t with respect to
s1, . . . , sc[i] and t

end
y = v̄ + λV sT + Vtt

T

end

the cost function. The optimization can be divided into multiple phases (2
or 3), in which the optimization procedure converges with a limited number
of model components which are increased in a subsequent phase. A number
of phases and a number of components used in each phase can be determined
experimentally. A certain estimate can be made as to the variability distri-
bution on model components. Figure 3.7 shows such a distribution for the
face dataset. The multi-stage optimization of the PCA model is analogous to
the multiresolution approach used in B-spline registration. Similarly, it could
speed up the convergence as well as lower the chance of getting stuck in local
minima caused by the overfitting of noise components.

For model optimization, local numerical optimization by L-BFGS is used,
which requires computation of partial derivatives of E with respect to s and t.
Due to nearest neighbor correspondences constructed differently for different
values of s, E is not strictly continuous. However, for properly pre-aligned
missing data meshes and multi-phase convergence, only a small area of the
parameters is searched with low probability of large discontinuities. Partial
derivatives are computed numerically by central differences, but an analytical
solution is still possible. An overview of fitting the model to the missing mesh
data is shown in Algorithm 6.

After the model is fitted to the data, as much of the original geometry as
possible should be retained; only parts of the model should be used in place
of missing geometry, where detected. Model vertices are considered missing
from the original mesh if the distance to the nearest neighbor in the original
mesh exceeds a certain threshold (e.g. 1mm). The missing geometry in the
original model is replaced with the geometry of the model by adding missing
vertices and triangles. Additional triangles are added by triangulating a seam
between newly added vertices and the vertices of the original geometry using
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(a) (b) (c)

(d) (e) (f)

Figure 3.43: Example of computing a missing shape based on a statistical
model: (a) original mesh; (b) altered mesh with approximately 6.5% of the
surface missing; (c) model fitted to the altered mesh; (d) overlap of (b) and
(c); (d) altered shape with missing parts is fixed with parts of the fitted model
shape; (e) shape deviation of (a) and (e). The scale is in millimeters.

Algorithm 7.
The presented algorithm was tested on a face dataset and the model was

analyzed in Section 3.4.1. Three phases of optimization were used with 10,
20 and 100 components, respectively. A particular example of missing data
computation is shown in Figure 3.43.

Additional five test cases were created by removing various parts and vari-
ous amounts of the face geometry. The specific results of the computation are
visualized in Figure 3.44. Results of the evaluation are also presented in Table
3.11.

According to the results, the quality of missing data recovery depends on
the area which is missing more than the amount of the missing data. For ex-
ample, if the paired feature is removed (case 1), the model fits the remaining
data so that the recovered part does not match its mirror counterpart opti-



CHAPTER 3. TRIANGULAR MESH ANALYSIS 113

Algorithm 7: Recover missing geometry from model mesh

Input : missing data mesh x, model mesh y
Output: stitched mesh y′

begin
x′ = x
b = {}
// add all distant triangles and collect border vertices

foreach triangle t in y do
if ∀v ∈ t, d(v,x) < th then

add triangle t to x′

else
foreach vertex v in t do

if d(v,x) < th then
add v to b

end

end

end

end
// triangulate the seam between the original and border

vertices

foreach vertex v in b do
o = nearest(x, v)
n(v) = {w|w ∈ b ∨ (v, w) ∈ y}
foreach vertex n in n(v) do

no = nearest(x, o)
if no == o then

add triangle (v, n, o) to x′

else if (no, o) ∈ x then
add triangle (v, n, o) to x′

add triangle (n, no, o) to x′

else
p = path from no to o
for i← 1 to len(p)− 1 do

add triangle (p[i], p[i+ 1], v) to x′

end
add triangle (v, n, o) to x′

end

end

end

end
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(a) (b)

(c) (d)

(e) (f)

Figure 3.44: Comparison of the results of missing part computation with differ-
ent missing parts and different amounts of missing areas: (a) one eye missing
— paired feature; (b) nose missing — non-paired feature; (c) jaw missing
— large area; (d) random holes — large area, but sparsely distributed; (e)
eyes missing — both paired features; (f) large part of upper face missing —
”unmasking Batman”.

mally, causing higher mean deviation. But if both paired features are missing
(case 5), the recovered geometry is symmetrical and mean deviation is lower,
although the total missing area is larger. If the missing geometry is distributed
relatively uniformly (case 4), its recovery is rather successful and mean devi-
ation is very low, provided the missing parts are concentrated in one place in
the object (case 2, 3). In all cases, no explicit regularization was used (η = 0).
Employing regularization might become more important when a larger part of
the surface is missing.
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case
no.

surface
area (mm2)

preserved
area (%)

mean dev.
(mm)

max. dev.
(mm)

1 28279 93.5 1.297 9.618
2 25163 83.2 1.178 9.638
3 21632 71.5 1.174 8.338
4 24423 80.8 0.692 8.448
5 27757 91.8 0.888 7.607
6 13822 45.7 1.528 11.85

Table 3.11: Evaluation of missing geometry computation on a mesh with vari-
ous parts and different amounts of missing areas. Mean deviation is computed
only in the area of the recovered geometry.

3.8 Conclusions

In this chapter, basic tools for statistical shape analysis, represented by defin-
ing a boundary with a triangular mesh, were introduced. First, the measuring
devices were discussed. Next, the properties of the data they provide and
the procedures that should follow before entering the statistical shape analysis
pipeline were also examined.

The most important step in shape analysis and comparison is mapping
correspondences from one shape to another. For this purpose, various rigid
alignment and non-rigid registration procedures were described. The main
focus was on the following methods:

• Procrustes superimposition — landmark-based registration which mini-
mizes the sum of squared distances. This method is essential in appli-
cations where precise landmarks can be defined by the user and is more
important than automatic processing.

• Iterative closest point — an automatic procedure for rigid alignment
in its basic variant. It can be used in cases where no landmarks can
be specified and as a pre-processing step for more elaborate non-rigid
matching.

• TPS-based registration — global non-rigid deformation defined by hand-
placed landmarks.

• B-spline non-rigid registration — this method has great potential to
tightly align very diverse meshes while incorporating various criteria
characterized by permitted deformations and correspondences. Many
novel improvements have already been described with the aim of im-
proving speed and quality, e.g. evaluation of sampling approaches, use
of specialized search and caching data structures, evaluation of numer-
ical methods, etc. The author contributed by modifying the method
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originally used for volume data registration to fit surfaces as well as by
speeding up convergence with sampling approaches.

• Coherent point drift — this method differs from others by incorporating
one-to-many correspondence while computing the regularized drift of one
point set to the other. The author contributed by participating in im-
proving the convergence rate of CPD by employing spatial clustering as
a sampler using the Nyström method for low-rank matrix approximation
(Dupej et al., 2014a).

The second part of the chapter illustrated the utilization of registration
methods in statistical shape analysis and its application to various research
tasks. Most of the tasks were vital parts or actual research projects from areas
of physical anthropology and biomedicine.

• Mean shape construction — mutual correspondences allow a mean mesh
to be constructed. However, the process bears the disadvantage of aver-
aging, i.e. details are smoothed out and the result does not look natural.

• Shape variability and sexual dimorphism of the human face — the su-
periority of mesh shape analysis over landmark-based methodology was
demonstrated on higher discrimination rates in sexual dimorphism by
nearly 15% in a TPS registration-based model. However, mesh reg-
istration is more effective when using a B-spline-based algorithm and
outperforms TPS by 7% (see Table 3.6).

• Allometry — drawing the dependency of a shape represented by a tri-
angular mesh in size. The author contributed to the application of the
described method for dense correspondence model construction and the
analysis of a human face with respect to allometry and sexual dimor-
phism (Velemı́nská et al., 2012).

• Variability of the healthy human palate and the palates of BCLP and
UCLP patients were analyzed with author’s contribution (Bejdová et al.,
2012a; Rusková et al., 2014). B-spline registration offers more accurate
mean shapes than TPS.

• Post- and pre-treatment palatal shape variability of patients undergoing
the SARME procedure in comparison to a healthy population sample.
The author contributed by performing statistical shape analysis in a
biomedical study (Trefný et al., 2015).

• Mesh asymmetry analysis — the author contributed by developing a
methodology for statistical analysis of shape asymmetry and its demon-
stration on human face asymmetry in a young adult sample from the
Czech population (Kraj́ıček et al., 2012).
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• Face asymmetry of UCLP patients — the author applied the methodol-
ogy in biomedical research (Cagáňová et al., 2014).

• Shape morphology of an annually scanned sample of children from 12 to
15 years of age with emphasis on the development of sexually dimorphic
traits. The author contributed by proposing a method for paired analysis
while applying it to longitudinal data (Kraj́ıček et al., 2013; Koudelová
et al., 2015).

• Missing data computation — a new method with high practical potential
for filling holes in incorrectly scanned meshes and approximate missing
data due to partially destroyed objects.

One possible avenue of further research in this area is the application of
the above-described methods to analyze many other interesting phenomena in
physical anthropology and biology in general. However, in order to obtain sta-
tistically reasonable conclusions, a sample of a certain size is required, which is
not always possible for many interesting case studies. Furthermore, collecting
multiple scans is a tedious, expensive and time-consuming process, involving
the work of many other researchers.

From a methodical point of view, future work in the area of statistical tri-
angular mesh analysis might benefit from the inclusion of the following topics:

• Incorporating texture into statistical analysis to extend the statistical
analysis beyond examining just shape properties, while also including
texture features. However, adding more information about the individual
limits the ability to draw statistically reasonable conclusions from the
sample size presented in this work, which requires a larger sample.

• Searching for precise correspondences in multiple-related scans, which
might be useful for analyzing differences between groups in multiple
phases of development.

• Modeling the relation between various parts of the meshes might help to
uncover relations that are not apparent when analyzing whole shapes.
Alternatively, it could be used when the sample is not large enough to
describe the variability of detailed features. This idea could be extended
to reflect multi-scale shape analysis.



Chapter 4

Statistical analysis of volume
images

Every man is a volume if you know
how to read him.

William Ellery Channing

For decades, volume imaging has served as an important tool for many
disciplines including radiology, material science, and biochemistry. It allows
capturing the volume of space and storing the information in grids, where
each cell represents a single volume element of the space (a voxel). The type
or resolution of the grid, as well as the type of information stored in the voxel,
depends on the particular technology used. As such, volume imaging is a
valuable source of information about shape, especially shapes of very complex
objects that cannot be captured by surface scanning.

Specific scanning devices are specialized for specific types of objects, sizes,
resolutions, and compositions. These constraints are even more limiting in
the case of volume imaging. In general, for most types of objects there exists
a solution for volume imaging that meets requirements. Nevertheless, the
availability of the devices had traditionally been a problematic issue. Due
to the high penetration of new devices in various institutions, they become
accessible even for purposes they were not originally meant to.

Tomography is a common approach used for capturing regular 3D grids
slice-by-slice. Each slice is a raster image containing an isometric pixel, where
the distance between slices is different from the size of the slice pixels. The
term computed tomography (CT) usually indicates a tomographic approach,
which is combined with ionizing radiation as a physical phenomenon, enabling
non-destructive imaging (Suetens, 2009).

A volume image is basically a regularly sampled space, which can be in-
spected via various volume visualization techniques, e.g. direct volume ren-
dering (DVR) or iso-surface rendering. It is also possible to use volume data
as a source for landmark-based morphometry. Similarly, triangular surfaces,

118
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representing boundaries of an object in the sampled space, can be extracted
using algorithms such as marching cubes. However, both approaches lead to
a great reduction in information.

Computed tomography, as mentioned above, is suitable for capturing bone
tissue. However, if applied to a living specimen where bone tissue is tightly
surrounded by other types of tissues, suitable pre-processing steps need to be
performed in order to obtain readable inputs for subsequent analysis. These
pre-processing steps include mainly image enhancement and segmentation,
which are discussed in the first part of this chapter. The main focus is then
aimed at correspondence construction using non-rigid registration. In the last
part, a statistical model is created based on correspondences found in the data
sample and its particular application is described.

4.1 Volume segmentation

For the complex task of morphometric analysis of shapes captured in volume
data, segmentation is an essential pre-processing step for subsequent mea-
surements. Volume data measurements can cover various modalities, for ex-
ample, landmark placing, contour extraction, surface extraction, surface area
computation, volume computation and corresponding point matching. These
measurements can also be influenced by the presence of the background.

Image segmentation, after image registration, is the second most impor-
tant task in medical image processing. However, providing a full overview
of current state-of-the-art segmentation methods is beyond the scope of this
thesis. The reader should refer to existing surveys by Pham et al. (2000);
Hu et al. (2009); Khan (2013). The following sub-sections describe two meth-
ods for segmentation of volume data acquired by computed tomography and
their application to particular tasks. Both algorithms are based on deformable
models and intensity priors: the first uses a B-spline curve for shape repre-
sentation; the second evolves from the first by employing a more sophisticated
representation and segmentation criterion.

4.1.1 Contour-based 2.5D segmentation

Computed tomography in radiology produces images of human body interiors
which can be as poorly readable as X-Rays to the untrained eye. On the
other hand, CT images offer much more information in the form of calibrated
3D data (position and density), organized into slices in an axial plane of the
human body (see Figure 4.1). Thanks to these features, they can be used not
only to gain a rough idea of the human interior, but also to obtain precise
measurements of volume.

Physical measurements of the human body can provide a lot of information
about human health. For example, the temperature of a healthy body is
about 36.5◦C. Having a higher temperature means that the body is fighting
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Figure 4.1: Slice of CT data from the abdominal area.

an illness. The same goes for volumes of organs. Noticeable changes in kidney
volume in either an upward or downward direction indicate proper function or
dysfunction. These changes can only be observed after a long period between
CT scannings and also depend on correct and objective evaluation of CT
images.

Kraj́ıček et al. (2007) have made an effort to develop methods for fast,
accurate and automatic kidney segmentation, which are a precondition for
measuring volume. The nature of CT data (noise, partial volume effect, beam
hardening, low contrast) as well as the variety of the human body make this
task rather difficult.

Related work

Deformable models have been used and studied in computer vision for almost
two decades. Their best-known application is called ’active snakes’, introduced
in the late 80’s by Kass et al. (1988). This is based on evolving curves towards
a lowest total energy value, defined mostly by the image gradient and some
regularization properties.

Unfortunately, medical images are very noisy and have unreliable gradient
information. Chan and Vese (2001) have introduced an image energy term
which depends on region statistics only

Eregion1(s) = α

∫

int(s)

(f(x, y)− µext(s))
2dxdy

+β

∫

ext(s)

(f(x, y)− µext(s))
2dxdy (4.1)

where s is a closed curve, f is an image and µ is a mean intensity of exterior
and interior areas that are to be separated. In this case, µ can be known a
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priori or computed from an initial position and updated during evolution.
Another improvement replaces the classical ’snake’ curve representation

with a set of points called ’snaxels’ using a closed B-spline curve. The B-
spline curve as a perfect tool for contour detection was introduced by Brigger
et al. (2000). This approach reduces the number of optimized parameters
to coordinates of control points only. Using B-spline implicitly brings the
benefit of an intrinsic regularization property. B-spline snakes along with a
very efficient computational scheme are presented in the work of Jacob et al.
(2004).

