In architecture visualization, physically-based rendering allows for the accurate prediction of the irradiance levels in different parts of the building. This helps architects, for example, to maximize the use of natural light in their designs. Current rendering systems, however, do not model the dynamics of the human visual systems when it comes to light-dark-adaptation. This is important in the design of areas with brightness transitions, like entrance areas and hallways.
For example, consider a highway tunnel: To allow for a more graceful brightness-adaptation when entering, tunnel lights are more powerful around the entrance than they are further in. The goal of this thesis is the design and implementation of a physiologically correct camera model for light-dark adaptation.