Rendering FDM 3D Prints

Appearance Prediction for regular 3D Printers

Fused Deposition Modeling (FDM) based 3D printers exhibit often very coarse layer-heights where individual layers are visible by naked eye. Inaccuracies in the printer cause layers to shift slightly resulting in an uneven surface and overall deviation from the intended 3D geometry. The glossy plastic reflections on these 3D prints are majorly influenced by the direction the printhead moved while extruding the cylindrically shaped material. Previews of these paths in the printer’s slicing software are very rudimental and serve more a visualization purpose.

What we are interested in is an accurate rendering that depicts effects such as:

  • accurate geometry including printing-inaccuracies and material melting
  • realistic reflections (trivial)
  • subsurface scattering of fillament material

The purpose of this project is to allow for virtual 3D print experimentation without the need to actually print. A virtual prediction allows for virtual tweaking and automatic optimizations that are impossible till today. This cuts down on the number of iterations till users are happy with their objects and saves wasted copies, that are unusable due to undesired appearances. This is a severe problem that our collaborators face in their daily industrial work.
This project can be taken as individual software project (NPRG045), Bachelor or Master thesis.