Energy model

In the algorithm presented here, the flexibility of the snake framework is uti-
lized, into which new terms are incorporated. The energy model is primarily
based on regions while the contours defining them are represented by the B-
spline curves mentioned above.

In the first attempt, the energy functional is extended by an additional
term which describes a relation to the adjacent slices in the volume dataset.
This relation is based on a shape similarity measure. The following measure
is used to reduce the unwanted behavior of the evolving curve

E(s) = Eregion1(s) + γ · similarity(s, sneigbour) (4.2)

The idea is to find how to express local high-frequency changes of a shape
in the similarity measure. This criterion can indicate overflow of the contour
to an adjacent area through ’bridges’ of similar intensity. These bridges should
be narrow enough to be rendered as high frequency. High frequency can raise
the similarity term in the energy functional (Equation 4.2). The minimization
scheme can isolate and eliminate them because of their significant differences.
A shape-describing vector is constructed as the Fourier power spectrum of the
boundary orientation angle changes. The similarity of two shapes is equal to
l2-distance of their shape vectors. It is used as similarity term in Equation
4.2. Lee et al. (2003) have shown that this similarity measure is sensitive to
significant differences in the corresponding parts of curves.

Chan and Vese’s region energy scheme (Equation 4.1) incorporates the
square distance from the mean, which is a very rough approximation of inverted
probability. Instead of this, the probability of element classification to the
exterior or interior region is directly used according to Jacob et al. (2004).
Furthermore, weight coefficients α and β are simplified to α and (1 − α),
expressing the balance between the exterior and interior. However, it is only
of little importance in the new scheme

Eregion2(s) = −α
∫

int(s)

log(Pint(f))dxdy

−(1− α)
∫

ext(s)

log(Pext(f))dxdy
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The probability in Equation 4.3 can be approximated by normal distribu-
tion based on analysis of the initial shape position. The algorithm completely
relies on the user’s initial input and uses normalized and optionally smoothed
histograms of areas (interior, exterior) as the probability distributions. Other
interesting region-based energy models can also be used, introduced by Yezzi
et al. (1999).

Eregion3(s) = −1

2
(ρ2int − ρ2ext)2

Eregion4(s) = −1

2
(µ2

int − µ2
ext)

2

Minimization itself can be achieved using the gradient descent method.
Partial derivatives of functional E by parameters x of the contour are the only
terms to compute.

xn+1 = xn + δ · ∇xE(s(x))

These parameters are, in this case, identical to the control points of the B-
spline curve. The most important feature of region-based snake segmentation
is the ability to reduce computational complexity, from computing an area
integral to computing a curve integral, using Green’s theorem.

The approach of Chan and Vese (2001) is not completely followed and
no more than two types of energy functional mentioned above are used. It
encounters the problem of energy equivalence which cannot always be solved
by parameters tuning to full satisfaction. The question of how much region
energy is equivalent to a unit of gradient-based edge energy, length or area
energy (in terms of linear relation) cannot be simply answered.

B-spline curves

B-spline curves are well-known splines that use polygonal base functions (see
Section 3.2.4) with limited support, which gives them great local control prop-
erties. There are a few problems that should be mentioned.

The first is that B-splines must be used in all energy functionals in place
of contour s. If the points on the contour and their displacements are used
during the minimization step, only the locations of control points need to be
optimized further on. This is a significant advantage because they are fewer
in number than the contour points, even when sampling of the contour is very
sparse. The order of B-spline is another question. Cubic B-splines are well-
suited for the purpose because of their shape variability and relatively low
computational complexity.

The number of control points or number of B-spline sections depends on
the overall length of the closed contour. Minimal and maximal lengths of a
segment are defined along with additional parameters. During the iterations
the lengths are checked: if the limits are exceeded, the particular segment is
split or merged with adjacent segments as necessary.
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The last problem relates to intersections. Sometimes an evolving curve hap-
pens to be self-intersecting. For example, if a shape with holes is segmented,
the curve could wrap around the hole and cycle forever. One solution consists
of detecting intersections and breaking off parts of the curve. Free ends of the
larger part of the curve will be bound together and the rest can be thrown
away. Alternatively, the rest of the curve can also be used as an inner structure
segmentation. This can be seen when segmenting higher or lower parts of a
kidney that has the pelvis in the middle (the pelvis has very different tissue
density). It can be ignored for the first time and subsequently segmented out
by simple thresholding. Intersection detection can use the convex wrapper
property of B-spline segments for computation speed-up, i.e. to check convex
hulls defined by control points for mutual collisions before checking B-spline
arcs.

Jacob et al. (2004) used integration of angle changes which give various
multiples of 2π depending on the number and direction of the loops. This
method detects loops that implicate self-intersections, but is ineffective in the
cases described above.

Segmentation procedure

In order to segment 3D volume, the described 2D segmentation method is
used in each slice. A shape similarity measure is used as an inter-slice relation
which binds adjacent slices together. The reasons for preferring this scheme
(compared to a pure 3D deformable model technique like Active Surfaces) are
that it consists of anisotropic data and exhibits computational efficiency, which
is far better than in the case of full 3D techniques. Due to the properties of CT
data, datasets almost always contain a voxel with one dimension larger than
the other two (anisotropy). The 2.5D approach offers an almost interactive
response and better user control (better then editing 3D surface control points).

The segmentation procedure starts with the user specifying top and bottom
end points of a segmented organ. Optionally, the user can set other points in
slices between the top and bottom ends, which can help to determine starting
positions. Starting positions on other slices are placed automatically between
those set manually by the user. An initial shape is defined as the small circle-
like shape around these points. The probability distribution is estimated from
the area inside these circles. It is important to put them in the right place
inside the segmented organ. The user can optionally supply probability distri-
bution from a manually segmented shape in one slice.

The iteration starts after shape initialization and placement on each slice.
In each iteration of the procedure, one step of snake energy minimization is
performed. Thanks to this scheme, the whole object changes its shape during
the segmentation process and thus can be observed and possibly corrected by
the user. After one of the slices converges, it becomes a steady point for its
neighbors and available for use as a similarity term in Equation 4.2. Neighbors
of previously converged slices are restricted by the similarity in their further
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(a) (b)

Figure 4.2: Converged B-spline snakes: (a) results of converged B-spline snakes
excluding similarity forces; (b) the same example of converged snakes including
similarity forces using the parameter γ = 0.3.

evolution. This scheme works well for rounded organs with homogeneous in-
tensity whose axial slices do not change topology and shape variation too
rapidly.

Results

Convergence of the basic model (Equation 4.2) is strongly dependent on pa-
rameters α and γ. If supplied with proper probability distribution, the model
(Equation 4.3), delivers very promising results. A proposed improvement with
a similarity measure, which can help to hold the curve in the correct shape, is
shown in Figure 4.2.

The algorithm was tested on native images of a kidney check-up (without
a contrast agent) and also with images of the same check-up with a contrast
agent in several phases of saturation. In each case, different strategies for
parameter settings and probability distribution are required to obtain optimal
results. Native images work well with approximation by normal distribution.
But in the case of thin patients lacking contrast in inter-organ fat, it is almost
impossible to find a distribution which prevents overflowing to neighboring
organs without losing too much tissue on the surface of the segmented organ.
Using this scheme on a slightly saturated kidney, it is possible to segment the
whole organ and satisfactorily determine its volume. Figure 4.4 shows final
results of the segmentation. The approximation by normal distribution fails
on a highly saturated kidney because it does not correspond to the reality, as
shown in Figure 4.3. On the other hand, fine-tuned probability distribution
works well for the majority of patients.

The speed of the segmentation procedure is satisfying. Processing of a
five-millimeter thick slice dataset takes about 80-90 seconds (an intersection
check is performed after every 40 iterations; convergence is achieved after
about 400 iterations). A two-millimeter slice dataset takes 160 seconds, but
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(a) (b)

Figure 4.3: Histograms of segmented shapes: (a) native CT corresponds to
normal distribution; (b) the image with medium satiation of the contrast agent
demonstrates slightly skewed distribution.

the measurement is more accurate. Time measurements are performed on a
single core computer (AthlonXP 2600+, 2 GB RAM).

Subsequently, the algorithm is modified in two ways (Kraj́ıček, 2007). First,
the simultaneous convergence of individual slices is changed to continuous
propagation from both ends of the organ. The converged shape in the current
slice initializes the shape in the next adjacent slice. Meanwhile, the following
slice segmentation is much faster which speeds up the whole algorithm for al-
most one order of magnitude. The overall segmentation time of the organ then
takes approximately 15-17 seconds. Second, propagation from both ends can
run independently which allows a multi-core system to be utilized. The mod-
ified algorithm was tested on a multi-core system (AMD Athlon 64 X2 Dual
Core 3800+) and achieved 1.55x speed-up over a single core implementation
(for more details, see Kraj́ıček (2007)).

The results of the segmentation algorithm were compared to manual seg-
mentation performed under controlled conditions. The average error of volume
measurement was -0.68% with standard deviation of 2.15% in a collection of
12 datasets.

4.1.2 Locally adaptive level-set segmentation

The segmentation algorithm introduced in Section 4.1.1 has two major dis-
advantages. First, due to representation by surface contours, it is unable to
segment objects with complex topologies, such as branching veins, objects with
holes, and cavities. Second, it depends on global intensity characteristics. In
the following text, an algorithm that confronts both of these problems is de-
scribed. It is primarily designed to segment teeth and jawbone structures in
volume images intended for anthropological research.

Automatic teeth segmentation and 3D reconstruction from CT images of
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Figure 4.4: A schematic model (left) and a 3D model (right) of a segmented
kidney.

patients have recently been addressed in a number of studies. Earlier ap-
proaches exploited the nature of data slices being orthogonal to the direction
of tooth growth and also used the similarity of tooth profiles in adjacent slices.
It is a simple process to initialize 2D segmentation of a tooth in the slice by seg-
menting the tooth from the previous slice, similar to the approach described in
Section 4.1.1. Either a two-dimensional B-spline snake (Heo and Chae, 2004)
or a variational level-set (Hosntalab et al., 2008) is used for 2D segmentation.
The 2D method has been improved by introducing a region competition princi-
ple that keeps adjacent teeth separated while simultaneously segmenting them
(Gao and Chae, 2010). This assumes that the segmentation of neighboring
teeth is initialized at approximately the same distance from their boundary.

Semi-automatic region-growing segmentation combined with thresholding
in 3D has also been successfully used by Akhoondali et al. (2009). Concur-
rent with tooth volume data segmentation, there have also been attempts to
segment range images captured with a surface scanner by Kondo et al. (2004).

One of the major problems of teeth segmentation is that tooth tissue varies
widely in intensity as it consists of the hardest bone tissue in the body (enamel)
as well as softer tissues (dentine, cementum). It also contains cavities filled
with pulp which are usually completely missing from raw bone data. Moreover,
the jaw tissue surrounding teeth has a density very close to the tissue of teeth
themselves. This makes segmentation difficult for algorithms based purely
on global area intensity priors. The relatively low resolution, partial volume
effect, connected adjacent teeth, and jawbone have also proven difficult for
algorithms based solely on edge information (see Figure 4.5).

Recent research in the area favors level-set based segmentation methods,
introduced by Malladi et al. (1995), due to their versatile ability to segment
arbitrary shapes from images of various modalities and to incorporate various
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(a) (b) (c)

Figure 4.5: Input data examples: (a) raw jawbone volume; (b) a slice through
a tooth with raw bone data showing a wide range of pixel intensity inside the
tooth tissue; (c) an example of a tooth image demonstrating artifacts, caused
by the medical condition of a recent population and particular configuration
of the imaging device.

criteria depending on the given problem. The only significant disadvantage of
level-sets might be their long processing times, caused by the iterative nature
of the segmentation algorithm.

Level-set segmentation is based on solving a variational problem of energy
minimization of a certain functional E(ϕ) by looking for an optimal shape
border. The functional E(ϕ) incorporates particular constraints on the result
of the segmentation. The shape border Γ is represented implicitly by using a
function ϕ such that

Γ = {x|ϕ(x) = 0}
The function ϕ is negative for x lying inside the segmented area, i.e. be-

longing to the object, and positive for x lying outside, in the background.
The variational problem arg minϕE(ϕ) is solved by introducing an artificial
variable t and describing its behavior with respect to t by a partial differential
equation (PDE)

∂ϕ(x)

∂t
= −v · |∇ϕ|

Therefore, the function ϕ is initialized as a signed distance function. Term
v represents the speed and direction in which the border moves in a time
step. Some research presents experiments with various methods in an attempt
to solve this type of PDF effectively; while other methods deal with specific
definitions of v in actual applications. Both problems are handled in the
following text.
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The Chan-Vese model

The Chan-Vese model by Chan and Vese (2001) is a very successful level-set
segmentation scheme that relies solely on average area intensity priors.

E(c1, c2,Γ) = λ1

∫

Ωf

(f(x)− c1)2dx+ λ2

∫

Ωb

(f(x)− c2)2dx

+µ

∫

Γ

dx+ ν

∫

Ω

dx

Parameters λ1, λ2, µ and ν are the weights that are tuned for specific tasks, i.e.
prioritizing one region over another, the minimal length of the border, or the
area of the foreground. Parameters c1 and c2 are the average intensities of the
background and foreground. Their values are given a priori; either estimated
from the initial segmentation or continuously recomputed during the evolution.
For the latter case, ci must be continuously dependent on ϕ to have a stable
solution. In order to do that, regularization is added to the computation of ci.

c1(ϕ) =

∫
Ω
f(x)H(ϕ(x))dx∫

Ω
H(ϕ(x))

, c2(ϕ) =

∫
Ω
f(x)(1−H(ϕ(x)))dx∫

Ω
(1−H(ϕ(x)))

(4.3)

Term H is the Heaviside function. H(x) = 0 for x < −ǫ, H(x) = 1 for
x > ǫ and for x ∈ (−ǫ, ǫ) it smoothly transitions from 0 to 1.

Evolving ϕ to minimize E(ϕ) leads to the flattening of ϕ which is no
longer a signed distance function. This is solved by reinitialization of ϕ after
a fixed number of iterations; however, the reinitialization interval may have
a significant impact on the segmentation results. Another option, suggested
by Li et al. (2005), is to include an additional self-regularization term in the
functional E(ϕ) which would penalize the deviation of ∇ϕ from 1. In fact,
this only leads to the replacement of one parameter (a reinitialization interval)
with another, which is the weight constant for the new regularization term.

