Computer Graphics II - current information (2017/2018)

Lecture: every WEDNESDAY AT 15:40 in SW1 room (Malá Strana)
(Czech version is on Tuesday at 14:00 in S3)

Labs: every other WEDNESDAY AT 17:20 (starting on 28. 2. 2018) in the SW1 lab (Rotunda)

Lecture plan

Lecture #1 (21. 2. 2018)

Introduction, literature, shading and ray-tracing revisited

Course content, additional sources, ray-tracing basics, shading basics (Phong reflectance model, Gouraud and Phong shading)

Lecture #2 (28. 2. 2018)

More reflectance models

General BRDF concepts, microfacet models: Cook-Torrance..

Lab #1 (28. 2. 2018)

Credit system, tasks, programming environment (C# environment, SVN repository grcis, MS Visual Studio), GrCis repository, ray-tracing example: 048rtmontecarlo.
Ray-based renderer architecture I (interfaces and core classes: RayScene, IIntersectable, IImageFunction, IRenderer, ISolid, ..)
Ray-tracing in GrCis (PDF slides)

Lecture #3 (7. 3. 2018)

Reflectance models

Microfacet models: Cook-Torrance, Oren-Nayar, looking for better microfacet distributions D(h) and geometric factors G

Lecture #4 (14. 3. 2018)

Shadow casting, ray-scene intersections

Shadow maps, shadow buffer, volumetric shadows.
Ray-scene intersection basics: planar shapes, convex polyhedron, implicit and algebraic surfaces, general and rotational quadrics, sphere (geometric solution), torus, surface of revolution, CSG representation. Spline surfaces, Bezier surfaces: subdivision, Newtonian iteration.

Lab #2 (14. 3. 2018)

Ray-based renderer architecture II (Intersection, ISolid, IReflectanceModel, IMaterial), ICamera revisited, CS-script for scene definitions (the 048rtmontecarlo-script project)

Task 022: Alternative camera

Lecture #5 (21. 3. 2018)

Textures and noise functions

Textures in ray-tracing - 2D and 3D textures, table (bitmap) vs. procedural texture, table interpolations. "Bump-texture" (normal map), stochastic textures - introduction, synthetic noise functions (white noise, interpolation and convolution methods), Perlin noise, Lewis sparse convolution, turbulence, application of noise functions in texture synthesis: wood, marble. More applications of noise functions (water surface simulation, flame simulation).

Lecture #6 (28. 3. 2018)

Acceleration of R-T

Classification of acceleration techniques, bounding solid, bounding efficiency, bounding-volume-hierarchy (BVH), efficiency and construction, space dividing methods: grid, 3DDDA, octree, KD-tree, subdivision approaches, adaptive tree pass. [Directional acceleration techniques, cube directory, light buffer, ray coherency, projection plane directory, generalized rays]

Copyright (C) 2001-2017 J.Pelikán, last change: 2018-03-14 02:34:23 +0100 (Wed, 14 Mar 2018)