Fast level-set segmentation

The key element of the presented approach is the fast level-set algorithm by
Shi and Karl (2005), which replaced the PDE level-set segmentation based
on the Chan-Vese model. It consists of a simple segmentation scheme that
resembles region-growing-like propagation combined with border smoothing.
The resulting algorithm is very efficient, but there is still room for improvement
and for adaptation to specific applications.

The algorithm evolves an implicit function φ(x) by tracking the inner and
outer borders of the segmented area, Lin and Lout. It alternates between an
expansion phase, where it moves the border elements in na steps according
to the external force F , and a regularization phase, where it smoothens the
border elements in ng steps by applying a smoothing filter on φ(x). Gaussian
smoothing was used in the regularization phase of the original implementation.
In Algorithm 8, the basic structure of the algorithm is summarized.
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Algorithm 8: Fast level-set algorithm

Input : data D, seed S
Output: φ
begin

initialisation of Lout, Lin:
Lout = {x|x /∈ S ∨ ∃y ∈ N(x), y ∈ S}
Lin = {x|x ∈ S ∨ ∃y /∈ N(x), y ∈ S}
initialisation of φ(x), ∀x ∈ I:

φ(x) =





3 if x /∈ S ∨ x /∈ Lout

−3 if x ∈ S ∨ x /∈ Lin

1 if x /∈ S ∨ x ∈ Lout

−1 if x ∈ S ∨ x ∈ Lin

while not converged do
for i to na do

for each x ∈ Lout: if(F (x) > 0 ∨ cond(x)): checkin(x)
for each x ∈ Lin: if(∀y ∈ N(x), φ(y) < 0): Lin.remove(x),
φ(x) = −3
for each x ∈ Lin: if(F (x) < 0 ∨ cond(x)): checkout(x)
for each x ∈ Lout: if(∀y ∈ N(x) ∨ φ(y) < 0): Lout.remove(x),
φ(x) = 3

end
for i to ng do

for each x ∈ Lout: if(filter(φ) < 0): checkin(x)
for each x ∈ Lin: if(∀y ∈ N(x), φ(y) < 0): Lin.remove(x),
φ(x) = 3
for each x ∈ Lin: if(filter(φ) > 0): checkout(x)
for each x ∈ Lout: if(∀y ∈ N(x), φ(y) > 0): Lout.remove(x),
φ(x) = −3

end

end

end

• The condition of optimality is defined as follows:

cond(x) =

{
1 ∃y ∈ N(x), φ(x)φ(y) < 0 ∨ F (x)F (y) > 0
0 otherwise.

• checkin(x) - x moves from the outer border to the inner border
Lout.remove(x), Lin.insert(x), set φ(x) = −1
for each y ∈ N(x), φ(y) = 3: Lout.insert(y), set φ(y) = 1

• checkout(x) - x moves from the inner border to the outer border
Lin.remove(x), Lout.insert(x), set φ(x) = 1
for each y ∈ N(x), φ(y) = −3: Lout.insert(y), φ(y) = −1
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Kratky and Kybic (2008) improved the scheme to simulate the behavior of
the Chan-Vese level-set segmentation model by defining the external force:

F (x) =

{
−1 if − λ1(f(x)− c1)2 + λ2(f(x)− c2)2 ≥ 0

1 if − λ1(f(x)− c1)2 + λ2(f(x)− c2)2 < 0
(4.4)

where c1 and c2 are the expected average values of the foreground and back-
ground intensity. The parameters λ1 and λ2 are non-negative weights for the
foreground and background elements, which can be interpreted as the fore-
ground and background intensity variances. These values can be set experi-
mentally or approximated in a pre-segmentation step. In conclusion, Kratky
and Kybic (2008) also propose employing anisotropic filtering as a replacement
for the isotropic Gaussian regularization phase.

Local level-set segmentation

A disadvantage of Chan-Vese segmentation is the use of c1 and c2 priors that
hold for the background and foreground of the whole image. This is problem-
atic in the case of images with intensity inhomogeneities, e.g. if a foreground
object consists of tissues with a wide variety of densities. A tooth with sur-
rounding jawbone is a typical example of such an image that contains varying
foreground and background characteristics. This issue has been addressed in
the following most recent papers by modifying the Chan-Vese model.

Wang et al. (2010) used the difference between an image and a Gaussian
smoothed image to express a term for a local region-based criterion, which is
added to the Chan-Vese energy functional. The approach was improved by
Gao et al. (2012) using region initialization involving a pre-segmentation step
based on k-means clustering. Another approach by Li et al. (2011) clustered
the image into disjoint regions, in which intensity statistics for the region-
based segmentation were measured. Local statistics can be computed for each
pixel individually using some kind of averaging kernel, e.g. a Gaussian kernel
(Wu and Yang, 2012). Zhang et al. (2013) reflected intensity inhomogeneity
by modeling local average intensity with a bias field.

Local structure properties

Local structure properties in images are often used in various filtering tech-
niques such as non-linear anisotropic filtering by Weickert (1998) and shock
filtering by Osher and Rudin (1990); Vacavant et al. (2012). These methods
describe image manipulation using PDF in a similar way to how level-set evo-
lution works with a level-set function. Local information is usually constructed
by evaluating the gradient, gradient magnitude, structure tensor Tρ (Weickert,
1999, 2003), or Hessian matrix H of the image u (Descoteaux et al., 2005).

T = T0 = ∇uT∇u, Tρ = T0 ∗Gρ (4.5)
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The eigenvalues and eigenvectors of tensors and Hessian matrices describe
the intensity changes in orthogonal directions ordered by decreasing magni-
tudes. The eigenvalues λi (λi > λj, i < j) of tensors T , Tρ or H can be
combined to represent specific local behavior in the image such as sheet-like,
tube-like, or blob-like appearances. The ratios of various eigenvalues in vari-
ous image scales allow us to define the sheetness measure. Sheetness measure
was used in image segmentation by Descoteaux et al. (2005) as a criterion for
edge-based level-set segmentation of bones. Krcah et al. (2011) used a similar
sheetness measure to estimate edge weights in a segmentation algorithm based
on graph-cuts.

Local statistics processing

Tooth images are typical examples of inhomogeneous yet compact objects.
They exhibit significant variations in intensity. Additionally, their global in-
tensity statistics are burdened by a rather high variance and a mean intensity
that is close to the mean of the surrounding tissue. This motivates the use
of locally adaptive statistics for level-set segmentation. The local methods for
level-set segmentation mentioned above often use one averaging kernel for the
whole image, which has an isotropic spherical shape. Wider kernels provide
greater stability against noise but are less adaptive to local intensity changes.

The shapes of the teeth are elongated and the individual teeth are separated
from each other and the surrounding tissue by narrow gaps. A wide kernel
can be very ineffective in describing the average intensity in the gap, as it will
include the tissue behind the gap. Local structure information can be used to
compute the shape of the kernel that adapts to the surrounding space.

In the first step, Tρ(x) of uσ is computed, where uσ is a smoothed ver-
sion of the original image with a kernel of the width σ. Smoothing of the
original image is performed to improve the stability of partial derivatives and,
consequently, robustness to noise. The value of σ is usually set to around 1.
Tensor Tρ is a structure sensor, or second-moment matrix, and is constructed
to describe the average shape structure in the neighbourhood of size ρ, which
is usually chosen to be larger than σ. Tρ is a symmetric real 3x3 matrix for
3D data or a 2x2 matrix for 2D data.

Subsequently, eigenvectors w1, ..., wn of Tρ (n = 3 for 2D or n = 2 for
3D data) are gathered and ordered with respect to decreasing corresponding
eigenvalues ν1, ..., νn. Eigenvectors wi are used to construct a new diffusion
tensor D with suitable properties. First, local coherence K is measured

K(x) =
n∑

i,j,i<j

(νi − νj)2 (4.6)

Second, the desired eigenvalues λ0, ..., λn of D are calculated and then used



CHAPTER 4. STATISTICAL ANALYSIS OF VOLUME IMAGES 132

(a) (b)

Figure 4.6: Structural information examples: (a) visualization of the smoothed
structure tensor Tρ, ρ = 5; (b) visualization of the diffusion tensor Dα,c(x)(α =
0.3, c = 0.001). Major and minor axes of green ellipses represent the eigenvec-
tors of the tensor at a particular point.

in combination with wi to compute D

λ1 = α

λi = α + (1− α) exp
(
− c

K

)
, i = 2 . . . n

Dα,c(x) = λ1w1 · wT
1 + λ2w2 · wT

2 + λ3w3 · wT
3

The parameter α is responsible for a small regularization across the edge,
serving as a threshold to guide smoothing along the edge depending on the
local coherence of D, which is proportional to the variance of the eigenvalues of
Tρ (Weickert, 1999). If c≪ K, smoothing along the edges is higher; conversely,
if c≫ K, smoothing along the edges is reduced. See Figure 4.6.

Modified fast level-set segmentation

In this study, a modified fast level-set algorithm (Kratky and Kybic, 2008)
based on tissue density priors is used. The aim is to segment the teeth from
the background, other bone, and soft tissue. While experimenting with the
original algorithm, it was found that it was rather sensitive when faced with a
choice between c1, c2, λ1 and λ2. Sometimes, it was not even possible to find
the correct values despite a multitude of attempts.

Different c1 and c2 are used for different parts of the image and these
constants are continuously recomputed during the iterations, i.e. local values
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for c1 and c2 can be reinitialized once for every r iteration. The value of r is
the reinitialization period. The major improvement in the solution is the way
local statistics, such as average intensity, are computed

ci(x) =

∫
Ω
W (D(y), x, y)Hi,ǫ(ψ(y))f(y)dy∫

Ω
W (D(y), x, y)Hi,ǫ(ψ(y))

≈
∑

j W (D(yj), x, yj)Mi(ψ(yj))f(yj)∑
j W (D(yj), x, yj)Mi(ψ(yj))

, i = 1, 2

Image intensity variability can be computed similarly

σi(x)
2 =

∫
Ω
W (D(y), x, y)Hi,ǫ(ψ(y))(c1(x)− f(y))2dy∫

Ω
W (D(y), x, y)Hi,ǫ(ψ(y))

≈
∑

iW (D(yi), x, yi)Mi(ψ(yi))(c1(x)− f(yi))2∑
iW (D(yi), x, yi)Mi(ψ(yi))

, i = 1, 2

In the case of fast level-set segmentation, the continuous Heaviside function
Hi,ǫ is not needed as ψ is changed in discrete steps. The weight factor W is
defined as the density of normal distribution with respect to use of the local
structure, represented by the diffusion tensor D = Dc,a

W (D, x, y) =
1√

(2π)k|D|
exp(−1

2
(x− y)TD−1(x− y))

The masks for separating the inner and outer regions are defined as follows

M1(x) =
(sgn(x) + 1)

2

M2(x) =
(sgn(−x) + 1)

2

Diffusion tensor D can be pre-computed with pre-defined parameters a
once, and used repeatedly for local intensity statistics ci(x) according to Equa-
tion 1.

Post-processing

A regrettable property of tooth data is that the individual teeth lie very close
to each other and sometimes touch in large contact areas. Combined with
the low resolution and partial volume effect, it is almost impossible to distin-
guish an edge between two parts of adjacent teeth. Hosntalab et al. (2008)
separated teeth using panoramic projection before performing actual tooth
segmentation. Gao and Chae (2010) extended the level-set segmentation with
region competition to keep even and odd teeth separated along the tooth arch.

In order to make the volume segmentation less complicated and for the
purpose of separating everything from slightly touching to an almost indistin-
guishable pair of adjacent teeth, it was decided to perform the separation in a
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post-processing step. Graph-cut based segmentation proved to be very effec-
tive for the segmentation and separation of bones, provided the edges of the
corresponding graph were chosen carefully (Krcah et al., 2011). Morphological
operations were performed (erosion, dilatation) to acquire sub-volumes of the
individual teeth, which were then used as seeds for a simple 2-way graph-cut
algorithm to iteratively separate one tooth from the other (Liu et al., 2008;
Kolomazńık et al., 2012).

Artificial data experiments

In the first experiment, the properties of local statistics are demonstrated via
modified fast level-set segmentation on artificial data. Artificial data are rep-
resented by a volume containing a cube with gradient intensity on a gradient
intensity background. The gradients lie in opposite directions. Moreover, the
foreground mean intensity is equal to the mean intensity of the background
(see Figure 4.7(a)). Formally, it is impossible to distinguish between the back-
ground and the foreground in this case. Figure 4.7(d) shows a plot of intensities
in a cut through the artificial dataset. In some related papers, similar tests
with inhomogeneous backgrounds were performed; however, the mean intensi-
ties of foreground and background were different, as illustrated by the dotted
and dashed profiles in Figure 4.7(d).

The results of segmentation on such complicated data obtained by proposed
method are shown in Figure 4.7(c). Because of the high ρ, the segmentation
method cannot capture very sharp features, such as the corners of the box.
However, in comparison to the locally modified Chan-Vese method by Gao
et al. (2012), segmentation of the foreground was successful. Figures 4.7(b)
and 4.7(e) show different approaches to incorporating local information. The
first image demonstrates how the local neighborhood is weighted while com-
puting the local statistics in different parts of the image. On the other hand,
the second image shows intensity gradients, compensated by subtracting the
original u image from its blurred version kσ ∗ u, which is an example of the
difference-of-Gaussians method for edge enhancement. This image is a part of
the local term that is linearly combined with the global Chan-Vese model.

The second experiment on the artificial data demonstrates how local
anisotropy in a region statistics computation affects the segmentation results.
The test data consist of a gradient spiral on a gradient background (see Figure
4.8(a)). Figure 4.8(d) shows that segmentation using the global criterion fails
completely. Figures 4.8(b) and 4.8(e) show the difference between isotropic
and anisotropic local statistics weighting using the properties of the diffusion
tensor, as described above. The main advantage of anisotropically computed
local statistics for region segmentation is that they help to overcome areas
where the foreground object’s intensity is similar to the intensity of the neigh-
boring background (see Figure 4.8(f)).
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Results of the algorithm on artificial data: (a) original data with an
initial segmentation (red line); (b) visualization of the D tensor field (a = 0.5,
c = 0.00001, ρ = 4.0); (c) the result of segmentation using our algorithm;
(d) the plot of data profiles with various additive constants for the foreground
(zero is used in our tests); (e) visualization of kσ ∗ u − u, which is used to
homogenize the image in local term provided by Gao et al. (2012); (f) the
result of the algorithm by Gao et al. (2012).

Real data experiments

Real data experiments start with a small sub-volume of raw skull CT data
containing a single tooth (see Figure 4.9(a)). The tooth tissue is clearly very
inhomogeneous. Segmentation without the anisotropically computed statistics
does not allow the level-set to spread along tissue layers of the same density
(Figure 4.9(b)). On the other hand, anisotropy (Figure 4.9(d)) helps the al-
gorithm to spread over the whole object successfully without leaking into the
jawbone tissue (see Figure 4.9(c)). Of course, as with the other active contour
algorithms, the initialization of the level-set plays a role in the resulting seg-
mentation. The initial seed area should cover a wider range of intensities, but
positioning the seed volume in an area of extreme intensity (e.g. the center of
the tooth cavity, a dense area of enamel) would lead to undesirable results.

In the second real data experiment, the whole tooth arch is segmented
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(a) (b) (c)

(d) (e) (f)

Figure 4.8: Artificial data segmentation demonstrating the anisotropic com-
putation of statistics: (a) spiral data with segmentation initialization; (b)
isotropic tensor visualization (α = 0.3, c = 0.1, ρ = 5.0); (c) results of isotropic
local segmentation; (d) the result of segmentation using global statistics; (e)
Anisotropic tensor visualization (α = 0.3, c = 1e − 9, ρ = 5.0); (f) Result of
anisotropic local segmentation.

from raw skull CT data. First, the seeds need to be placed manually or
semi-automatically. This can be accomplished easily by looking for a slice
passing horizontally through the upper parts of the teeth. Subsequently, simple
thresholding is performed and connected components representing individual
teeth are selected to obtain the seeds (see Figures 4.10(b) and 4.10(c)). Next,
segmentation with anisotropic weighting for local statistics computation is
performed. Successful separation of the tooth arch from the rest of the bone
structure is then achieved (Figures 4.10(d) and 4.10(e)). Up until this point,
the aim is not to segment individual teeth. Instead, the author concentrates
on the separation of the whole arch from the jawbone, while splitting of the
arch into individual teeth is left for a post-processing step. The results of the
post-processing are shown in Figure 4.10(f).

In the last real data experiment, the algorithm was used to segment the
tooth arch and the remaining jawbone from the rest of the skull. The motiva-
tion in this case is that CT datasets of a unique historical skull collection were
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(a) (b) (c) (d)

Figure 4.9: An example of segmentation of real tooth data: (a) lateral input
tooth image (32×64×48 voxels) with initialization; (b) results of segmentation
using a local criterion with low anisotropy (a = 0.1, c = 0.1); (c) results of
segmentation with high anisotropy (a = 0.1, c = 1e − 8); (d) visualization of
a high anisotropy tensor.

improperly scanned: the cranium was placed on the jawbone in an incorrect
anatomical position, which prevented the shapes from being analyzed indi-
vidually. The major problem here is that the cranium and jawbone touch in
several places, i.e. the area of the jaw joint condyles and teeth. Furthermore,
the teeth are not important if the goal is to study the shape of the jawbone
alone. Therefore, they must be removed, as in the previous experiment. The
procedure of extracting the jawbone is based on the separation of bones with
identical density and a highly porous structure. The best approach is to em-
ploy graph-cut segmentation seeded with the pre-segmented regions from the
level-set algorithm. The pre-segmentation itself is not very precise due to the
structure of the bone. However, it reaches all the parts of the jawbone and
produces a good seed for graph-cut segmentation. The individual steps of the
procedure are demonstrated in Figure 4.11.

Implementation issues

The fast level-set segmentation algorithm (Algorithm 8) evaluates F (x), which
depends on the current local foreground and background statistics of c1(x),
σ1(x), c2(x) and σ2(x). These values are computed based on the given seg-
mentation for the foreground and background. The values of the statistics can
either be computed every time they are needed or, alternatively, pre-computed
and fixed for iterations, after which they are recomputed again. The former
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(a) (b) (c)

(d) (e) (f)

Figure 4.10: An example of segmentation of a whole tooth arch: (a) visual-
ization of input tooth arch volume (180× 128× 256 voxels); (b) visualization
of segmentation seeds in 3D intersecting a well-defined part of the arch; (c) a
2D slice with seeds; (d) segmentation results (a = 0.05, c = 1e − 9, ρ = 3.0);
(e) a tooth arch without jawbone; (f) individual tooth separation in a post-
processing step.

approach speeds up the convergence but makes segmentation less progressive
over time. The computation of the statistics is very time-consuming. Its time
complexity represents all the voxels in a cubic volume, where the side of length
n is O(n6). This can be reduced if only a limited neighborhood of each voxel
is considered and where the weight values are far from zero. The size of the
neighborhood depends on the value of ρ, which is the width of the Gaussian
kernel used for weighting.

In order to reduce the time of computation in a real application, a parallel
computing scheme is implemented using parallel graphics hardware. The com-
putation of individual local statistics c for the individual voxels is performed
in a CUDA kernel. Due to this improvement, the computation time is reduced
by several orders of magnitude. Even with parallel computation, gathering
local statistics is the slowest part of the whole algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 4.11: Jaw segmentation: (a) input skull data; (b) skull data with-
out teeth; (c) seed for level-set pre-segmentation; (d) results of the graph-cut
segmentation; (e) separated teeth, jawbone, and cranium.

Summary

A segmentation algorithm for easy tooth arch extraction was described, which
is based on a simplification of level-set segmentation by Kratky and Kybic
(2008) using embedded anisotropic local intensity priors. The algorithm was
designed to objectively segment teeth from bone relics, scanned with standard
medical CT, as well as images of patients. However, it was not tested on ex-
treme cases, such as patients with large tooth implants or deformations. It was
assumed that because extreme cases can be so different, automatic algorithms
might only help with their segmentation to a degree and that the rest would
need to be manually segmented. It was decided to employ anisotropic local in-
tensity priors since the teeth and jawbone area contains a wide variety of bone
tissue densities with unreliable edge information. From this point of view, rely-
ing on a single type of feature e.g. edge or intensity priors, was not deemed to
be sufficiently robust. In a broader sense, locally adaptive region information
is another way of incorporating edge information into an active shape model
criterion. A comparison with the recent locally modified Chan-Vese method
(Gao et al., 2012) was provided.
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Additionally, the particular task of tooth segmentation was approached as
a two-phase process. Initially, the tooth tissue is segmented and then the teeth
are separated from each other in a post-processing procedure. This separation
enables specialized methods for jaw-teeth and tooth-tooth segmentation to be
used.

The segmentation procedure described here relies on a certain amount of
user interaction and initialization. However, it is usually solved by a smart user
interface or various support algorithms such as thresholding, region growing,
small component removal, or clustering in a particular application. In this
case, a slice parallel to the tooth arch was always available, containing clearly
separated teeth to be used for the initial segmentation.

In the future, the algorithm will be tested on CT images of living people. It
is expected that the major problem will lie not in the presence of soft tissue but
in the medical condition of the teeth. In most cases, adults have replacements
or fillings, which are made from a far less X-ray-penetrable material then the
hardest bone tissue. This causes star-shape artifacts and beam hardening (see
Figure 4.5(c)).

4.2 Non-rigid volume registration

Similar to the previous chapter, the primary tool for correspondence searches
in volume data is non-rigid registration. However, the principle of correspon-
dence is a little different from point clouds or meshes. With volume data,
corresponding points are considered points that are mapped on each other by
transformations found via the registration procedure.

Non-rigid or elastic registration has been intensively researched in the last
two decades, mostly in the area of medical image processing (Mani and Ari-
vazhagan, 2013). It is primarily characterized by transformation, one of the
three components of registration (see Section 3.2), which allows non-linear
deformation mapping between the source and target image.

A non-linear deformation function can be divided into two classes. The
first is a parametric approach, which defines the transformation function using
a smaller set of parameters in the form of feature points (landmarks) or control
points, and an interpolation operator that computes transformation of inter-
mediate points. The second is a non-parametric approach, which describes
and optimizes the transformation of each individual point in the image while
keeping them locally consistent. The latter is computationally more expensive;
however, it allows advanced mathematical concepts to be incorporated, such
as Navier equations with material constants, optical flow, PDE formulation of
image relation, etc. The former group, on the other hand, is often based on
the mathematics of splines or the piece-wise linear approximation of smooth
non-linear mapping.

A typical example of the parametric approach is TPS-based registration,
described in Section 2.2 [page 19]. The method defines the transformation
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globally, i.e. each landmark point influences the transformation everywhere.
By contrast, B-spline (introduced in Section 3.2.4) is only defined in the close
vicinity of control points, which means that it is able to model localized de-
formations, while maintaining relatively low computational costs and general
applicability. Hence, B-spline registration has gained in popularity in various
registration tasks in medical image processing (Kraj́ıček, 2008a).

In the following text, a registration method suitable for statistical anal-
ysis of volume data is described (Kraj́ıček et al., 2011). The core idea and
mathematical background to the algorithm are the same as the one used for
triangular mesh registration (see Chapter 3). The difference and novelty of the
method described here are attributed to introduction of speed-up approaches,
which could make it useful for tasks that would otherwise require vast compu-
tational power and a lot of time to perform.

4.2.1 B-spline-based registration

Registration is an optimization of the relation between source and target im-
ages by looking for the optimal transformation of the source image to the
target image. In the case of B-spline-based registration, the transformation
is modeled by the B-spline free-form space warping function fFFD, which is
derived from a B-spline curve. This curve is defined by control points and
minimal support polynomial bases with respect to the particular degree and
smoothness (see Figure 4.12). It was also referenced in Section 3.2.4 in re-
lation to application in point cloud and mesh registration. For the sake of
completeness, the fFFD definition is repeated here

fFFD(~x, c) =
l+d∑

i=l

m+d∑

j=m

n+d∑

k=n

cijkB
d
i−l(x

′)Bd
j−m(y

′)Bd
k−n(z

′)

where c is a grid of control points, d is the order of polynomial bases, and i, j, k
are all indices of control points that influence the rectangular subset of the fFFD
domain given by l = ⌊x/(ni − d)⌋, m = ⌊y/(nj − d)⌋ and n = ⌊z/(nk − d)⌋.
As a basis Bd

i , a cubic polynomial (d = 3) is usually used (see Equation 3.6).
With a continuous, differentiable function as a solution, registration can be

formulated as a variational problem of minimizing functional E(fFFD). How-
ever, registration, in general, is an ill-posed problem, which means that there
are many solutions to such a problem and it cannot be decided which one
is the best. Moreover, B-spline free-form space warping is an artificially de-
signed function which can model spatially and physically undesirable space
transformations (e.g. self-intersection, space dilation or expansion). In order
to solve both problems, the regularization term fr is required in variational
formulation next to the data term fd, which models the relation in the data

E(fFFD) =

∫

Ω

(1− α)fd(fFFD, x) + αfr(fFFD, x)dx
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(a) (b)

Figure 4.12: Demonstration of B-spline space deformation: (a) an example of a
parametric cubic B-spline curve (thick line) with control points (squares) and
control polygon (narrow lines); (b) an example of free-form space deformation
with a control points (squares). The grid demonstrates space deformation at
an arbitrary point (red) by shifting one of the control points (blue square).

In B-spline non-rigid registration, the main difference between the regis-
tration of raster data and point cloud data is in the basic formulation of the
problem. It is an integral of smooth function over continuous image domain Ω
instead of a discrete sum over a point set, which is discontinuous in principle.

One option for regularization term fr is a sum of second derivatives (similar
to Equation 3.7).

fr(fFFD, x) =
3∑

p=1

3∑

q=1

(
∂2fFFD(x)/∂xp∂xq

)2
(4.7)

Another option is to carry out volume preservation while matching two
images of the same specimen (Rohlfing et al., 2003). This is done by adding
incompressibility constraint base on the determinant of the Jacobi matrix (a
matrix with partial derivatives), which is equal to one for volume preservation
at point x.

fr(fFFD, x) = |log(JfFFD(x))|
This particular task also requires proper data term definition. The most

commonly used is the sum of the squared difference between the source image
sample at x and the target image sample at T (x).

fd(fFFD, x) = (S(x)− T ◦ fFFD(x))2

In order to fit multimodal images (CT and PET) or images that are not
normalized to a particular intensity scale (MRI), more complicated metrics
are used, such as mutual information (MI) or normalized mutual information
(NMI) (Rueckert et al., 1999).
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The core of the registration process searches for fFFD, which minimizes E.
Due to the parametric nature of fFFD, local numerical optimization can be
used to find correct locations for control points c. Many numerical optimiza-
tion algorithms can be used for this purpose. Particular examples are listed
in Section 3.2.4 [page 50]. One interesting characteristic which could be used
to distinguish between them is the amount of gradient information they de-
pend on. In the following text, modified steepest descent is employed. Either
way, almost all of the methods require computation of partial derivatives of
E with respect to cijk and ∇E = {∂E/∂cijk}ijk, which is decomposed into
partial derivatives of individual terms. These derivatives can be approximated
by central differences, but for more precise values an analytical solution is
preferred.

∇E =

{∫

Ω

(1− α) ∂fd
∂cijk

+ α
∂fr
∂cijk

dx

}

ijk

Partial derivatives are computed by applying the chain rule

∂fd
∂cijk

=

[
∂fd
∂cijk,x

,
∂fd
∂cijk,y

,
∂fd
∂cijk,z

]

∂fd
∂cijk,x

=
∂fd

∂fFFD,x

∂fFFD,x

∂cijk,x

= −2(S − T ◦ fFFD)
∂T

∂x
Bd

i−lB
d
j−mB

d
k−n

Partial derivatives of fr (Equation 4.7) are little bit more complicated

∂fr
∂cijk,x

=
∂

∂cijk,x

3∑

p=1

3∑

q=1

(
∂2fFFD,x(x)/∂xp∂xq

)2

=
3∑

p=1

3∑

q=1

2
∂2fFFD,x

∂xp∂xq

∂3fFFD,x

∂xp∂xq∂cijk,x

∂2fFFD,x

∂xp∂xq
=

1

np − d
1

nq − d

l+d∑

i=l

m+d∑

j=m

n+d∑

k=n

cijk,x ×

(Bd
i−l)

(r(p,q,1))(Bd
j−m)

(r(p,q,2))(Bd
k−n)

(r(p,q,3))

∂3fFFD,x

∂xp∂xq∂cijk,x
=

1

np − d
1

nq − d
×

(Bd
i−l)

(r(p,q,1))(Bd
j−m)

(r(p,q,2))(Bd
k−n)

(r(p,q,3))

where (Bd
i )

(r(·)) means r(·)-order partial derivative of Bd
i with r(·) defined as

r(p, q, s) =




2 p = q = s
1 p = q ⊻ q = s
0 p 6= q 6= s
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Algorithm 9: General numerical optimization based on gradients

Input : S - source, T - target, initial guess, ǫ - tolerance
Output: solution
begin

solution←− initial guess
converged←− False

1 while not converged do
2 for (i, j, k) ∈ ni × nj × nk do

∂E
∂cijk

= 0

3 for x ∈ Ω(i,j,k) do
∂E
∂cijk

+ = (1− α)∂fd(x)
∂cijk

+ α∂fr(x)
∂cijk

end

end
new solution← solution− δ ∗ ∇E
converged← ‖new solution− solution‖2 < ǫ
solution← new solution

end

end

The integral in the previous equation can be approximated by the sum over
all the voxels in the volume image. Fortunately, the derivatives of the terms
are non-zero only in a subset of the fFFD domain. For the general scheme of
the optimization algorithm, see Algorithm 9.

The total time needed for computation depends on the speed of convergence
and the number of iterations it performs (Line 1). On the other hand, the most
computationally demanding part of the algorithm is for the loop on Line 3,
where partial derivatives have to be computed. This results in at least two
places which can be focused on in order to speed up the algorithm.

4.2.2 Speed-up approaches

Image registration, in general, is a computationally demanding process. Many
methods of improving performance have been studied. Some of them are en-
hancements on the implementation level, while others work on the algorithm
level. Since one of the goals of this work is to propose a solution for practical
usability, the following paragraphs describe approaches that improve compu-
tation time.

Parallelization

The straightforward approach is to employ trivial parallelization to compute
of partial derivatives, i.e. a loop on Line 2 in Algorithm 9 is parallelized,
since these values are independent of each other and produce a single scalar.
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Theoretical speed-up is, in this case, linear with the number of CPU cores.
Shackleford et al. (2010) employed GPU hardware to run CUDA imple-

mentation of B-spline registration, which was shown to be 15× faster than the
highly optimized CPU version. Rohlfing and Maurer (2003) used a multipro-
cessor with shared memory to speed up the computation of the MI criterion,
which requires continuous recomputation of joint histograms.

Multiresolution

Multiresolution is often used as a speed-up technique for image registration
or even for other image processing algorithms. Input data are scaled down
so that the algorithm converges on them faster. The solution of this scaled
instance is then scaled up and used as an initialization of the algorithm on
the original data. The idea is that the algorithm will make fewer steps before
converging so that the total time of these two computations is shorter than
the time of the original one. This can also work on more than two levels.
There is also one additional advantage of numerical optimization: on scaled
down data the algorithm easily overcomes some local minima in which the
algorithm on the original data converges. In fact, this approach is not only
faster but produces better results. The concept behind this approach is similar
to multigrid methods used in numerical analysis.

In the case of B-spline-based registration, the resolution of the control grid
can also be progressively increased. The algorithm with the sparser control
grid displays more global deformation behavior, but works more locally with a
denser grid. The only remaining problem is how to scale up the solution, i.e. to
increase the number of control points. In the case of B-spline problems, there
are many ways to subdivide the control grid and to insert control points. One
particular solution proposed by Lane and Riesenfeld (1980) almost doubles
the number of control points in a few simple steps (also see Algorithm 3).
It is recommended that this operation be performed together with resolution
scaling of the input image in Gaussian pyramid fashion.

Sampling

Smart sampling is a natural way to speed up algorithms which involve compu-
tations of multidimensional integrals over large sets, such as those evaluated
when computing partial derivatives in Algorithm 9 (Line 3).

∂E

∂cijk
=

∫

Ω

(1− α)∂fd(x)
∂cijk

+ α
∂fr(x)

∂cijk
dx

By choosing the appropriate sampling strategy, a much lower number of
samples is needed when evaluating the approximation of the integral and pre-
serving accuracy, compared to traditional dense regular sampling. Moreover,
the registration does not depend on one individual gradient estimation because
it is recomputed several times and results improve gradually.
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Stochastic sampling has been used for image registration by a few studies
in recent years. Klein et al. (2006) were probably the first to study simple
stochastic sampling as an acceleration technique for image registration. They
compared it with smarter optimization procedures (Quasi-Newton method,
conjugate gradient) and observed improved performance in one to two orders
of magnitude without losing accuracy. Incorporating stochastic sampling in
gradient descent results in stochastic gradient descent (SGD) or mini-batch
stochastic gradient descent, which are very popular methods in the field of
machine learning (Spall, 2003, chapter 5).

Bhagalia et al. (2006) described the use of importance sampling for
intensity-based image registration with a mutual information data criterion
of MRI images.

The Quasi-Monte Carlo sampling approach was used by Thevenaz et al.
(2008) to speed up joint histogram computation for mutual information-based
registration.

Apart from these scientific results, stochastic sampling has not yet been
fully accepted as an efficient registration speed-up technique in the same man-
ner as multiresolution. Also, no study has ever compared smarter sampling
methods, such as importance sampling and Quasi-Monte Carlo sampling, when
focusing on implementation, performance, and accuracy.

Convergence criterion

Numerical optimization procedures often converge in many iterations and do
not improve the solution much in the last part of the process. Stopping the
convergence at the right moment can significantly lower computation time.
Stopping criteria for image registration algorithms is not an extensively re-
searched area. Only the basic rules are mentioned in published texts.

For example, an algorithm should stop if there is almost no change between
the last two solutions, if the gradient of the objective function with respect
to the parameters is almost zero or, if there have been a fixed number of
iterations. Such conditions are represented by thresholds which are not easy
to set and which must often be found empirically. Stochastic sampling inside
the optimized objective function changes the behavior of the optimization
procedure as well as the criterion in order to stop the convergence. To stop
stochastic gradient descent, a slowly decaying gain sequence can be used (Klein
et al., 2006).

4.2.3 Sampling methods

The basic principle behind Monte Carlo methods (Owen, 2003) is in repeated
random generation of a certain result, assuming that the mean value of such
a process converges to the exact value. Monte Carlo integration is an approx-
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imation of an integral by a finite sum of n random function samples

I =

∫

Ω

f(x)dx ≈ In = |Ω| 1
n

n∑

i=1

f(xi)

More importantly, E(In) = I, which is in fact used in many applications, e.g.
image rendering and stochastic optimization. The variance of In is inversely
proportional to the number of samples; hence, the root mean square error
is O(1/√n). However, it can be improved by choosing a proper sampling
approach, i.e. a method used to select individual samples.

A similar idea is tested using stochastic gradient descent optimization
where various sampling strategies are selected for experimentation. All
stochastic methods are compared to regular sampling (see Figure 4.13(b)),
which is usually used with raster-based registration algorithms.

The simplest of these, and the one with the largest variance, is pure random
sampling (see Figure 4.13(c)). Samples are taken from the whole integration
domain by generating pseudo-random numbers between boundaries of the do-
main. With a smaller number of samples, some empty areas or areas with too
many samples can appear.

The previous result can be improved using stratified sampling (see Figure
4.13(d)), where the domain is subdivided into subdomains, in which a certain
portion of random samples are generated. The variance of such sampling is
reduced compared to pure random sampling.

If the approximate shape of the integrated function is known in advance,
proposal distribution D can be created. Probability p can be assigned to each
image element, which expresses how much it contributes to the whole integral
and how important it is to include the element in the resulting integral ap-
proximation. Hence, this method is known as importance sampling (Figure
4.13(e)). ∫

Ω

f(x)dx =

∫

Ω

f(x)

p(x)
p(x)dx ≈ In =

1

n

n∑

i=1

f(xi)

p(xi)

It has the lowest variance but the disadvantage is that the basic importance
sampling algorithm (inverse transform sampling of discreet CDF) can only
generate a certain fixed number of pre-defined samples. Also, the structure
that is used to hold them is as large as the image itself (Devroye, 1986, chapter
2.2).

The last sampling method presented here belongs to a group that are made
up of what are known as Quasi-Monte Carlo (QMC) methods. These methods
do not generate samples randomly; rather, they use a deterministic algorithm
which produces points that cover the whole integral domain. Various Quasi-
Monte Carlo sampling algorithms are compared with respect to quality of their
coverage by a value of (star) discrepancy measure D⋆

n.

D⋆
n = sup

a∈[0,1)d

∣∣∣∣∣
1

n

n∑

i=1

10≤xi<a − |[0, a)|
∣∣∣∣∣
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Various sampling approaches: (a) original image; (b) regular
sampling (360 samples); (c) random sampling; (d) stratified sampling; (e) im-
portance sampling; (f) Halton sequences. All stochastic schemes are presented
with 200 samples.

One example of a QMC sampling algorithm with low discrepancy is based
on Halton sequences (Figure 4.13(f)). The idea of generating a pseudo-random
value is to iterate integer numbers from 0 to infinity and express them in a
selected prime base, b.

n =
∞∑

k=1

nkb
k−1, nk ∈ {0, 1, ..., b− 1}

The individual digits are then combined together and weighted by inversions
of a powered base, b−k. Using different prime bases for individual coordinates,
multidimensional vector sampling of the space, with discrepancy of Halton
sequences, can be generated.

φb(n) =
∞∑

k=1

nkb
−k =⇒ ~x = (φ5(0), φ7(0)), (φ5(1), φ7(1)), . . .

4.2.4 Implementation

Theoretical foundations for implementing the B-spline non-rigid registration
algorithm are now introduced. Before the algorithm is executed to fit the input
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images, they are pre-aligned rigidly. Manually placed landmarks can be used
for this purpose. Rigid alignment of landmarks can be performed by ordinary
Procrustes superimposition described in Section 2.2 [page 17]. As a further
step, non-rigid registration is employed to solve the deformation part of the
transformation between the data sets.

Data criterion

The sum of squared differences (SSD) serves as a standard mean of comparison
for all the experiments. The use of mutual information is rejected because it is
computationally expensive and pointless since no multi-modal data are used.
In addition to that, MI has a property to build a relation between element
values in both images in every registration step, depending on the number of
occurrences of element pairs in a joint histogram. In other words, if the initial
images are badly aligned, they could relate black pixels in the first image with
white pixels in the second image. This is a very real possibility in the case of
bone-air images.

The very strong boundary information of the data is exploited as a replace-
ment for MI. It is a good idea to relate image elements to the object boundary
by the shortest distance. In order to store information on the shortest distance
of each element to the nearest boundary element, the Euclidean distance map
(EDM) is computed. Subsequently, these maps, Sedm and Tedm, are aligned in
the context of the sum of squared differences.

fd(x) = (Sedm(x)− Tedm ◦ fFFD(x))2 (4.8)

EDMs have already been used for non-rigid shape registration by Paragios
et al. (2003) in an algorithm combining global and local transformations. Local
non-rigid transformation, guided by lowering of the differences in EDT, are
evaluated only in close vicinity of the shape boundary. Otherwise, differences
in the distance from the shape are larger; hence, the optimization prioritizes
them over the areas along the boundary, which is undesirable.

The advantage of EDMs is also that they can be computed very quickly
using dynamic programming (see Meijster et al. (2002)). To find a boundary
in the data or to divide the data into two groups of elements (the object and
the background), any segmentation algorithm can be used.

Importance sampling

The importance sampling algorithm is based on random sampling of image
domain Ω with respect to proposed distribution D, e.g. derived from smoothed
image intensity levels or image gradient magnitudes. It is realized using inverse
transform sampling of the discrete cumulative distribution function (CDF) of
D (Devroye, 1986, chapter 2.2), which requires construction of CDF for the
integration domain and storage of it in the memory. Moreover, during the
partial derivative computation, only a sub-interval of Ω is sampled because
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.
...

Figure 4.14: Schematics of importance sampling of image domain sub-intervals.

the partial derivative of fFFD with respect to the control point i coordinate
is non-zero only in their sub-intervals — Ωi. The number of these intervals
is equal to the number of control points (e.g. 73, 113, 193, etc.). Inverse
transform sampling of CDF generally disallows effective sampling of arbitrary
sub-intervals.

Fortunately, a number of these intervals’ intersections is also finite, corre-
sponding to disjunct intervals between knot points. Hence, CDF of intervals
between knot points can be created and re-used in multiple image domain
sub-interval CDFs that correspond to particular control points. The auxiliary
data structure is needed to keep track of which knot intervals are part of which
domain sub-intervals Ωi (Figure 4.14). The data structure also holds a small
CDF for each sub-interval Ωi built over its knot interval CDFs, making it a
two-level inverse transform sampling of discrete CDF sub-intervals.

Algorithm 10 describes non-uniform sampling with the use of the described
data structure. This approach allows sub-intervals to be sampled without the
need to store a CDF for each sub-interval, which would be memory-inefficient.
The memory complexity of the proposed solution is O(n + m), where n is
the number of samples in Ω and m is the number of control points (i.e. sub-
intervals).

Stopping criterion

A stopping criterion of the convergence process should reflect the fact that the
objective function is optimized in a stochastic manner. For this reason, the
behavior of the stochastic objective function should be relativized of fluctua-
tions caused by randomness in the integral computation in order to be able to
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Algorithm 10: Two-level inverse transform sampling of discreete CDF
in domain sub-intervals.
Input : i - index of interval Ωi in Ω,

r - U(0, 1)
Data : S - subdomain CDFs,

Ti - CDF of i-th interval,
ti - interval i subdomain indices

Output: c - coordinates of a sample point,
pi - probability of the point in interval i

begin
j ← binary search(r, Ti)
s← ti(j), subdomain index
rj ← (r − Ti(j − 1))/(Ti(j)− Ti(j − 1)), U(0, 1) in subdomain s
k ← binary search(rj, Ss)
c← k-th samples coordinates in subdomain s
p← P (Sj)(Sj(k)− Sj(k − 1)), probability in Ω
pi ← p/P (Ti), probability of k in interval i

end

set a certain threshold to a characteristic derived from it. Such a characteristic
cannot be based on the changes between subsequent steps because they also
have a propensity for unpredictable fluctuations. The obvious way to over-
come this behavior is to average over several steps. Specifically, a line can fit
a certain number of objective function values in a sequence and monitor its
slope (see Figure 4.15). If it falls below a certain threshold, the convergence
can be stopped. All is relative to the objective function value at the beginning
of the iterative process.

4.2.5 Material

For the experiments, improvements to the registration algorithm were tested
on CT images of human skulls, which were taken in hospitals as part of anthro-
pological research. Together with CT scans of the contemporary population,
three other samples from periods ranging from the 9-th to the 21-st century
were collected (see Case study 5 for details). Figure 4.16 shows surface visual-
ization of the skull of a specimen from the collection of the historical population
and volume visualization of a living person from the contemporary population
sample.

4.2.6 Benchmarking stochastic registration

It is difficult to assess the efficiency of the algorithm on real data. In order
to deal with this issue, an artificial deformation is generated and applied to a
sample of data. The algorithm is then created to recover the original shape by
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Figure 4.15: Criterion value behavior during the stochastic convergence pro-
cess. The line (red) is fitted to the last 20 steps and its slope is compared to
the given threshold.

(a) (b) (c)

Figure 4.16: A recent and historical dataset example: (a) visualization of CT
volume data of a living patient; (b) the skull surface of a person who died
hundreds of years ago; (c) a misaligned pair of down-sampled skulls (red —
source; green – target).
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Figure 4.17: Error development throughout the convergence process, using
the SSD data criterion and 1% of samples in stochastic methods. A noticeable
transition between levels can be seen in the plot.

searching for an inverse deformation. By comparing the ground truth deforma-
tion TGT with the deformation T found by the algorithm, an error measure is
computed. This scenario is not equivalent to an intended real live application
of the algorithm, but it is assumed that the results are highly correlated.

ErrDef(TGT , T ) =
1

N

N∑

i=1

‖TGT (xi)− T (xi)‖

The energy functional, including the regularization term with a weight
α = 0.01, is used in the algorithm, which is intended to prevent deforma-
tion from diverging. For the purpose of testing the sampling approaches, the
original data sets are scaled from approximately 5123 to 50 × 50 × 43 vox-
els (Figure.4.16(c)). The algorithm uses three levels of multiresolution with
5× 5× 5, 7× 7× 7, and 11× 11× 11 control point grids.

The algorithm with the SSD criterion is executed using all five sampling
approaches discussed, with only 1% of the sample point. The results are shown
in Figure 4.17. In order to observe the behavior of the algorithm with respect
to various gradient approximation methods, a fixed number of steps are used
with a constant step size. Stratified and Halton sampling outperform regular
sampling, but generally all methods converge to the similar solution. The re-
sult of importance sampling is necessarily influenced by the data. For relatively
sparse images with a lot of background elements, importance sampling should
be more advantageous. It must be emphasized that although the algorithms
perform the same number of iterations, stochastic sampling is 100× faster in
real time than regular sampling. The behavior of several curves suggests that
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Figure 4.18: Error development throughout the convergence process, contain-
ing an SSD data criterion and 0.1% of samples using stochastic methods.

the convergence should be stopped earlier since the error gets worse if the al-
gorithm overfits the SSD criterion. It is difficult to tune the stopping criterion
with a noisy criterion function, but low variance gradient approximation can
help significantly.

An extreme experiment with only 0.1% of samples was conducted with the
intention of determining the difference in sampling strategies (see Figure 4.18).
It is not surprising that sampling methods fail in the first phase when there are
only 1-2 samples per volume. However, Halton sampling makes much better
use of these samples than the other methods, and also performs consistently
with the previous experiment. On the other hand, stratified sampling fails,
which is caused by a fixed number of strata (sampling parameter) that are
lower than the number of drawn samples. Therefore, a part of the space
is not covered by the samples. Figure 4.19 shows results of the registration
experiment, but the differences are very subtle.

By way of conclusion, properties of sampling methods used in stochastic
optimization of non-rigid registration problem have been introduced. More
importantly, it has been shown that the registration performs as well with a
fraction of the sample points as with the traditionally regularly sampled image
domain. It shortens, in real terms, the algorithm runtime from 5-6 hours
to 3-4 minutes (1% samples) or 20 seconds (0.1% samples) with sub-optimal
implementation, depending on the machine. In some cases, it performs even
better because of the similar effect of simulated annealing, allowing it to jump
out of local minima. The precision of stochastic optimization can be improved
by slowly increasing the number of samples during the iterations.

There are other speed-up techniques that could also be employed. For
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(a) (b) (c)

Figure 4.19: Sample skull data aligned by non-rigid registration using
various sampling strategies after 3 × 100 iterations: (a) regular sam-
pling (DefErr=0.58); (b) uniform random sampling with 0.1% of sam-
ples (DefErr=0.84); (c) importance sampling with 0.1% of samples
(DefErr=0.67). In all figures, the source skull (red) overlaps the target skull
(green), while the yellow color represents the overlap of tissues with similar
density.

example, the often-used approach of control point inhibition might improve
efficiency. The principle is to stop movement with some control points and also
to stop computing partial derivatives with respect to these points’ coordinates,
provided the changes to their positions do not lower the value of the objective
function. The decision when to stop moving the points must also be adapted
to stochastic optimization.

The testing scenario described above was designed to compare the sampling
approaches under artificial conditions. Especially, scaling data down 10 times
does not produce practically useful results. Other aspects of the proposed
stochastic registration algorithm are explained in the following practically-
oriented case study.

Case study 12: Registration of the human jaw

In this case study, a registration method is demonstrated on the shape of a
human jawbone acquired by standard medical CT in original resolution. A
particular pair of images used in the case study is part of the Great Moravian
sample (see Case study 5). Hence, only bone tissue is worked with in the im-
ages; no soft tissue, muscle, fat or cartilages are present. However, in order to
perform accurate human jawbone registration, the jawbone must be segmented
and separated from the rest of the bone tissue, with which it was acquired by
the scanner, i.e. with the cranial bone and teeth (see Figure 4.16(b)). In par-
ticular, the teeth need to be removed due to their very different condition at
the time of death; the extent of deterioration and damage can also be diverse.
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(a) (b) (c)

Figure 4.20: Jawbone segmentation and pre-processing: (a) original dataset as
obtained from a CT scanner (resolution 512×512×307 with voxel dimensions
0.488× 0.488× 0.7 mm); (b) cranial bone removed; (c) teeth removed. After
segmentation, the whole volume can be trimmed to 260× 174× 171 voxels.

These factors significantly affect results of registration. Figure 4.20 shows how
a bare jawbone is extracted from original CT data. It can be performed using
the segmentation algorithm suggested in Section 4.1.2 or manually if needed.

Jawbone tissue occupies only a fraction of the image space (approximately
5%), while a large part of the image samples actually does not contribute to
the data criterion. To avoid unnecessary computation and in order to speed
up the registration, the importance sampling scheme is chosen, which allows
much fewer samples to be used when computing the criterion function and its
derivatives than the number of discrete voxels in the volumes. The gradient
magnitude of the highly blurred input image is chosen as a proposal probability
density function, and is shown in Figure 4.21(b). It enables dense sampling of
areas near the interface between bone and air. In contrast, the homogeneous
areas inside the bone and primarily outside and far from the interface are
sampled sparsely or not at all.

Since the registered image consists of a single type of tissue — bone —
which has a sharp interface with background air and is easily obtainable by
simple thresholding, it is possible to use a Euclidean distance criterion for the
data term in the registration energy functional, according to Equation 4.8. The
criterion will then precisely fit these interfaces so that the source and target
images overlap perfectly in the ideal case. But it only works if combined with
importance sampling of the area near the shape boundary. Moreover, it can
be extended by adding the sum of squared differences between the overlapping
image data to better overlap the tissues of the same density inside the bones.
However, this option is not used further on. The threshold for distinguishing
bone and air is set empirically so that artifacts of the partial volume effect and
beam hardening (e.g. Figure 4.5(c)) are not visible. The effect of variation in
the threshold is mostly visible inside the bone because of its porous nature.
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(a) (b)

(c) (d)

Figure 4.21: Jawbone registration criteria: (a) input slice; (b) thresholded
image; (c) distance map, where black represents the most distant voxels inside
the bone to the interface, and white represents the most distant voxel outside
the bone; (d) sampling density.

Nevertheless, the impact of the precise threshold selection has a negligible
impact on resulting registrations. Figure 4.21(c) shows thresholding of the
original input image. Euclidean distances are pre-computed by the Euclidean
distance transform (see Figure 4.21(d)).

The stochastic nature of Monte Carlo integration in the objective func-
tion as well as its derivative computation, which was introduced above, are
not suitable for use with the numerical optimization procedures listed in Sec-
tion 3.2.4 [page 50] other than steepest (gradient) descent. Because of the
constantly changing value of E every time it is evaluated, it does not allow
the local numerical optimization methods to work properly. In the following
experiment, single random sampling of the space is performed and used for
the entire optimization process in combination with L-BFGS (Okazaki, 2010).
Therefore, the effect of error reduction by repeated stochastic approximation
is lowered. This approach actually non-uniformly sub-samples the image data
on top of the uniform sub-sampling by multiresolution.

The multiresolution approach is also employed in order to speed up the
convergence as well as to lower the chance of the optimization procedure con-
verging to the local minimum. The optimal number and resolution of levels
are determined in further benchmarking. Figure 4.22 shows a single slice from
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Figure 4.22: Results of jawbone registration: (a) a slice of volume data before
non-rigid registration; (b) after non-rigid registration procedure convergence;
(c) visualization of space deformation, enabling the source bone (red) to fit the
target bone (green). Yellow pixels represent overlaying high-density structures
in both the source and target bones.

a successful registration of a pair of human jaws. Figure 4.23 shows the same
result in 3D, visualized by DVR.

For the purpose of comparing various parameters of registration with re-
spect to registration results, and in order to determine the optimal parameters
of a single registration procedure, the error measure must be defined

Err =
1

|I|
∑

x∈I

|S(x)− T ◦ fFFD(x))|2

where S and T are the source and target image, respectively, and I is a set
of the individual voxel’s integer coordinates in full resolution. The value of
T is linearly interpolated in case of transformation to non-integer values by
B-spline function fFFD.

Following the experience with mesh registration in Section 3.2.4, regis-
tration of the human jaw can be improved by incorporating additional user-
defined constraints, which should be added to the data term. With respect to
the demand for maximum precision, it is recommended to use as much input
as possible, especially since expert-placed landmarks for the dataset are avail-
able (see Figure 2.1(a) for landmark configuration L). The landmark explicitly
states which points correspond to which between the specific image data. The
degree with which landmark constraints are considered is given by the value
of multiplicative weight factor wl, i.e. E is extended as follows

E(fFFD) =

∫

Ω

(1− α)fd ◦ fFFD(x) + αfr ◦ fFFD(x)dx+

wl
1

|L|

|L|∑

i=1

‖L(S, i)− fFFD(L(T, i))‖2

Apart from that, a value of the landmark term alone can be used to measure
the quality of the fit as an error measure, ErrC .
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(a) (b)

Figure 4.23: Volume visualization of registration results: (a) a rigidly aligned
pair of jaws; (b) a pair of jaws after non-rigid fitting of the source (red) to the
target (green) volume. The yellow color represents ideally overlaying tissues
of the same density.

data
term

time
(s) Err ErrC

SSD 741 1.82 · 10−3 20.3
EDT 329 2.88 · 10−3 18.1

Table 4.1: Comparison of stochastic gradient descent and sub-sampled L-
BFGS for non-rigid B-spline registration of a jawbone. The landmark weight
is set to zero (wl = 0), regularization is also set to zero (α = 0) and sampling
is set to 0.5% of the total samples (s = 0.005).

In the first test, two registration algorithms are compared: the first uses an
SSD data term and is optimized by stochastic gradient descent; the second uses
an EDM data term and L-BFGS non-stochastic optimization. Both algorithms
use importance sampling for generating samples, as explained above. Table
4.1 shows a comparison of these two methods with identical settings of other
parameters (regularization, landmark weight, sample count).

In further tests, the EDT-based algorithm is evaluated with respect to var-
ious parameters. Table 4.2 shows how a value of wl impacts on error measures
and convergence time. It seems that when the weight is too high, it has a sig-
nificant influence on overall convergence time and error measure. In contrast,
omitting the constraints completely does not make convergence much worse
than in the optimal case, which is approximately 0.1.

Regularization is often the important part of non-rigid registration, espe-
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landmarks
weight

time
(s) Err ErrC

100 288 8.76 · 10−3 3.9 · 10−5

10 741 5.31 · 10−3 5.5 · 10−4

1 914 3.72 · 10−3 9.1 · 10−3

0.5 930 3.81 · 10−3 1.6 · 10−2

0.1 1395 3.35 · 10−3 4.9 · 10−3

0.01 1191 3.18 · 10−3 2.1 · 10−1

0 1285 3.00 · 10−3 2.2 · 101

Table 4.2: Landmark weight in a jawbone registration evaluation. Regular-
ization is set to zero (α = 0) and sampling is set to 2% of the total samples
(s = 0.02).

regularization
weight

time
(s) Err ErrC

0.1 749 2.93 · 10−3 22.2
0.01 1007 2.94 · 10−3 17.3
0.001 1355 2.84 · 10−3 16.2
0 320 2.88 · 10−3 18.1

Table 4.3: Regularization weight in jawbone registration evaluation. The land-
mark weight is set to zero (wl = 0) and the sampling ratio is set to 0.5% of
the total samples (s = 0.005).

cially in cases of transformation function, which allows unnatural space warp-
ing. This can occur in cases where there are very large differences between
source and target images. This does not seem to be the case with human
jawbones, which are all alike; neither does it occur in B-spline transformation,
given its intrinsic regularization properties. However, the possibility of slid-
ing surfaces in the source image along surfaces in the target image should be
avoided, along with inconsistent local deformation caused by the fine internal
structure of the bone containing cavities. Table 4.3 shows how the regulariza-
tion weight, which enforces low second derivatives and the smooth behavior of
the transformation function, influences convergence time and error measure.
It should be noted that in the implementation, the computation of the reg-
ularization term is turned off when it is canceled out by setting the weight
to zero. The impact on convergence time is significant because the computa-
tion of the regularization term is relatively expensive and makes the overall
convergence time approximately 2.5 − 4× longer. On the other hand, a high
regularization weight stops convergence sooner with a slightly negative impact
on error measure. Even so, regularization does not seem to be very important



CHAPTER 4. STATISTICAL ANALYSIS OF VOLUME IMAGES 161

sample
size (%)

time
(s) Err ErrC

2.0 1291 3.00 · 10−3 21.9
1.0 535 3.02 · 10−3 18.5
0.5 320 2.88 · 10−3 18.1
0.4 282 2.93 · 10−3 19.3
0.3 194 3.23 · 10−3 21.2
0.2 233 2.85 · 10−3 20.0
0.1 133 3.27 · 10−3 20.8

Table 4.4: Sample size in jawbone registration evaluation. The landmark
weight is set to zero (wl = 0) and regularization is also set to zero (α = 0).

#
levels

init. grid
resolution

time
(s) Err ErrC

2 11 243 3.03 · 10−3 16.1
3 7 338 2.88 · 10−3 18.1
4 5 469 2.87 · 10−3 21.1

Table 4.5: Multiresolution in jawbone registration evaluation. The landmark
weight is set to zero (wl = 0), regularization is set to zero (α = 0), and the
sampling ratio is set to 0.5% of the total samples (s = 0.005).

in this particular registration task.
By contrast, a more influential parameter with respect to speed and pre-

cision is the sampling ratio. In order to make registration usable in clinical
applications, the optimal ratio must be sought for the particular registration
task to keep the error measure and computation time low.

Another important attribute of the process is the number of levels in the
multiresolution scheme and the resolution of the control grid. According to
Table 4.5, it seems that additional levels do not greatly contribute to error mea-
sure. Nevertheless, the actual optimization criterion concerns minimizing the
difference in Euclidean distances to shape interfaces. This is better achieved
using three levels in the multiresolution scheme with 7 × 7 × 7, 11 × 11 × 11
and 19 × 19 × 19 control points, respectively, represented by 1029, 3993, and
20577 individual variables. Four or more levels are unnecessary for resolution
of the input data. It probably causes misalignment in low resolution on the
first level, which is not corrected well on a higher level. Two levels of multires-
olution do not overfit the thresholded data, which results in a lower landmark
error measure (ErrC), but also in poor alignment of image intensities (Err).
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4.3 Template-based group registration

Statistical analysis of volume images requires construction of correspondence
across the whole sample. In this section, the registration procedure described
above is applied to register multiple images to a common frame in order to
obtain mutual correspondences. Registration of multiple volume images into
a common frame of reference has gained a considerable amount of attention in
recent years, especially in the field of neurology (Gholipour et al., 2007). Vol-
ume images of the human brain can be taken using various imaging techniques
(CT, MRI, PET), while different phenomena can be studied on a sample of
patients. Based on these samples, various types of atlases can be created with
the use of specialized registration methods.

There are two approaches to group registration:

• Templated fitting — one specimen is chosen as a template and the rest
of the group is registered to this template (Rueckert et al., 2001) or the
template is registered to each specimen. An obvious disadvantage is that
the group registration is biased by the choice of template.

• Groupwise registration — the sample is continuously fitted to the mean
template, which is updated until it stops changing (Noblet et al., 2012).
There are various modifications of this approach (Bhatia et al., 2004;
Balci et al., 2007).

Although the second group of methods is considered superior, template
fitting is used for the purpose of jawbone group registration. In the first
step, all images are aligned rigidly using any rigid registration method. If the
landmark data are present, GPA is preferred. In fact, GPA is a landmark-
based variant of groupwise registration; thus, at this point the images are
rigidly aligned to the common mean.

Moreover, GPA can align the shapes to remove differences in orientation
and position with respect to landmarks, or even to remove differences in size.
This depends on whether the subsequent analysis interpretation expects the
size component to be included or only shapes with size differences removed.
Alternatively, size, position, and orientation can be removed by aligning all
corresponding points found by non-rigid registration.

Rigidly aligned images are a starting point for non-rigid B-spline-based
registration, as described above. The group registration pipeline is summarized
in Algorithm 11.

Case study 13: Human jaw variability of a Great Moravian sample

Group registration of shape samples was demonstrated on a collection of jaw-
bones from the Great Moravian period in Case study 5. These bones are unique
because of their historical value and well-preserved condition. All bones in the
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Algorithm 11: Template-based group registration.

Input : Images Ii, Landmarks Li, Index of template image t ∈ {0..n}
Output: Aligned images Ai, B-spline based transformations ti of It to Ii
begin

Run GPA on Li to get aligned landmarks Mi

for l := 1 to n do
Transform Ii according to rigid transformation defined by
transition from Li to Mi

end
for l := 1 to n do

Run B-spline based non-rigid registration looking for optimal
transfomation ti that fits At to Ai;

end

end

collection were treated as demonstrated in Figure 4.20. Figure 4.24 shows an
example of rigid alignment followed by non-rigid fitting in a pair of jawbones.

Group registration of shapes represented by volume data was performed by
preserving the size of the bones, which were normalized to a mean size. The
results can be used to study the following features:

• Mean shape and mean form — the mean shape and form are obtained by
averaging deformation fields defined by all transformations ti and by ap-
plying them to the template volume. Shape and form are distinguished
according to whether the transformations have the uniform scaling com-
ponent removed, as mentioned above. Moreover, if the sample is divided
into groups according to a certain property (e.g. sex, age, etc.), the
averaging can be performed in these sub-groups separately (see Figure
4.25(b)).

• Local variation — local variation in positions of corresponding points is
computed by evaluating the variation of deformation fields per voxel of
the template image. The magnitude of the variance vectors is shown in
Figure 4.25(c).

4.4 Statistical modeling of volume data

Once correspondence in the volume data sample is constructed by non-rigid
registration, statistical processing of the data can then take place. One field
that focuses on element-wise statistics in aligned volume images, mostly in neu-
roimaging, is called voxel-based morphometry (Ashburner and Friston, 2000).
However, this particular methodology has received criticism due to the poten-
tial for bias results in relation to imprecise registration and Gaussian smooth-
ing (Bookstein, 2001).



CHAPTER 4. STATISTICAL ANALYSIS OF VOLUME IMAGES 164

(a) (b) (c)

Figure 4.24: Jawbone group registration: (a) an individual jawbone before
alignment (green) and a template (red) in reference position; (b) each jawbone
(green) is rigidly aligned to an optimal position on the template (red), where,
in this case, alignment is computed based on the GPA-aligned landmark; (c)
transformation which fits the template (red) to each jawbone (red) is found so
that the template can be deformed to the shape of the particular jaw.

(a) (b) (c)

Figure 4.25: Jawbone mean shapes and forms from the Great Moravian sam-
ple: (a) the mean shape of the sample sub-group — male (green), female
(red); (b) the mean form of the sample sub-groups, where the male mean form
(green) is clearly larger than the female form (red); (c) local corresponding
points variance magnitude.
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On the other hand, statistical analysis of shape geometry is based on highly
correlated positions of densely corresponding points. Therefore, statistical
shape modeling of volume data can be performed in the same way as it is
performed for landmark and mesh data. Apart from vector fields obtained by
registration, there are other representations that can be used for statistical
shape analysis of volume images, e.g. level-set methods as suggested by Tsai
et al. (2003).

Statistical modeling of volume data, in connection with skeletal remains
and in its application to physical anthropology, is unexplored territory. Zheng
and Lösch (2013) recently attempted to create a statistical model of a skull
from a sample of 25 specimens. They used a diffeomorphic demons registration
algorithm (Vercauteren et al., 2007) to find correspondences in an attempt to
use the model for incomplete shape reconstruction. However, only preliminary
results were presented.

4.4.1 Shape variability

Variability of corresponding points is analyzed by decomposition into inde-
pendent trends by Principal Component Analysis. PCA is applied directly
to coordinates of corresponding voxels. The disadvantage here is that volume
data have the highest dimensionality of all representations mentioned in this
work. This means that a particular specimen is represented by a vector three
times longer than the number of voxels of the volume image, which could reach
tens of millions. In order to reduce dimensionality, parts of the volumes can be
masked out in the template depending on the region of interest. For example,
voxels clearly belonging to the background can be identified by simple thresh-
olding and masked out. Another example is via analysis of voxels located
along the interface between air/background and high-density tissues. Such
voxels can be identified by a sequence of thresholding, flood-filling, and mor-
phological operations. This approach reduces volume analysis to an analysis
of closed surfaces. Figure 4.26 shows examples of various template masks.

Positions of voxels that are included in the analysis are inputs of PCA.
Similar to mesh data, HDPCA (Section 3.3 [page 69]) is used in cases where
dimensionality is higher than the number of specimens. The output of the
analysis is a set of vectors {wj}nj=1, or modes of variation. Linear combinations
of these vectors can reconstruct deformation field ti, which, if applied to the
template, results in the shape of a particular specimen i.

ti = t̄+
n∑

j=1

αi,jwj

Coefficient vectors αi of these deformations represent the position of shape i in
the shape space. Dimensions of the shape space display decreasing importance
in the reconstruction when associated with the specified amount of informa-
tion. The specific amount of information in relation to shape variability is
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(a) (b) (c)

Figure 4.26: An example of various template masks: (a) masking only an
interior of the tissue of interest, representing 406k elements (approx. 5% of the
volume); (b) masking only an outline of the object, representing 61k elements
(approx. 0.8% of the volume); (c) a thick object outline, representing 371k
elements (approx 4.8% of the volume).

shown in Figure 4.27. Using the broken-stick criterion (see Section 3.4.1 [page
73]), it was found that the first nine principal components were statistically
significant for shape reconstruction. It is likely that the rest of the components
model noise.

Quickly decreasing variability and a relatively low number of statistically
significant components are a good sign that the model represents a low number
of important trends, which are hopefully associated with a simple geometrical
interpretation. For clarity, statistically significant components and associated
variability of shape and form in landmark-based and voxel-based models are
summarized in Table 4.6. In comparison to shape variability distribution of the
landmark-based model’s components, the voxel-based model presented here
displays very similar behavior. According to the broken-stick criterion and in
the case of shape, a number of statistically significant components is identical
for both the landmark method and the voxel method. The voxel-based model
of form has nine significant components while the landmark-based model has
only eight.

Projection of the space represented by two of the most important principal
components of form variability is shown in Figure 4.28 as well as the assignment
of individual specimens to male and female sub-groups. The size of the jaw
is substantially important when distinguishing between sexes, which can be
seen in the ordering of the sub-groups along PC1, which is associated with size
(represented by centroid size measure) by regression (p < 0.0001, R2 = 0.2556,
F = 28.46, df = 1, 79).

Equivalently, scores in the first two shape components are shown in Figure
4.29. Both sexes almost overlap, whereas only a subtle separation can be
observed along the PC1 axis.

Examining the most important (first) dimensions can provide an idea of the
most pronounced, independent trends in the sample. The effect of a particular
component on a form’s appearance is shown in Figure 4.30, which displays
the color-coded magnitude of the deformation modeled by the principal com-



CHAPTER 4. STATISTICAL ANALYSIS OF VOLUME IMAGES 167

2 4 6 8 10 12 14

0
5

10
15

20
25

30

Principal component

Va
ria

bi
lit

y 
(%

)
Form variability
Shape variability
Broken−stick

Figure 4.27: Amounts of variability (information) in individual principal com-
ponents (black). The broken-stick criterion (red) reflects a minimum amount
of statistically significant information for the component.

form variability shape variability

PC
voxel
(%)

landmark
(%)

voxel
(%)

landmark
(%)

1 31.06* 33.50* 16.90* 18.74*
2 11.75* 11.83* 12.99* 13.70*
3 9.16* 8.23* 9.37* 8.16*
4 6.14* 5.81* 7.03* 6.80*
5 5.42* 4.90* 6.59* 5.95*
6 3.91* 4.16* 4.49* 5.47*
7 3.20* 3.35* 3.92* 4.30*
8 2.87 2.99* 3.65* 3.55*
9 2.43 2.48 3.27* 2.95*

sum 75.95 77.25 69.35 69.62

Table 4.6: Variability of statistically significant components of jawbone shape
and form.
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Figure 4.28: Jawbone form variability in the first two principal components.
The ellipses represent 50% confidence intervals around the group centroids.
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Figure 4.29: Jawbone shape variability in the first two principal components.
The ellipses represent 50% confidence intervals around the group centroids.
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(a) (b) (c)

Figure 4.30: Color-coded independent trends in jaw form variability: (a) the
magnitude of PC1, which is the component associated with size; (b) the mag-
nitude of PC2; (c) the magnitude of PC3.

ponent. For example, the first component models the lower part of the jaw,
as well as the partially posterior condyle and coronoid process. The second
principal component affects the condyles, posterior ramus, and middle part
of the jaw body. Both first components are approximately symmetrical. By
comparison, the third component affects the middle part of the jaw body much
more on the left side than on the right side, which does not happen when only
a symmetric component of the shape is analyzed.

4.4.2 Sexual dimorphism

It is difficult to interpret individual principal components with respect to some
other factors (e.g. sex, age group, population) because such factors are exhib-
ited in all components at once. For example, it should be avoided, to summa-
rize, the difference between two sub-groups in one component as a prolongation
while the second component represents widening because the combined shape
change will not probably look like prolongation nor widening.

Some studies quote a high accuracy for sex estimation based on jawbone,
for example, up to 97.1% (Bejdová et al., 2013). However, sexual dimorphism is
relatively difficult to prove in only the shapes of complex bones like the pelvis or
jaw. Usually, size is the major factor, which is correlated with a particular sex;
however, if size is not considered, discrimination rates are lowered considerably.

It was shown by Bejdová et al. (2013) and in Case study 5 that sexual
dimorphism does exist when based on landmark methodology. Moreover, the
discrimination rate of sexes in the symmetric component of jawbone shapes
was relatively high, reaching around 80% in some populations.

Case study 14: Sexual dimorphism in a Great Moravian jaw sample

Voxel-based methodology was used to evaluate sexual dimorphism of a Great
Moravian jaw sample (Case study 5). The high dimensionality of voxel shape
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representation was already reduced to nine statistically significant components,
i.e. seven numbers that are able to reconstruct a particular shape with approx-
imately 69.35% of the overall information. In the first step, multivariate data
are positively tested for statistical significance of differences between males
and females by the multivariate Hotelling’s two-sample T 2 test (p = 0.0125,
T 2 = 25.81, F = 2.5771, df = 9, 71).

Subsequently, the ability to discriminate sexes in the sample of jawbones is
demonstrated by the success rate in classification of shape and form variables.
Also, in this case, shape variables are represented by the scores of statistically
significant components. For evaluation of shape and form discrimination, the
following classifiers are chosen:

• Linear discriminat analysis (LDA) — an assumption of a normally dis-
tributed sample is made, after which optimal weight ~w for linear dis-
crimination function ~w · ~x is found (Bishop, 2006, page 186).

• Naive Bayesian classifier — an assumption of the classifier for individual
features independence is fulfilled since they are PCA scores; hence, the
classifier can optimally benefit from the setup (Bishop, 2006, page 380).

• Support vector machines (SVM) — radial basis expγ|u−v|2 is used with
γ = 1/p, where p is the number of components involved (Cortes and
Vapnik, 1995). In this configuration, the classifier is highly over-fitted
and non-generalized.

• Artificial neural networks — network with one hidden layer and a soft-
max activation function in the output layer is used. The number of
neurons in the hidden layer impacts significantly on the behavior of the
classifier. The recommended number of neurons for the dimension of
the input is about 4. Also, 10 neurons are tested. A higher number
of neurons leads to over-fitting, as evidenced by its high posterior rate
(Bishop, 2006, page 225).

Table 4.7 shows the posterior discrimination rate as well as the more ob-
jective leave-one-out cross-validation rate of sexual dimorphism in jawbone
form (with size preserved). Table 4.8 shows results of discrimination by sex
for jawbone shape.

It seems that the simplest linear classifier (LDA) has the better generaliza-
tion property, whereas non-linear classifier scores (SVM, ANN) often over-fit
when not configured properly. Although the naive Bayesian classifier offers a
non-trivial decision boundary (given by the mixture of Gaussian probabilities)
and maximizes posterior probability, it does not outperform the linear classi-
fier. This would indicate that sexual dimorphism of the human jawbone shape
appears to be linearly separable.

Using the LDA classifier’s weights ~w in a linear combination of correspond-
ing principal components (modes of variation), extreme cases of both classes’
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classifier
posterior
rate (%)

cross-validation
rate (%) female male

LDA 82.72 79.01 28/8 36/9
Naive Bayes 82.72 79.01 27/9 37/8
SVM(radial kernel) 86.42 69.14 21/15 35/10
ANN(hidden=10) 87.65 77.78 26/10 37/8
ANN(hidden=4) 80.25 79.01 31/5 33/12

Table 4.7: Jawbone form sex classification results using various classifiers. The
last two columns specify the number of females/males classified in the same
class or separately, respectively.

classifier
posterior
rate (%)

cross-validation
rate (%) female male

LDA 70.37 67.90 22/12 33/14
Naive Bayes 74.07 51.85 15/18 27/21
SVM(radial kernel) 82.72 50.62 10/14 31/26
ANN(hidden=10) 96.30 56.79 21/20 25/15
ANN(hidden=4) 72.84 65.43 24/16 29/12

Table 4.8: Jaw-bone shape sex classification results using various classifiers.
The last two columns specify the number of females/males classified in the
same class or separately, respectively.

representatives can be constructed. Alternatively, visualizing color-coded mag-
nitudes of a vector field, which this linear combination represents, shows where
the most important differences between both classes are. Figure 4.31 shows
the differences between males and females reflected in the form of a jaw sample
from the Great Moravian period.

In consensus with the results reported by Bejdová et al. (2013), where
landmark methodology was employed using voxel-based methodology, sexual
dimorphism was also proved in the Great Moravian jaw sample. By comparing
Figures 2.7(b) and 4.31, it can be seen that the dimorphism manifestation
reported by both methodologies is similar.

In order to interpret the results of discrimination, it must be noted that
the published results achieved using landmark-based methodology were evalu-
ated from symmetric components of data that were also reduced of allometric
effects. In other words, part of the variability that is not related to sex was
filtered out. Hence, voxel-based discrimination described in this section should
be compared to equivalent results mentioned in Case study 5, which recorded
a 69.14% cross-validation rate for discrimination by sex with respect to shape
and a 79.01% rate with respect to form. This is only a 1.24% lower rate for
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(a) (b) (c)

Figure 4.31: Color-coded effects of sexual dimorphism on a jaw-bone shape
derived from the Great Moravian sample. The red color represents voxels
whose positions are highly influenced by sex, the green color indicates mild
influence, and the blue color indicates low influence: (a) free angle view; (b)
sagittal view; (c) axial view.

shape, which is equivalent to one misclassified specimen. Discrimination suc-
cess rates with respect to form are equal for landmark-based and voxel-based
methodologies.

It is reasonable to claim that the new methodology approximately achieved
the same discrimination results. The same results can be attributed to the fact
that the jawbone was well-covered by landmarks, which completely reflects its
variability in the size of the available sample. It is also reasonable to assume
that the voxel-based discrimination results could have been further improved
upon if the symmetric component of the voxel data had been analyzed. Separa-
tion of symmetrical and asymmetrical components under voxel-based analysis
is one of the possible directions for future research.

4.5 Conclusions

In this chapter, several methods for use in morphometrical analysis of voxel
data have been described. The motivation for employing voxel data is to
incorporate more information into the analysis and to avoid making subjective
decisions when choosing landmark points, lines, surfaces, or any other kind of
low-dimensional primitives.

Even though input for analysis can take the form of raw data since it is
issued from a scanner (e.g. CT, MRI), it is also recommended to perform a pre-
processing step to isolate the shape that is to be morphometrically analyzed,
i.e. segment it from the background in the image.

In the first part, a method for segmenting organs was presented. It shares
a common mathematical basis with other parts of this thesis, particularly
the B-spline function for shape representation. It also presents a variational
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formulation of the problem as well as a numerical method for its solution.
The author has applied this algorithm to measure the volume of organs in the
human body (Kraj́ıček et al., 2007; Kraj́ıček, 2007, 2008b).

The following segmentation method is targeted at processing specific data
— jawbones images, which are pivotal for the rest of the chapter. The
author has contributed by employing locally-adaptive intensity priors using
region-based level-set segmentation applied to teeth and jawbone segmenta-
tion (Kraj́ıček et al., 2014).

Correspondence problems in voxel data are solved using a non-rigid regis-
tration framework, which has been improved in several ways by the author:

• Sampling as a speed-up technique to decrease the execution time of the
algorithm from hours to minutes using contemporary machine (Kraj́ıček
et al., 2011). As a result of this process, a stochastic registration algo-
rithm variant was created.

• A suitable data criterion for bone registration, based on pre-computed
Euclidean distance maps and non-uniform sub-sampling.

• Limited-memory BFGS — a cutting-edge numerical procedure for non-
linear optimization was chosen to speed up numerical optimization. In
combination with the previous points, a non-uniform sub-sampling reg-
istration algorithm variant was produced.

• Parameters of the whole pipeline were optimized by a sequence of tests
and experiments.

The subsequent application of the registration method to template-based
group registration of the Great Moravian jaw sample, along with statistical
analysis of the deformation field, proves the applicability of the pipeline to
similar tasks in physical anthropology and biomedicine.

Future work on the framework could be aimed in the following directions:

• Extend the registration procedure to register objects with the use of
multiple interfaces (bone, skin, fat layers).

• Analysis of asymmetry, which will allow new phenomena to be studied
and which will improve discrimination, as mentioned above.

• Reconstruction of missing data based on information collected in the
statistical model in accordance with the ideas presented in Chapters 2
and 3.



Chapter 5

Conclusions and future work

In the End, we will remember not
the words of our enemies, but the
silence of our friends.

Martin Luther King, Jr.

Studying the shapes of living things and how they change have always
been important problems in life sciences. New methods of shape description
emerge with the new technologies for their acquisition. This thesis describes
shape analysis methods that use two novel modalities — triangular meshes and
volume imaging — and which are relevant to the field of physical anthropology
and their specific tasks.

Up until now, the common approach of quantitatively analyzing various
phenomena associated with the shape and form of things was connected to
landmark analysis and geometric morphometric methodology (Section 2.2). It
has been shown that certain shapes are difficult to describe using landmarks,
which accounts for the different descriptions of shapes, e.g. curves, surfaces, or
volume space sampling, where necessary (Section 2.5). The basic principles of
data mining and the application of principal component analysis can be both
transferred to triangular surfaces as well as volume images (Sections 3.4, 4.4).
However, it is not easy to obtain correspondences using these representations.

Registration methods have been investigated with an emphasis on the speed
of processing since they should be used for registering tens or hundreds of spec-
imens. Thin-plate spline-based registration (Section 3.2.3) used in basic dense
correspondence algorithms (Section 3.3) is fast, but it does not deliver consis-
tent correspondence matching. The state-of-the-art coherent point drift algo-
rithm exploits fuzzy correspondence in exchange for computationally expensive
processing, which was possible to improve (see Section 3.2.5). B-spline-based
non-rigid registration seems to be the most versatile since it can be used for
mesh as well as for volume images registration, and also allows incorporating
various criteria such as landmarks or nearest neighbor distances. Landmarks
can still be used as a support for data-driven registration, while giving the user
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confidence in the registration process and allowing exact fits of stable points
to be controlled. Sampling appears to be an effective approach as a way of
reducing registration time by orders of magnitude (Sections 3.2.4 and 4.2.2)
while also maintaining accuracy.

Different kinds of relations can be uncovered by studying the asymmetry
of shapes. The landmark-based method was described and used in a research
study in Section 2.4. However, the methodology for mesh asymmetry needs to
be developed (Section 3.5), but it has already found an application in actual
research.

The method in which pairs of related data are registered beforehand,
enabling their relations to be analyzed, has also found a use in applications
(Section 3.6).

The path for future work on the non-rigid registration framework is two-
fold. First, groupwise registration is thought to be superior to template-based
registration since it removes bias caused by the selection of a particular tem-
plate. It would be reasonable to prove this assumption in the case of an actual
morphometric task. Template-based group registration has the advantage of
using incremental model-building, whereas groupwise registration requires a
complete set of specimens at the beginning.

Second, it would be beneficial to further improve registration algorithms
in terms of speed. For example, by employing hardware acceleration using
sampling approaches introduced in this work, another speed-up of at least one
order of magnitude would be reasonable to expect. This approach has already
been demonstrated in case of CPD (Section 3.2.5).

Apart from improving the registration framework, it would be especially
useful to continue with the application of the shape variability analysis frame-
work in actual research. Not only might this motivate further improvement
but it might also have a multiplicative effect on the utilization of research
presented in this text.

Extending asymmetry analysis to volume images might improve discrimi-
nation results in the Great Moravian jawbone case study. The results of shape
analysis without the removal of asymmetry effects are not better than results
acquired using landmark-based methodology.

Similarly, missing data computation (Section 2.3, 3.7) could also be ex-
tended to volume images. It would be beneficial for forensic sciences and ar-
chaeology to be able to restore damaged artifacts based on a statistical model
created from volume data collections. There have already been attempts at
performing such a procedure, but it is heavily dependent on collected data
sets. These sets are currently available in relatively generous amounts thanks
to the Department of Anthropology and Human Genetics at the Faculty of
Life Sciences, Charles University in Prague.
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cation Using the Three-Dimensional Tibia Form or Shape Including Popu-
lation Specificity Approach. Journal of Forensic Science, 2015b, 60(1), pp.
29–40.
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Veleḿınská, J., The Shape Variability of Human Tibial Epiphyses in an
Early Medieval Great Moravian Population (9th -10th Century AD): A Geo-
metric Morphometric Assessment. Anthropologischer Anzeiger, 2014, 71(3),
pp. 219–236.

Bustard, J., Nixon, M., 3D morphable model construction for robust ear
and face recognition. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2010, pp. 2582–2589.
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Teeth and Jaw Segmentation Using Fast Level-set Algorithm and Local Re-
gion Anisotropic Priors. Imaging Science Journal, 2014. (submitted).
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Kraj́ıček, V., Pelikán, J., Horák, M., Measuring and Segmentation in CT
Data Using Deformable Models. In Skala, V. (ed.), WSCG’ 2007 Short
Communications Proceedings, vol. 2, Union Agency, 2007, pp. 149–152.



BIBLIOGRAPHY 183

Kratky, J., Kybic, J., Three-dimensional segmentation of bones from CT
and MRI using fast level sets. In Medical Imaging 2008: Image Processing,
vol. 6914, SPIE, 2008, pp. 691 447–10.

Krcah, M., Szekely, G., Blanc, R., Fully automatic and fast segmentation
of the femur bone from 3D-CT images with no shape prior. In IEEE Inter-
national Symposium on Biomedical Imaging: From Nano to Macro, IEEE,
2011, pp. 2087–2090.

Kumar, S., Mohri, M., Talwalkar, A., Sampling Methods for the Nyström
Method. J. Mach. Learn. Res., Apr. 2012, 13(1), pp. 981–1006.

Kybic, J., Unser, M., Fast parametric elastic image registration. IEEE
Transactions on Image Processing, 2003, 12(11), pp. 1427–1442.

Lane, J. M., Riesenfeld, R. F., A Theoretical Development for the Com-
puter Generation and Display of Piecewise Polynomial Surfaces. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 1980, 2(1), pp.
35–46.

Lee, D., Antani, S., Long, L. R., Similarity Measurement Using Polygon
Curve Representation and Fourier Descriptors for Shape-based Vertebral
Image Retrieval. In Medical Imaging: Image Processing, vol. 5032, SPIE,
2003, pp. 1283–1291.

Li, C., Huang, R., Ding, Z., Gatenby, J., Metaxas, D., Gore, J., A Level
Set Method for Image Segmentation in the Presence of Intensity Inhomo-
geneities With Application to MRI. IEEE Transactions on Image Process-
ing, 2011, 20(7), pp. 2007–2016.

Li, C., Xu, C., Gui, C., Fox, M. D., Level set evolution without re-
initialization: A new variational formulation. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, IEEE,
2005, pp. 430–436.

Little, R. J. A., Rubin, D. B., Statistical analysis with missing data (second
edition). Wiley-Interscience, 2002, ISBN 978-0-471-18386-0.

Liu, L., Raber, D., Nopachai, D., Commean, P., Sinacore, D., Prior,
F., Pless, R., Ju, T., Interactive Separation of Segmented Bones in CT
Volumes Using Graph Cut. In Proceedings of the 11th international confer-
ence on Medical Image Computing and Computer-Assisted Intervention -
Part I, Springer, 2008, pp. 296–304.

Liu, Y., Palmer, J., A quantified study of facial asymmetry in 3D faces.
In IEEE International Workshop on Analysis and Modeling of Faces and
Gestures, IEEE, 2003, pp. 222–229.



BIBLIOGRAPHY 184

Malladi, R., Sethian, J., Vemuri, B., Shape modeling with front propaga-
tion: a level set approach. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 1995, 17(2), pp. 158–175.

Mani, V., Arivazhagan, D., Survey of Medical Image Registration. Journal
of Biomedical Engineering and Technology, 2013, 1(2), pp. 8–25.

Marden, S., Guivant, J., Improving the Performance of ICP for Real-Time
Applications using an Approximate Nearest Neighbour Search. In Proceed-
ings of Australasian Conference on Robotics and Automation, 2012, pp. 1–6.

Martelli, A., An Application of Heuristic Search Methods to Edge and Con-
tour Detection. Communications of the ACM, 1976, 19(2), pp. 73–83.

Mayer, A., Greenspan, H., Direct Registration of White Matter Tractogra-
phies with Application to Atlas Construction. In MICCAI 2007 Workshop
Statistical Registration PairWise and GroupWise Alignment and Atlas For-
mation, 2007, pp. 1–8.

Meijster, A., Roerdink, J. B. T. M., Hesselink, W. H., A General Algo-
rithm for Computing Distance Transforms in Linear Time. In Mathematical
Morphology and its Applications to Image and Signal Processing, vol. 18,
Springer, 2002, ISBN 978-0-306-47025-7, pp. 331–340.

Mitchell, D. P., Spectrally Optimal Sampling for Distribution Ray Tracing.
In Proceedings of the 18th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, 1991, pp. 157–164.

Mitteroecker, P., Gunz, P., Advances in Geometric Morphometrics. Evo-
lutionary biology, 2009, 36(2), pp. 235–247.

Morphome3cs, Morphome3cs Project at Computer Graphics Group At
Charles University in Prague. http://cgg.mff.cuni.cz/Morpho, 2015. Ac-
cessed: May 2015.

Mueller, A., Paysan, P., Schumacher, R., Zeilhofer, H.-F., Berg-

Boerner, B.-I., Maurer, J., Vetter, T., Schkommodau, E., Juer-
gens, P., Schwenzer-Zimmerer, K., Missing facial parts computed by
a morphable model and transferred directly to a polyamide laser-sintered
prosthesis: an innovation study. British Journal of Oral and Maxillofacial
Surgery, 2011, 49(8), pp. e67 – e71.

Myronenko, A., Song, X., Point Set Registration: Coherent Point Drift.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2010,
32(12), pp. 2262–2275.

Myronenko, A., Song, X., Carreira-Perpinán, Á., Non-rigid point set
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